
Undoing Actions in Collaborative Work

Atul Prakash

Michael J. Knister

Software Systems Research Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-212~!

Phone: (313) 763-1585

Email: aprakash@eecs.umich .edu, mknister@eecs.ulmich .edu

ABSTRACT

The ability to undo operations is a standard feature

in most single-user interactive applications. However,

most current collaborative applications that allow sev-

eral users to work simultaneously on a shared document

lack undo capabilities; those which provide undo gener-

ally provide only a global undo, in which the last change

made by anyone to a document is undone, rather t,han

allowing users to individually reverse their own changes.

In this paper, we propose a general framework for un-

doing actions in collaborative systems. The framework

takes into account the possibility of conflicts between

different users’ actions that may prevent a normal undo.

The framework also allows selection of actions to undo

based on who performed them, where they occurred, or

any other appropriate criterion.

KEYWORDS

Undo, collaboration, groupware, conflict analysis.

1 INTRODUCTION

The ability to undo operations is a standard and useful

feature in most interactive single-user applications. For

inst ante, the availability y of undo facility in editors is

invaluable if users are allowed to invoke commands that

can modify a document in complex ways (e.g. remove

all lines that contain the string “##” ). Availability

of undo can also encourage users to experiment, acting

not only as a safety net, but also allowing users to try

out different approaches to solving problems using back-

tracking [9]. Unfortunately at present, though many

collaborative editors and other group applications have

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and ithe

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

been built, such as GROVE [2], ShrEdit [5], and DistE-

dit [4], almost all lack undo capabilities. Those which

provide undo generally provide only a global undo, in

which the last change made by anyone to a document

is undone, rather than allowing users to individually re-

verse their own changes.

Compared to single-user applications, performing undc)

in collaborative applications provides technical chal-

lenges in three areas: choosing the action to be undone,

determining where the undo should occur, and resolv-

ing conflicts between different users. First, choosing the

action to undo in a single-user system is usually easy:

simply choose the most recent action and use it to re-

vert to the prior state of the document. However, in

a group environment, there may be parallel streams of

activities from different users, and the undo needs to be

more selective. Often, when parallel work on a shared.

document is going on, users would expect to undo their

own last actions rather than globally-last actions, which

might belong to other users. Second, once the correct,

operation is chosen to be undone, the location at which

the undo of an action should be performed maybe differ-

ent from the location at which the action was originally

performed due to the effects of other users’ activity on

the document. Finally, if two or more users interleave

their work in the same portion of a document, it may

not make sense to undo one user’s changes without un-

doing the other users’ changes. In this case, there are

dependencies between the changes made that need to

be taken into account during an undo.

The rest of the paper is organized as follows. Section 2

summarizes basic concepts used in conventional undo

algorithms for single-user systems. Section 3 describes

related work in the area. Section 4 discusses how our ap-
proach extends undo capabilities, particularly for group

environments. Section 5 describes the requirements an

application must meet to use our undo framework and

an example for text editing. Section 6 describes our

CSCW 92 Proceedings November 1992

273



selective undo algorithm. Section 7 discusses several

variations of selective undo that may be useful in col-

laborative systems. Finally, Section 8 summarizes our

conclusions and future work.

2 BASIC CONCEPTS

To provide the raw ingredients for implementing undo,

a history list needs to be maintained. The history list

consists of the sequence of operations that have been

carried out so far to modify the state of the document.

The operations on the history list are stored in the same

order as they were performed. For inst ante, if the his-

tory list is

ABCD

then, starting from state prior to A, carrying out the

operations A, B, C’, and D in sequence should lead to

the current state.

In this paper, we assume that all operations that modify

the state of the document are reversible, i.e., for every

operation A, we can determine an inverse operation ~

that will undo the effect of A. For instance, in an editor,

an INSERT operation can be undone by a DELETE

operation.

Note that, in general, the inverse of an operation A may

depend on state of the document prior to A. For in-

st ante, on a text document, if a DelChar(IO) operation

is done, which deletes the character at position 10, then

in order to determine its inverse, we must know the char-

acter that was deleted. We assume that the operations

stored in the history list contain sufficient data so that

their inverse can be easily determined. For instance, the

above operation might be stored as DelChar(l O, c,) on

the history list, where c is the deleted character.

