
DistView: Support for Building Efficient Collaborative
Applications using Replicated Objects

Atul Prakash and Hyong sop Shim

Software Systems Research Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122, USA

Tel: 1-313-763-1585

E-mail: apralcash@eecs.umich. edu, hyongsop@engin.umich. edu

ABSTRACT
The ability to share synchronized views of interactions with

an application is critical to supporting synchronous collabora-

tion. This paper suggests a simple synchronous collaboration

paradigm in which the sharing of the views of user/application

interactions occurs at the window level within a multi-user,

multi-window application. The paradigm is incorporated

in a toolkit, DistView, that allows some of the application

windows to be shared at a fine-level of granularity, while still

allowing other application windows to be private. The toolkit

is intended for supporting synchronous collaboration over

wide-area networks. To keep bandwidth requirements and

interactive response time low in such networks, DistView uses

an object-level replication scheme, in which the application

and interface objects that need to be shared among users are

replicated. We discuss the design of DistVlew and present

our preliminary experience with a prototype version of the

system.

KEYWORDS: Groupware, multi-user interfaces, collabora-

tion technology, shared windows, active objects, distributed

objects, replicated objects, concurrency control.

INTRODUCTION
A great interest has developed in recent years in building

collaboration tools that allow people to work with each other

without the need for physical proximity [7, 17, 13, 18]. This

interest has been partly motivated by the increasing availabil-

ity of powerful interconnected workstations. The focus of this

paper is on techniques for supporting synchronous collabo-

ration among geographically separated users in a networked

computing environment.

This paper describes DistVlew, a toolkit that we are de-

veloping @ provide efficient and fault-tolerant collaboration

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a f~e
and/or specific permission.
CSCW 94- 10/94 Chapel l-lill, NC, USA
@ 1994 ACM 0-89791 -689-1/94/0010..$3.50

support to object-oriented applications. Application devel-

opers may employ the DistView toolkit to convert existing

object-oriented applications to collaboration-aware applica-

tions with minimal effort or to create new collaboration-aware

applications from scratch.

DistView supports building of collaborative multi-window

applications in which users can share some of their applica-

tion windows with other users while still keeping other appli-

cation windows private. Applications can be designed to be

collaboration-aware so that several users can simultaneously

interact with the application and with each other. The toolkit

is intended for supporting synchronous collaboration over

wide-area networks. To keep interactive response time low in

such networks, DistView uses an object replication scheme,

in which the application and interface objects that need to be

shared among users are replicated, This paper describes the

design concepts used in DistView in detail, an early version

of which has been implemented on the NeXTSTEP operating

system,

The rest of the paper is organized as follows. We first

give an overview of a real-life collaborative application that

helped formulate the initial goals of DistView. We then

present the design goals for DistView. Next, we describe

typical usage of a DistView-supported application. Then, we

present the application model assumed by DistView. Next,

we give an overview of the design approach used in DistView.

After that, we describe the object replication and concurrency

mechanisms used in DistView. We then provide some exper-

imental results of the use of DistView. Next, we compare

DistView with related work on groupware and multi-user

toolkits. Finally, we summarize our conclusions and point

out some interesting open issues.

A MOTIVATING EXAMPLE --- THE UARC SYSTEM
The primary objective of the Upper Atmospheric Research

Collaborator (UARC) project [8] is to provide space sci-

entists with the means to effectively view and analyze data

collected by various instruments located in Greenland. In
the past, the scientists had to make annual trips to Greenland

just to gather data. In order to eliminate the needs for these

costly trips and to better support collaboration between the

153

scientists, our research team at the University of Michigan has

developed the UARC system. Based on the client-server ar-

chitecture, a UARC server gathers data from the instruments

and broadcasts them to UARC clients which run at various

sites around the world. The clients then graphically display

the server data in various data windows (see Figure 1). A

UARC client also includes a “chat window” through which

scientists may communicate with the group by typing and

sending their messages.

Over the past year, the UARC system has been extensively

tested and used with success on several full-scale, real-life

scientific experiments. However, the UARC system did

not provide any support for synchronization of data display

windows among the scientists. Each scientist had access

to the same underlying data sets, but could be looking at

different parts of the data sets or displaying the data in

a different manner. A study of the usage of the UARC

system showed that when having on-line discussions with

their colleagues through the chat window, scientists often

needed to describe the information displayed in their data

windows [12] so that other interested scientists could set

their windows to show the displays. The problem remained

that this manual synchronization of displays was temporary;

since the displays were independent, as soon as they were

interacted with, they would go out of synchronization.

It appeared to us that synchronous collaboration among the

scientists would be more effectively realized if the scientists

could share their windows with other scientists. That is,

upon observing something interesting in a window, a scientist

would simply export the window and other scientists would

simply import the window. Furthermore, it would be desir-

able if the displays in the exported and imported windows

remain synchronized when the windows are interacted with.

GOALS FOR DISTVIEW
Based on our experience with UARC, we have identified the

following goals for DistView to help support synchronous

collaborations effectively:

1. The sharing of application workspace should be allowed

at the granularity of individual windows.