3 RELATED WORK

There are several basic methods for providing undo ca-

pability in single-user systems. We discuss them here.

A more detailed discussion of these techniques can be

found in [9], and a formalization of undo and redo facil-

ities can be found in [11].

3.1 Single-step Undo

Single-step undo is common in most Macintosh and

Windows applications, as well as editors such as vi. It

allows undo of the last operation. For inst ante, given

the history list

ABCDE

single-step undo allows undoing of operation E, but not

a subsequent undo of operation D. Usually redo of the
last undo is also allowed (often implemented as an undo

of the lsst undo) so that, in the above example, E can

be redone.

3.2 Linear Undo Model and US&R Model

The Interlisp system [8], one of the early systems to

provide undo, used the linear undo model. The linear

undo model allows undoing of a sequence of operations

and keeps a pointer which tracks the last operation un-

done. Operations can then be redone, after possibly

doing some new operations. For instance, given the his-

tory list:

ABC’ DE,

operations E and D can be undone (in sequence), then

a new operation F done, and then D redone, giving the

following history list:

ABCFDE

r
The pointer indicates that the next operation to be un-

done is D, and E is the next operation that could be

redone. Note that, in this model, undo operations are

not explicitly stored in the history list. So, if one wants

to back to the original sequence without the F, it is not

possible. One could undo F, but then D and E must

be done manually.

The Undo, Skip, Redo (US&R) model [10] supports redo

like the linear undo model, but also allows a more user-

-friendly skipping of some operations during the redo.

Instead of a linear list, US&R model keeps a tree data

structure for maintaining history so that it becomes pos-

sible to restore state to any point in the history (unlike

the linear undo model). In the above example, F would

be stored on a different branch of the tree from the se-

quence D E so that F could be undone and then D and

E could be redone if the user so desired.

A limitation of both the linear undo model and the

US&R model is that in order to undo one operation

O several steps back in the history, all subsequent oper-

ations must first be undone and then redone (skipping

O during the redo). If the implementation is not care-

ful, this can be potentially disruptive in a group envi-

ronment; other users may see their work undone for at

least a short while with no apparent reason. Further-

more, the models do not address the issue that simply

redoing operations may not semantically make sense or

may lead to unexpected results if an earlier operation is

skipped.

3.3 History Undo

The history undo scheme, used in the Gnu Emacs editor

[7], also allows undoing of a sequence of operations but,
unlike the linear undo and US&R schemes, it appends

the undo operations to the end of the history list. The

undo operations in the history list are treated as any

other operations, allowing them to be undone later if

desired. For instance, given the history list,

ABCDE

suppose that E is undone. Then in the history undo, the

274



history list will be as follows, where ~ is the operation

that reverses the effects of E:

ABCDE~

t
If one now breaks out of the undo mode by doing some

operation other than an undo, say F, the history list

will become:

ABC DE~F

t
At this point, doing two more undo operations will re-

sult in: —=
ABC DE~FFE

t

History undo haa the nice property that it is possible

to go back to any previous state, and the possibility

of conflicts does not arise (in single-user applications)

since operations are never skipped.

4 OUR APPROACH

In this paper, we present an approach called selective

undo. The approach is based on history undo, but we

allow operations to be undone selectively and deal ex-

plicitly with location shifting and conflicts. In our ex-

perience, history undo is simple and intuitive for most

users. However, if desired, the techniques given in the

paper can also be applied to linear and US&R models.

We use data structures similar to those used in history

undo; in particular, upon an undo, the inverse of an

operation is appended at the end of the history list.

However, in a collaborative application, since the last

operation done by a user may not be giobally last (other

users may have done operations subsequently), we need

to allow undoing of a particular user’s last operation

from the history list. For example, consider the follow-

ing history list, where Ai’s refer to operations done by

user A, and Bi’s refer to operations done by other users:

Al B1 AZ B2 B3

Now, suppose user A wishes to undo his last action, A2.