Experience with observing the use of the UARC system

indicated that sharing the entire interface of an applica-

tion would impose a severe screen real-estate problem
on the users. Furthermore, scientists using the UARC

system often had different goals and specializations, and

thus were normally interested in looking at different data

sets. It was therefore impontant that they retained the

ability to have private application windows in a col-

laborative environment. A similar case arises in group

editing when a user may wish to open a new window for
looking at a private file. We thus felt that allowing the

sharing of the application’s interface at the granularity

2.

3,

4.

5.

of windows will provide the necessary flexibility in

collaboration as well as will make the interface intuitive

to use for the users. This was especially important in the

UARC project because users are space scientists, who

are new to groupware technology. We could simply tell

them that windows are similar to paper that you can

pass around to other scientists and any interactions you

do with them will be visible to other scientists.

Users should be able interact simultaneously with the

application.

In other words, DistView should support building of

collaboration-aware applications. In the case of UARC,

it would made the application quite unusable if only one

scientist could interact with UARC at a time.

Sharing should not lead to a substantial increase in

interactive response times.

In an interactive application, response times are critical

for effective use. Collaboration capability should be

provided in such a manner that response times continue

to be similar to those in a system without collaboration

support.

A synchronous collaboration system should pe~orm ad-

equately over a wide area network.

Because the users of a collaborative application may

be scattered all over the world, the collaborative appli-

cation should perform well over a wide-area network.

More specifically, even if available network bandwidth

becomes limited, the application should continue to

function with good response times and low latencies.

Developing applications using a toolkit should not in-

volve extensive amount of coding over developing non-

collaborative version of an application.

In other words, if one starts out by first building a non-

collaborative application, adding DistView-provided col-

laborative capabilities to it should not involve extensive

effort.

All the features above are not met by existing toolkits for

building synchronous groupware systems, at least not unless

application developers are willing to do extensive distributed

systems and user-interface programming. Our goal in de-

signing DistView was that the above requirements should be
met with the application developer requiring as little knowl-
edge as possible beyond that of developing non-collaborative

applications.

EXAMPLE OF A DISTVIEW-BASED APPLICATION
We added capabilities to share windows to the UARC system

described in the previous section using a preliminary version

of DistView. In this section, we give art example of how

added collaboration facilities are used in the system.

154

Figure 1: Interface provided to a user by the UARC system. Each user has independent control over what data sets they

look at and the type of displays used for presenting the data sets. At the top left is a multi-user chat window to allow users

to communicate with each other.

Figure 2 shows how a user exports a window, in which some-

thing interesting is observed, to the group. The user simply

selects the window to be exported by clicking on the window

and then selects the Export Window command from an

available menu. The application also provides feedback to

the user that the window has been exported by changing

its background color (alternatively, its title could have been

changed). Through the chat window, the user can inform

other users about the newly exported window.

Figure 3 shows another user, who is running the UARC

application, importing a window. The user first selects the

Import Window command from the application menu.

This results in popping up of a list of windows that have

been previously exported. Each item on the list contains the

exporter’s login name and the title of the window that was

exported. The user selects the window to be imported from

this list.

Figure 4 shows the displays in the exported and imported

windows after the import operation is complete (normally,

these windows would be displayed on different consoles).

The state of the imported window remains synchronized

with the state of the corresponding expomd window even

if the windows are interacted with. For example, moving the

scrollbar in one window causes corresponding movement of

the scrollbar in the copies of the window. Changing the size
/

A user chooses the “Export Window’ menu command to
export the selected window (the window with the black title
bar).

Figure 2: To expori a window, user selects the window

to be exported, and then clicks on “Export Window”.

155

Clicking here brings
up the panel below.

Clicking “OK” imports the window whose name is highlighted.

Figure 3: To import a window, user selects the “import

Window” from the menu and then selects the window

to be imported.

Imported window

Figure 4: Corresponding imported window and
exported windows with state synchronized. The UARC

application is coded to set different background colors

for imported and exported windows.

of the window also leads to the corresponding change in size

in the copies of the window. Mouse movements within the

window are also displayed in the copies so that users can use

the mouse as a teleprinter.

Note that the entire application interface does not have to be

shared. All users can still have private application windows

whose behavior is under their control. Displays in private

application windows can get affected by an action on a shared

window only if they are displaying the same data and an action

on the shared window leads to modification of the common

data. Users can independently iconify, move around, or close

shared windows.

DistView attempts to replicate all the necessary state asso-

ciated with a shared window so that imported windows can

continue to be shared even if the exporter crashes.

DistView provides features so that application developers can

provide desired level of concurrency control to ensure consis-

tency of replicated data and consistency of displays in shared

windows. The current version of the UARC system allows

simultaneous user interactions with different windows but

limits interactions with a shared window to one user at a time.

If in some application, one wishes to allow simultaneous

interactions in a shared window (e.g., as in shared editing),

DistView provides mechanisms for application writers to

safely program such behavior.

APPLICATION MODEL
DistView is designed for integration with object-oriented,

window-based applications. Such an application consists

of a number of interface and application objects. Interface

objects correspond to widgets, such as buttons, menus, and

scrollbars, which are commonly provided by user interface

toolkits. Interface objects provide users with the means to

interact with applications. Application objects, although not

directly visible to end users, respond to user input on interface

objects, invoke operations on interface objects, and maintain

application data. The future trend in user interface toolkits is
for them to be object-oriented. Several high-level X tootkits

(e.g., InterViews and Fresco [1 l]), NeXTSTEP, and various

Macintosh and PC-based toolkits already provide a library

of standard interface objects whose behavior is known in

advance.

We require that the application satisfies the auto-update prop-
erty (i.e., there is a mechanism that keeps the state of the
interface consistent with the state of application objects as

their states change). In other words, the user interface should

not allow a user to interact with an out-of-date application

state, possibly leading to undesirable behavior, If the state of
application objects changes, the change must be appropriately

reflected in the interface. Ensuring this is not difficult and is

usually satisfied by most interactive software anyway.

156

-

Grsph Controller
Slider

!

Te

i N ~\ w/’/’
Popup Menus

Textfiilds

the provided pop-up menus. The scientist may also view

different parts of the server data by entering desired ranges

in the text-fields or by moving the knob on the scrollbar.

DESIGN APPROACH

In DistView, we have adopted the following design approach

in order to meet the goals stated earlier.

Window-level sharing: Whenever appropriate, users should

be able to share their application workspace with other

users at the window-level rather than being required to

share it in its entirety.

Supportfor concurrency control: Locking mechanisms are

provided so that simultaneous interactions by users can

be supported, without leading to undesirable or incon-

sistent results.

Replication: Interface objects and application objects which

belong to shared windows are replicated in order to

promote local processing.

Figure 5: A UARC data window

Figure 6 shows the high-level components of DistView. When

A window itself is an interface object and consists of a number
a window is exported: its name and the address of its exporting

of other interface objects. The interface objects of the window
process are made available to other sites through the Shared

form a hierarchy, with the window being the root. Also, these
Window Server, a central process known to all the sites

that wish to share application windows. An export window
interface objects, including the window, may have references

to other interface or application objects, to which messages
manager is also created wirhin the exporting process. The

are sent in response to user operations.
export window manager is responsible for transferring the

state of the window to an importing process.

Figure 5 shows a typical UARC data window in a UARC
A user can get the list of windows available for import from

client and the application objects that control the window’s

display. The pop-up menus, text-fields, and scrollbar (slider)
the Shared Window server. When the user imports a window

from the list, an import window manager is created within
in Figure 5 are examples of interface objects. The Graph

Controller and the UARC Data Supplier are examples of
the importing process to handle the window’s import. The

application objects.
import window manager sends a message to the exporting

process, requesting the window’s export manager to send the

The window in the figure graphically displays the UARC data
state of the window. The state sent results in replication of the

(currently, data from instruments such as radar in Greenland).
window, including all its interface objects, within the address

When a scientist moves the knob of the scrollbar in order to
space of the importing application.

view a different part of data, the window sends a message to

the Graph Controller object, requesting the desired amount

of data. The Graph Controller, in turn, sends a message to

the Data Supplier, requesting the data. Going the other way,

when new data arrives over the network, the Data Supplier

sends a message containing the data to the Graph Controller,

which then sends another message containing the data to the

window so that the window can display the new data. The

Graph Controller also invokes an operation on the scrollbar by

sending it a message, so that the scrollbar may appropriately

adjust its knob for the new data.

Each UARC data window has its own Graph Controller

whereas all UARC clients have a single UARC Data Supplier.

A scientist may select a different mode of display by using

To transfer the state of its exported window, the export win-

dow manager recursively traverses down the hierarchy of the

window, retrieves the type and state of each interface object

it encounters, and sends the information over the network to

the import window manager that has requested the windowl.

Upon receiving the stream, the import window manager

retrieves the needed information on the selected window from

the stream and creates a local copy of all the interface objects

belonging to the window, initialized to the received states,

Furthermore, if it finds that these newly created interface

objects have references to other objects, those objects are also

1We require thal all user-interface objects are designed to provide a

standard mechanism to access and set their state.

157

.‘. “.
.“ .“ “.

.0Window
(private)

(Exported) :

“.
,. .“

.

.

Figure 6: The application is participating in two separate collaboration sessions through Windowl and Window2. Note

that users may have private windows that are not shared at the same time. The dotted boxes distinguish between different

processes.

Sild
...........

P
,,....,

Al A2 “..

11

12

Window 1

13

1 I
., Window 2 ,..

. ,,, ,, .,,,, ,, .,.,,,,, ,.. ,

site-a
.....,,’... . . ,.,

&
Al

B

Window 3
...........,,.,,,,,,, ...