Normal history undo mechanisms in single-user systems

do not support such a task because they would require

undoing B2 and B3 as well. In the US&R model, it is

possible to undo the last three operations and then redo

B2 and B3, but as pointed out in the previous section,

that can be disconcerting to other users of the system

and may not even be correct if there are dependencies

between A2 and B2, B3. Note that user A may not be

aware that operations B2 and B3 have been carried out

on the document by other users, and the other users

may not aware of activities of user A. In the algorithms

presented in this paper, it is possible to undo A2 without

undoing/redoing B2 and Bs.

In the above example, the operation to be undone, A2,

is selected based on the identity of the user. More gen-

erally, the operation to undo could be selected based on

any other attribute, such as region, time, or anything

else. Thus, we term our scheme as selective undo, since

the operation to be undone is not necessarily the last

one, but is selected using some attribute attached tc)

the operation.

To selectively undo an operation, we cannot simply ex-

ecute the inverse of the operation because later op-

erations could have shifted the location where the

undo must be performed. For example, suppose the

following two text operations have been applied tc)

the starting state ‘abed’: InsC’har(4,’ z’) followed by

lnsChar(l ,’ /), resulting in the state ‘yabcxd’. The

first operation inserted ‘x’ at position 4, and the see-

ond operation inserted ‘y’ at position 1. Assume that

these operations were done by different users. Now

the user who did the first operation does an undo.

We cannot simply perform the first operation’s inverse,

DelChar(4), because the second operation haa movecl

the ‘x’ to location 5. Our scheme takes this possibil-

ity of location shifting into account, so that in this ex-

ample, the first operation will be undone by executing

De/Char(5).

We also take into account the possibility of conflicts,

In the above example, B2 may have modified the same

region of the document as A2, so that it no longer makes

sense semantically to undo A2 without first undoing B2.,

We do not allow an operation to be undone until any

prior conflicting operations have been undone.

5 APPLICATION REQUIREMENTS

Our undo framework assumes an application model in

which all changes to a document are performed using

a set of primitive operations. As operations are per-

formed, they are archived in a history list to provide

the basis for undo. The operations must be reversible

and capable of being re-ordered when no conflicts be-

tween the operations exist,

All applications maintain a current state of the docu-

ment that is being edited. This state can be represented

in different data structures, and our framework places

no restrictions on the representation.

Primitive operations, or just operations, are the only

means by which the state of a document can be altered,

An operation applied to a state results in a new state,

Any given state is simply the result of a sequence of

zero or more operations applied to the starting state,

Operations can also have parameters which specify ex-

actly what the operation is to accomplish and where it
is to be performed. For instance, a DELETE operation

would have parameters to indicate what is to be deleted.

We will use the letter S to denote state prior to appli-

cation of an operation. A o indicates that the operation

275



is being applied. For example,

So Jfo N

denotes the state resulting from application of operation

Al followed by operation N on a document in state S.

Sometimes, we will also use A o B to denote the com-

pound operation that first applies A and then applies

B.

Two sequences of operations are equivalent if they pro-

duce the same state. Equivalence is represented by =.

For example,

MoN~Po Q

indicates that the two sequences produce the same state,

even though the operations in each sequence are not

identical.

5.1 Extensions to the History List

For implementing undo in collaborative systems, some

extensions are needed to the basic history list described

in Section 2. In order to selectively undo a particu-

lar user’s operation, we must tag each operation in the

history with the identity of the user who performed it.

Other tags could be stored as well, such as the time

of or the reason for the operation. Our selective undo

algorithm allows any such tag to be used to choose op-

erations to undo.

5.2 Conflict, Re-ordering, and Reversibility of Operations

Our model requires that the application supply func-

tions which can detect conflicts between operations,

re-order operations, and create inverse operations. In

a synchronous group environment, similar functions

would usually be needed anyway to ensure predictable

results when parallel streams of activities are going on.