Figure 7: The state of the multi-user application at sites

A and B before sharing of Window l“, ”Al and A2 are

application objects, and 11, 12, 13, and 14 are interface

objects. Objects with shadows are replicated.

replicated, unless the application writer has marked them as

not suitable for replication (this issue is discussed further in

the next section). The state of the exported window and that
of the replica are synchronized from the time of import.

An example of the object replication scheme of DistView is

shown in Figure 7 and Figure 8. The figures show the inter-

face objects, and the applications objects they have references

to, contained in application instances running at different sites
A and B. Figure 7 shows the situation immediately prior to

the import of Site A’s Window 1 by site B.

the situation immediately after Window 1

Figure 8 shows

is imported by

SkLA Ska.B
1

“m..,..,,”......’” I‘“TEFir,,..,,,..,,....
Figure 8: The state of the multi-user application at
sites A and B after the user at site B imports Window

1.

site B. Upon import of Window 1 at site B, a copy of all

the interface objects of Window 1 is made at site B. A local

copy of application object A2 is also made because this object

is referenced by the interface object 12 within the exported
window. However, a copy of the application object A 1 is not

made because a copy already existed at site B prior to the

import of Window 1.

The next section describes in more detail how and when

objects are replicated and mechanisms for maintaining their

consistency.

158

\ ,+

P
4

0
Proxy

Messages Oi:ct
into

Objecis ‘ return
‘ result
I

(5
H

Object

Figure 9: Outside world communicates with a proxy

objeet. Proxy object is the only one that directly

communicates with an application or interface object.

OBJECT REPLICATION AND SYNCHRONIZATION
Proxy objects
DistVlew synchronizes the states of shared windows so that

they always maintain and display the same view to the users.

The synchronization scheme used in DistView is to intercept

the user actions on an interface object within a window and to

broadcast them to the window’s replicas, which then locally

update their states. Interception of users’ actions is done

by using proxy objects. For every object in an application,

there is a proxy object with the same external interface, The

proxy object in this case is responsible for broadcasting the

operation to other replicas as needed and also returning the

results (See Figure 9).

Proxy object classes can be automatically synthesized by

parsing the specifications of actual interface and application

objects similar to the way remote procedure call stubs are

generated from procedure call specifications. Calls or decla-

rations that create regular application or interface objects are
replaced by calls to create corresponding proxy objects (this

can also be done automatically by a parser). Proxy objects in

turn create the red application or interface objects and remin

a reference to them.

Notice that proxy objects introduce a level of indirection

in the system — all operations on an object must first go

through its proxy object. The proxy object corresponding to

the object is the only one that should carry out an operation

on the object directly. At the expense of a minor performance
penalty, use of indirection gives substantial flexibility since

all the knowledge about dealing with replication can be in the

proxy classes. A similar technique of introducing a level of

indirection is used in Fresco, the object-oriented application

programming interface currently under development for X,

in order to providing uniform access to local and remote user

interface objects [1 il.

Interface Object Replication
When a window is imported, DistView replicates all the

interface objects of the window and the window object itself

within the address space of the importing application. The

state of an interface object transferred from an export window

manager to an import window manager for correct replication

includes its type (class), its type-specific internal state, its

references to other objects, and its location within its parent

window.

Application Object Replication
If an application object is replicated, all the replicas must

have consistent behavior if the same sequence of operations

is done on them. We say that an application object cart

be safely replicated if it is feasible to replicate its state and

furthermore the replicas will behave identically at different

sites when the same sequence of operations are carried out

on them.

Not all application objects can be safely replicated. For

instance, if some object reads a file on the local file system, it

will behave differently at sites with different file systems. In

that case, we require that the application designer designate

the object as not being suitable for replication. Each appli-

cation object is required to provide a method do~eplicateo

that returns true if the object is safely replicatable and its

replication upon sharing is desired, and false otherwise. Ap-

plication objects that are directly or indirectly referenced by

the interface objects in the window and whose do~eplicateo

method returns true are the only ones that are replicated. If an

object is referenced but cannot be replicated, a proxy is still

created. This proxy can forward any calls on it to the proxy

at the site where the object actually resides (via techniques

similar to those used in implementing remote procedure calls)

and return any results back to the caller,

Replica groups
An object and its replicas form a replica group. A replica

group is assigned a globally unique group identitierby DistView,

Group identifiers are generated by the shared window server

as needed by an application. If a reference to an object needs

to be passed ‘from one address space to another, it is first

converted to the object’s globally unique identifier by the

sender and converted back to the corresponding local object

reference by the receiver.

An object manager is created as part of each site’s application

at start-up time and remains within the application until

the application terminates. The application object manager
maintains the mapping between globally unique identifiers

and the pointers to the local proxies of the objects.

A method invocation by a replica group A on replica group

B has to be carefully and efficiently implemented. Following

requirements must be met by algorithms to implement method

invocations among replicas, in order to ensure consistency of

replicas:

159

The algorithms should ensure that all the members of

group A receive the same return result from the call.

All members of group 13 should execute the call.

The algorithms used should take into account the possi-

bility that the members of replica group A and group B

may differ in count and may not be located at the same

sites. For example, replica group B may consist of only

a single object because the object is not replicatable.

It is desirable to take the possibility of failures into

account.

The algorithms used are incorporated in the proxies. Thus,

application developers do not need to be aware of these

algorithms. Full discussion of the algorithms to accomplish

the above is beyond the scope of this paper. For one solution

to the problem, see the algorithms used in the Arjuna sys-
tem [14]. As part of the DistView project, we are currently

attempting to develop a generic replicated object service that

improves on the algorithms used in the Arjuna system. The

solution is facilitated by the use of lock objects discussed in

the section below.

Lock objects
In general, some way must be provided to prevent members

of a replica group from becoming inconsistent because it is

possible for two simultaneous users’ actions to be received

and executed in different orders at different sites. One solu-

tion to the problem is to use atomic broadcast protocols to

ensure that all broadcasts are received in the same sequence

at all sites [4, 5]. However, in this case, even the sender of a

broadcast has to wait until it receives its own message from

the network before it can execute the message. In fact, it

may receive other sites’ messages prior to receiving its own

message due to atomic ordering requirements. This situation

is clearly undesirable because it leads to poor interactive

response-times. A potentially more serious situation is that

it could also lead to erroneous results because operations

received from other sites could have been done on the appli-

cation’s state between the time the operation was generated

and the time it was actually carried out.

In DistView, we use locking techniques similar to those used

in DistEdit to prevent such inconsistencies. The key idea

is that all user operations must acquire appropriate locks to
ensure that interface and application objects, when updated

concurrently, lead to correct results and consistent replicas.

Using locks has the advantage that, once the locks are ac-
quired, operations on objects can be done locally first and then

broadcast, giving good interactive response times. Different

users may hold different locks, so concurrent actions are still

supported.

Browsing operations normally do not need to acquire any

locks on application objects, and thus can be done in parallel

with update operations initiated at other sites. The interface-

update module (see the Application Model subsection) will

ensure that the interfaces of shared windows eventually be-

come consistent as soon as any pending update operations

complete.

Locks in DistView are provided by lock objects. A lock

object provides a method, iocko, which returns 1 if a lock

can be acquired and else it returns O, and a method urdocko

to release the lock. Application designers can provide their

own application-specific object classes to implement more

sophisticated locking schemes, For instance, to allow simulta-

neous editing on a text user interface object as in the DistEdit

toolkit [9], application designers can provide a text-specific

object that maintains a lock table containing portions of text

that are locked. DistView-provided lock objects would then

be used only to control access to the lock table, rather than to

the text object itself.

An alternative strategy would have been for proxy objects to

automatically lock their application object when operations

were done on them. However, this strategy is not suitable

for several reasons. First, in an application, there may

be a large number of application objects (e.g., items on a

linked list). One user-level operation may need to access and

update a large number of objects. If locks were acquired

dynamically as objects were accessed, there was a danger

that some lock requests could fail after some objects were

already updated. Since interactive applications typically

do not provide support for unrolling partially done actions,

as in transaction mechanisms, such a situation could leave

the application in an undesirable state. Second, even if all

object locks could be acquired at the beginning of the user’s

operation, acquiring a large number of locks could mean

significant network delays. And, finally, keeping lock objects

independent of application objects is a more flexible scheme.

Application designers could start out by using a single lock for

the entire application (i.e., a floor-conmol based policy) and

then progressively add more concurrency by using multiple

locks — with each lock responsible for controlling access to

fewer and fewer objects.

If acquiring or releasing locks requires going over the net-

work, users could still perceive substantial increase in in-

teractive response times because each user’s operation may
involve acquiring some locks, doing the operation, and then

releasing the locks. In fact, if in a group session, only one

user is interacting with the application, the same overheads

would occur. Such a situation is clearly undesirable.

We can make acquisition and release of locks more efficient

as follows. First, lock objects, like any other object, have

a global reference that can be passed around between sites,

E~ch site that has a global refe~ence to a lock object should

160

create a local copy of the lock object. The site which has the

lock has a token. Only one site can have the token at a time.

When a site with the lock releases the lock, it is treated as a

hint that the lock is no longer needed. The site still retains the

token, but marks it as available for other users. If the same

site wishes to relock the object, it can be done immediately

without going over the network by simply marking the token

as unavailable. If another site wishes to acquire the lock, it

sends a message out to the group requesting the lock. The

sites without the token ignore the message. The site with

the token transfers the token if its token is marked available,

else it denies the lock request. This scheme requires that one

site be initialized to always hold the token (which may be
marked available to indicate that no lock is held). If the site

requesting the lock receives no response to its message within

a certain timeout period, a suitable token recovery protocol

can be run to isolate any unreachable sites from the group

and reintroduce the token.