For instance, if two users are working simultaneously

in a document, conflict checking may involve making

sure that their changes do not overlap, e.g., through

use of locks. Mechanisms for reordering of parallel, in-

dependent operations are also needed because the order

in which two operations will be done may be unpre-

dictable. The editor must be prepared to accept the

two operations in either order with the same resulting

effect.

The functions which the application must provide are:

o Inverse (Operation) =+ Operation

● Con flict(Operation, Operation) ~ Boolean

. Transpose(Operation, Operation)

+ (Operation, Operation)

It is assumed that operations that result from these

functions are also primitive operations — or can be

expressed in terms of primitive operations (see Sec-

tion 7.3 for extensions needed for multi-operation undo).

This allows the operations that result from applying the

above functions to be treated just like other operations

in the history list. The Inverse function has already

been explained in Section 2. The following sections pro-

vide descriptions and properties for Conflict and Trans-

pose functions.

5.2.1 Conflict

A conflict between two adjacent operations A and B

implies that the second operation, B depends on A and

is not meaningful without having performed A.

Suppose, for example, that a graphics document is being

edited. Operation A creates a circle in the document,

and operation B resizes that circle. In this case, there

is a conflict between A and B. If operation A had not

been done, operation B would make little sense.

The Con f lict (A, B) function supplied by the applica-

tion must return True if there exists a conflict when the

two operations are performed in sequence, and False if

no such conflict exists. The importance of the notion

of a conflict is that an operation cannot be undone if it

conflicts with a later operation, unless the later opera-

tion is undone first.

5.2.2 Transpose

If no conflict exists between two operations, we require

that it be possible to transpose them. That is, by mak-

ing some adjustments to the operations, it is possible to

perform them in a different order and still obtain the

same result.

The Transpose(A, B) function, given two non-

conflicting operations A and B, will return two new

operations B’ and A’, which satisfy the following two

properties:

Transpose Property 1: Performing S o B’ o A’ will give

the same result as executing S o A o B, irrespective

of the initial valid state S.

Illanspose Property 2: B’ is the operation that would

have been done to the document instead of B if

operation A had not been done before B.

Property 1 allows us to move operations around in the

history list and guarantees that the resulting state will
be the same. Property 2 shows that A can meaningfully

be undone, leaving only the effects of B. Quite often, but

not always, operation A will be identical to A’, and B

to B’, except that the position data may be different.

Our notion of transpose is similar to the one described

in [1]. However, we require transpose function to be

defined only when the operations do not conflict.

Example 1: Document Model applied to Text Editing

276



Consider a text editor supporting the following two

primitive operations:

● InsChar(position, char) to insert a character at

the specified position; and

● DelChar(position) to delete a character at the

specified position.

Note that the model does not dictate the actual clata

structure which is used to store the document state.

The current state could be represented as a linked list

of lines, as a single array of characters, or any other way.

The application is responsible for correctly applying op-

erations so that its internal data structure represents the

correct state.

We will denote operations to be stored in the history

list as follows:

● InsChar(position, char)

● DelChar(position, char)

Note that the character deleted is also stored in the

history list as part of the DelChar operation so that we

can easily derive its inverse. The above two operations

happen to be inverses of each other.

Following are the definitions of Conflict and Transpose

for the sequence InsCharo followed by DelCharo:

C’onfl,ict(lnsChar(pl, cl), DelChar(pz, CZ))

{

true, ifpl =PZ;

= false, otherwise.

Transpose(InsChar(pl, cl), De/Char(pz, C2))

{

(De/Char(pz – 1, CZ), InsChar(pl, cl)) if pl < P2;

= undefined, ifpl =pz;

(DelChar(pz, CZ), lnsChar(pl -1, cl)) if pl > P2

The above definitions say that there is a conflict if the

character deleted is the same as the one that was in-

serted. Otherwise, the two operations are considered

to be independent and transposable. Notice the change

in position argument in Transpose so that Transpose

Properties are satisfied. We leave it to the reader to de-

termine the Conflict and Transpose definitions for the

other three combinations of these two operations. A

complete definition of these two functions for general

string insert and delete operations can be found in [6].