The performance impact of the above scheme is that network

latencies in acquiring locks occur only if the lock has to be

acquired from some other site. If only one user is repeatedly

acquiring and releasing locks, there is no network latency

except for the first lock request. We believe that this is likely

to be an efficient strategy in practice, especially if one user is

doing most of the interactions and others are simply watching.

EXPERIENCE WITH DISTVIEW
A preliminary prototype of DistView has been implemented

and incorporated in the UARC application and several other

smaller applications. Because the UARC application is im-

plemented in the NeXTSTEP environment, DistView is also

implemented in the same environment. Below, we discuss

our experience with incorporating DistView in UARC.

Effort to Incorporate DistView in Applications
The shared window server of DistView runs as a separate

process from the applications that incorporate DistView. The

code for export and import window managers and object

managers is also provided by DistView. As such, these

components of DistView contribute little to the overall cost

of incorporating DistView into existing applications. In the

case of the UARC system consisting of about 7000 lines of

code, it required adding 488 lines of code to allow interfacing

with the current version of DistView. Most of this code is for

acquiring and storing state information of application-specific

objects and, in our experience, is not difficult to write for most

objects. A small amount of code was needed to provide locks

on shared windows. The state transfer for interface objects is

handled by DistView. DistView uses primitives provided by

NeXTSTEP to inquire about window hierarchies and states

of window objects in a hierarchy. DistView creates a similar

window hierarchy at the importing site. Overall, we feel
that little effort is required to use DistView provided the

application is written to satisfy the DistView’s application

model.

Imported By Average Time Taken r

Same UARC Client 1.48 .%X.

Different UARC Clients 1.78 WC.

Table 1: The average time taken to import a window

by the same UARC client which exported the window

and by a different UARC client

Performance
In order to measure the performance of DistView, we ran

three UARC clients simultaneously on three different NeXT
workstations connected via an Ethernet. A window similar

to Figure 5 was exported by the UARC client at one of the

workstations. The UARC clients at the other workstations

imported the window. The window was also imported by the

same UARC client that exported the window.

Table 1 shows the average times taken to import a window,

by the same UARC client which had exported the window

and by other UARC clients. This compares the cost of state

transfer within the same process on one machine and between
processes across machines. The table indicates that there is

little difference in the import times between the two cases.

This result indicates that the amount of information required

to be transferred to replicate even a rich window is not large.

Table 2 shows the average times taken to process user-actions

in a collaboration session through an exported window when

there is no window sharing. It also shows the additional

processing time required when window sharing is present.

Results indicate rhat the processing times of user-actions on

the exported window does not significantly increase when

the window is shared. The results may be attributed to the

fact that all operations are done locally first before being

broadcast.

Notice that for the operations in Table 2, several seconds are

required to process a user operation even when there is no

sharing. This is because those operations typically require

the application to repaint the entire window. Because the

window is quite rich, repainting the window takes substantial

processing time. This also indicates that a shared-X style

strategy of running only one instance of the application that

controls multiple identical windows would probably have

increased the response time substantially.

We have not yet systematically measured the performance

of the system over long-haul networks, However, actual

usage of the new UARC system between sites in California,

Michigan, and Denmark indicates that the sharing of windows

works sufficiently efficiently in such environments that any

additional response time is not noticeable.

161

User Actions On Avg. Redraw Time Added Time WJ 1 Member Added Time WI 2 Members

Textfields 4.45 sec. 0.030 sec. 0.074 sec.

Slider 5.62 SIX. 0.036 sec. 0.071 sec.

Pop-up Menus 5.61 SIX. 0.032 sec. 0.063 sec.

Window (Resize) 3.54 sec. 0.018 sec. 0.028 sec.

Table 2: Times taken to process various user-actions in a UARC collaboration session with no member, one member,

and two members

RELATED WORK
Different systems provide sharing of views at different levels

of granularity. For instance, commercial products Timbaktu

for Macintosh and ScreenCast on the NeXTs provide full

smen-level sharing of arbitrary, unmodified applications.

The disadvantage here is that users cannot easily do any

private work and their entire screen is taken over by another

user. Furthermore, applications are collaboration-unaware—

simultaneous interaction with an application is not supported.

Security is also potentially compromised since applications

run with owner’s privileges, though the risk may be accept-

able in a synchronous environment.

Various systems allow a single-user application to send the

same output to multiple consoles [1, 2, 3]. In these systems,

usually based on X windows, a pseudo-server intercepts

low-level protocol messages between the X server and desired
X clients and multicasts the messages to X servers that

are controlling other consoles. These systems have similar

advantages and disadvantages as that in screen sharing, except

that users can also run private applications on their screen.

The type of sharing supported is still limited in the sense that

the entire interface of an application must be shared — it is

difficult to support an application in which some windows

are private and some are shared, Furthermore, like screen

sharing programs, applications are collaboration-unawme —

simultaneous input must normally be prevented through some

floor-control mechanism. From a performance point of view,

this approach places a heavier demand on the network band-

width, and performance is potentially inadequate if the in-

terfaces of applications are frequently updated (e.g., when

scrolling or repainting a window) because all scn% updates

are broadcast.

DistView is closer in goals to systems such as Suite [6], Ren-

dezvous [15], and Groupkit [16] that support collaboration-

aware applications. A major distinction from these systems
is that DistView provides direct support for replicating ob-

jects to address performance and fault-tolerance concerns in

collaboration over wide-area networks. We have found it

desirable to replicate application objects (data) because we

have usually found that read accesses to data are much more

frequent than write accesses. For instance, if a window is

resized, moved, or exposed, or scroll operations are done

on the window, most window systems typically require the

application to redraw the contents of the window. In partic-

ular, in the UARC project which supports collaboration over

wide-area networks, it simply would not have been feasible

to use an architecture with a centralized data repository.

Fault-tolerance is also, of course, a potential advantage of

replication. Furthermore, the application writer is given

mechanisms to handle concurrency control through the use of

locks — an issue which is typically not adequately addressed

in existing toolkits.

The replication approach used in DistView builds on our

work on the DistEdit toolkit [9, 10], in which the underlying

data objects representing editors’ text buffers were replicated,

DistView goes further because arbitrary interfaces can also be

replicated, providing not just consistent but identical displays

of data in windows that are shared. Furthermore, DistView

is designed to support a much more general class of applica-

tions.

DistView is also different from above systems in the gran-

ularity of sharing it provides. Systems such as Suite and

Rendezvous can potentially provide a lot of flexibility in

view sharing. However, then selecting the right amount

of flexibility can be difficult for both system designers and

end-users. In DistView, the unit of sharing is a physical

interface object, a window on the user’s screen. If a window

is shared, a user can assume that all users will have identical

views displayed in that window. Users can also assume that

their other windows are private unless the (shared) application

objects being displayed in their private windows get modified

by other users.

Note that DistView does not prevent application designers

from implementing more flexible forms of sharing. Recall

that a private window can get affected by operations on a

shared window, provided those operations affect the state of

an application object being displayed in the private window.

This mechanism can be exploited, if desired, to provide
more flexible kinds of sharing by storing some of the user
interface attributes (e.g., color of text) in application objects.

If a particular private window uses those application objects,

doing an operation on a shared window (e.g., changing the

color of text) can be made to lead to an update of a private

window (e.g., changing the text there to the same color).

Another way to provide slightly different looks among copies

of a shared window is for the application to bypass the proxies

162

and directly modify the state of the underlying user interface

objects. Casual use of this mechanism is not usually recom-

mended for obvious reasons. However, it was used effectively

in the UARC system to provide a different background color

for imported and exported windows (as shown in Figure 4).

The mechanisms for maintaining consistency of views are

also different in DistView from the above systems. In Ren-

dezvous, programmers have to define constraints between

instance variables in different views and a constraint prop-

agation system is used to ensure consistency. In Suite,

couplings have to be defined between interface variables so

that their views remain consistent. DistView, because of its

simpler sharing philosophy, requires no such identification

of instance variables. At the time of importing a window,

it directly queries the current state of the application to

determine exactly what needs to be replicated. Thus, we

expect that DistView will more easily handle sophisticated

interfaces that may be difficult to characterize in terms of a

few instance variables.

Independent of our work on DistView, Tou, Berson, and

Estrin have also proposed use of object-level replication

schemes for implementing collaborative applications using

Object World [19]. Object World requires similar function-

ality from application and interface objects as in DistView

and also has the goal of easing construction of collaborative

applications. However, there are also some differences. One

difference is that in the design of DistView, one of our

primary goals is to ensure good performance. DistView

provides locking algorithms and synchronization algorithms

that will ensure good response times and consistency in

interactive applications even in the presence of collaboration.

Object World at present appears to be primarily meant for

sharing within a LAN environment. It currently does not

guarantee consistency among objects replicated across LANs

and relies on users to correct inconsistencies among replicas

when inconsistencies are detected. Another difference is that

DistView provides explicit support for window-level sharing

for rrbitrary interfaces whereas Object World uses a strong

sharing model in which the entire application’s state is shared.

CONCLUSIONS AND OPEN ISSUES
This paper has presented DistView, a toolkit currently under

development to support building of collaboration-aware ap-

plications. DistView allows development of applications in

which users can share a subset of application windows with

other users.

DistView uses a replicated object approach that is designed to

ensure good interactive response times and to keep network

bandwidth requirements low. Efficient locking primitives are
provided to users for concurrency control at the desired level

of granularity. Experience with an early version of DistView

indicates that good response times can indeed be obtained

in collaborative work. The first version of DistView was

meant primarily to quickly add shared window capability

to the UARC system. For instance, proxy classes were

manually created and the support for replicating objects is

somewhat kludgy. A new version of the DistView system

in the form of a toolkit is currently under development. We

are also considering developing a version for the X window

system after selecting a suitable object-oriented user interface

toolkit.

The design decision to do sharing at the window-level raised

some interesting issues, In particular, one issue is that of

the life-time of shared windows. The question is when does

a shared window become unavailable for use by the users?