Example 2: Document Model Applied to Graphics Editors

Let’s assume that two of the commands that are stored

on the history list of a graphical editor are

● Draw Circle(x, y, radius, CircleID): Draw a circle at
position (x, y) of the specified radius. CircleIL] is

the object identifier returned by the command amd

stored in the history list to permit easy reversal and

transpose.

● Change Radius (CircleID, NewRadius, OldRadius):

Change the radius of the circle CircleID to NewRa-

dius. OldRadius is stored so that inverse is easy tcl

compute.

In this case, the Conjlict and Transpose functions are

straightforward:

● Conjiict: the two operations will conflict if and only

if they refer to the same circle, i.e., their CircleID’s

match.

● Transpose: Transposing the two operations simply

requires interchanging the two operations if they

refer to different circles; else the Transpose is un-

defined.

Note that the graphical operations, unlike those in text

editors, usually will not require parameter changes since

graphical operations usually use absolute (x, y) coordi-

nates rather than coordinates that change with the po-

sition of other objects; if relative positioning is desired,

then different operations should be provided that do use

relative coordinates so that they can be correctly trans-

posed.

6 UNDO ALGORITHMS

This section presents two versions of our undo algo-

rithm: a limited selective undo to demonstrate the basic

concepts, followed by the full selective undo algorithm.

Both algorithms assume that an operation haa already

been chosen to be undone. Methods of selecting which

operation to undo are described in Section 7.

The algorithms are independent of whether a single cen-

tralized history list is maintained for all users or every

site has its own (possibly different, but equivalent ) his-

tory list and editor state. For multiple history lists and

editor states, the communication protocol between edi-

tors should ensure that all editors eventually reach the

same state even when operations are being done in par-

allel at various sites. [6].

6.1 Limited Selective Undo

To demonstrate the principles of our undo technique,

we first describe a limited version of the algorithm and

present an example.

The algorithm works as follows: the transpose function

is used to repeatedly shift the operation to be undone

until it reaches the end of the history list. If it cannot

be shifted to the end due to a conflict along the way,

it cannot be undone. If the operation can be shifted
to the end, we can simply execute the inverse of the

shifted operation to undo it. By shifting the operation,

we have effectively determined where the undo must be

performed.

277



An example will help demonstrate the algorithm. As-

sume that we want to undo A given the history list:

ABC

Suppose A conflicts with B. Then Con flicts(A, B) will

be true, and the undo will fail, as it should. If A does

not conflict with B, the result after one iteration will

be:

B’ A’ C

where (B’, A’) = Transpose (A, B). Note that the the

history list need not be actually altered because the only

the new A’ is used in the next iteration. We show the

entire list here for clarity.

Next, if Con f licts(A’, C) is true, the undo will fail.

Otherwise, another shift will occur, resulting in:

B’ C’ A“

where (C’, A“) = ‘Transpose(A’, C). Now that A has

been shifted to the end of the list, ~ can be performed

giving the history list:

ABC~

To see that this is correct, note that since B’ o C’ o A“ is

equivalent (s) to A o B o C (by Transpose Property 1),

we find:

AoBo Co~z B’o C’o A’’o A” =B’06°

Thus, performing ~ at the end of the original history

gives the same result as if operation A had never been

performed (by Transpose Property 2); the undo has suc-

ceeded !

This algorithm, while correct, is unable to deal with the

results of prior undo operations. For example, suppose

that the history contains A B C, where A and B conflict

but neither conflicts with C. A user, wanting to undo

both A and B, first undoes B, resulting in the history

A B C ~. Then, the user attempts to undo A. The

limited undo determines that A conflicts with B, and is

unable to shift A to the end of the history. However,

since B is undone, we should be able to undo A.

6.2 Selective Undo

We now give a selective undo algorithm which is not lim-

ited by prior undo operations (Figure 1). The algorithm

is similar to the limited algorithm in Section 6.1, but it

uses a more sophisticated conflict-checking technique.