One option is to destroy a shared window at all sites when the

original exporter decides to destroy the window. A second

option is when no one is using it. Yet another option is to

allow an exported window to live even when no one is using

it. The last option is interesting because it allows a simple

form of ubiquitous computing [20]: a user could export all

his application windows, go to another workstation, startup

the same application, and import all the previously exported

windows. In the future, we plan to explore some of these

issues further.

ACKNOWLEDGEMENTS
We hank Nelson Manohar, Amit Mathur, Ramani Penmetsa,

Susan McDaniel, Terry Weymouth, Craig Rasmussen, Gary

Olson, Daniel Atkins, Robert Clauer and other members of

the UARC team for their constructive comments and sugges-

tions. We also thank the reviewers for excellent feedback.

Support for this work has been provided by the National

Science Foundation through the cooperative agreement IRI-

9216848.

REFERENCES

1.

2,

3.

4.

5.

6.

H. M. Adbel-Wahab and M. A. Feit. XTV: A framework

for sharing X window clients in remote synchronous

collaboration. In Proceedings, IEEE Tricomm ’91:

Communications for Distributed Applications and

Systems, April 1991.

S.R. Ahuja, J.R. Ensor, D.N, Horn, and S,E. Lucco. The

Rapport Multimedia Conferencing System: A Software

Overview. In Proceedings of the 2nd IEEE Conference

on Computer Workstations, pages 52–58, March 1988.

J.E. Baleschwieler, T. Gutekunst, and B. Plattner, A

Survey of X Protocol Mukiplexors. ACM Computer

Communication Review, 23(2): 13–22, 1993.

K.P. Birman, A. Schiper, and P. Stephenson. Lightweight

casual and atomic group multicast. ACM Transactions
on Computer Systems, 9(3):272–3 14, 1991.

J.M. Chang and N.F. Maxemchuck. Reliable broadcast
protocols. ACM Trans. on Computer Systems, 2(3):25 1-

273, Aug. 1984.

P. Dewan. Flexible User Interface Coupling in
Collaborative Systems, In Proceedings of the ACM

163

CHI’91 Conference on Human Factors in Computing

Systems, pages 4148, April 1991.

7. C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some

Issues and Experiences. Communications of the ACM,

pages 38–51, January 1991.

8. R. Clauer et, al. UARC: A prototype upper atmospheric

research collaborator. EOS Trans. American Geophys.

Union, 267(74), 1993.

9. M. Knister and A. Prakash. DistEdic A distributed

toolkit for supporting multiple group editors. In
Proceedings of the Third Conference on Computer-

Supported Cooperative Work, pages 343–355, Los

Angeles, California, October 1990.

10. M. Knister and A. Prakash. Issues in the Design

of a Toolkit for Supporting Multiple Group Editors.

Computing Systems – The Journal of the Usenix

Association, 6(2): 135-166, Spring 1993.

11. M. Linton and C. Price. Building distributed user

interfaces with Fresco. In Proceedings of the 7th X

Technical Conference, pages 77-87, January 1993.

12. S. McDaniel, G. Olson, and J. Olson. Methods in Search

of Methodology-Combining HCI and Object Orientation.

In CHI ’94 Proceedings), pages 145-151,1994.

13. C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H.

Morris. Issues in the design of computer support for

co-authoring and commenting. In Proceedings of the

Third Conference on Computer-Supported Cooperative

Work, pages 183–195, Los Angeles, California, October

1990.

14. G.D. Barrington. Reliable distributed programming

in C++: the Arjuna approach. In Proceedings of

USENIXIC+ + Conference, pages 37–50, April 1990.

15. J.F. Patterson, R.D. Hill, S.L. Rohall, and W.S. Meeks.

Rendezvous: An architecture for synchronous multi-user

applications. In Proceedings of the Third Conference on

Computer-Supported Cooperative Work, pages 317-328,

Los Angeles, California, October 1990.

16. M. Roseman and S. Greenberg. GroupKit A

groupware toolkit for building real-time conferencing

applications. In Proceedings of the Fourth Conference on

Computer-Supported Cooperative Work, pages 43-50,

Toronto, Canada, October 1992.

17. D. Bogia S. Kaplan, W. Tolone and C. Bignoli,

Flexible, active support for collaborative work with

ConversationBuilder. In Proceedings of the Fourth

Conference on Computer-Supported Cooperative Work,

Toronto, Canada, October 1992.

18. M. Stefik, G. Foster, D.G. Bobrow, K. Kahn, S. Lanning,

and L. Suchman. Beyond the Chalkboard: Computer

support for collaboration and problem solving in

meetings. Communications of the ACM, 30(1):32-47,

Jan. 1987.

19. I. Tou, S. Berson, and G. Estrin. Prototyping synchronous

group applications. IEEE Computer, 27(4):48–56, May

1994.

20. Mark Weiser. The Computer for the 21st Century.

Seientijic American, September 1991.

164