To avoid the prior undo limitation, we must track which
operations have already been undone. We do this by

placing a pointer into the history list that links an oper-

ation to its corresponding undo operation. Thus, upon

undoing B from the sequence A B C, the history list

would appear as follows; note that the oval line beneath

the sequence indicates a do-undo pointer:

A w’

The undo algorithm works by making a copy of the end

of the history list, from the operation to undo onward.

The operation to undo is shifted using transpose until it

reaches the end of the list. Before each shift, we check

whether a conflict exists with the following operation.

If a conflict is found with an operation which has been

later undone (i.e. there is really no conflict), that oper-

ation and its undo are removed from the copied history

list by procedure RemoveDo UndoPair.

The RemoveDo UndoPair subroutine, given an opera-

tion X which is later undone by ~, shifts X until it is

adj scent to ~, and then removes both operations. This

is valid because X ox is an identity operator. X will not

conflict with another operation Y in the history between

it and %, unless Y itself has been undone (otherwise,

X could not have been undone). In the case of such an

intervening Y, RemoveDo UndoPair is called recursively

to first eliminate Y from the history list.

6.2.1 An Example of Selective Undo

Let us say that the history list at some point is as fol-

lows:

ABCD

Assume that operations B and C conflict, and there are
no other conflicts. If the operation C is undone, the

history list will be a follows, where C’ is the operation

that results from shifting C past D:

AB~D~

Now, suppose operation B is to be undone. The algo-

rithm will first copy Hist oryList from B onwards into

TempHistoryList so that the original list is not affected

by shifting operations, Since there is a conflict be-

tween B and C, and C has a do-undo pointer, Remove-

Do UndoPairo will be called to remove the C and ~

pair. The resulting (temporary) history list from B on-

wards will be w follows:

B D’

where (D’, C’) = Transpose (C, D),

Assuming that there is no conflict between B and D’,

B will be shifted past D’ giving the operation B’ where

(D”, B’) = Transpose(B, D’). Now that operation B
has been shifted to the end of the list, it can be success-
fully undone using the operation ~. This operation

is carried out and appended to the original history list,

with the appropriate do-undo pointers added, giving the

desired result:
.—

A w’

7 VARIATIONS OF SELECTWE UNDO

Before undo algorithms given above can be used, a

means must be provided for a user to select the op-

eration he wishes to undo. There are many variations

278



type HistoryRec = record

op: Operation;
next: AHistoryRec;
/’ Following field is for pairing do/undo “/
undonel?y: ‘ HistoryRec; end

proc Undo(UndoItem: - HistoryRec)
Hist Temp: - HistoryRec; /“ temporary list “/
PrevPtr, HistPtr: “ HistoryRec~* node pointers *1

ShiftOp: Operation;

NewItem: “ HistoryRec;

/* Make a copy of the history list

from the UndoItem onward */

HistTemp := Copy TailofList(UndoItem);
/+ Shift UndoItem forward, removing

all paired do/undo operations */

ShiftOp := HistTemp “.op;

PrevPtr := Hist Temp; HistPtr := Hist Temp “next;

while HistPtr <> nil do

if Conf7icts(Shift Op,HistPtr “.op) then

if (HistPtr’. undoneBy <> nil)

RemoveDo UndoPair(HistPtr);

HistPtr := PrevPtr ‘next;

else return (“Sorry. Conflicts with”, HistPtr),

endif

else /* Transpose returns two operations;

store the 2nd in ShiftOp */

(., ShiftOp) := Transpose (ShiftOp,HistPtr “.o,p)

PrevPtr := HistPtr; HistPtr := HistPtr “next;

endif
endwhile
/“ Perform executes the operation, appends it to

the end of the history list, and returns a

pointer to the appended node */

NewItem := Perform(Inverse(Shi ftOp));

UndoItem ‘.undoneBy := NewItem;

return (“Undo successful”);

mdproc

?roc RemoveDo UndoPair(doPtr: - HistoryRec)

while doPtr ‘next <> doPtr ‘.undoneBy do

if Confiicts(doPtr ‘.op, doPtr ‘next ‘.op) then

/“ if there is a conflict, it must have been

undone, so can be removed */

RemoveDo UndoPair(doPtr ‘next)

else /* Transpose the two operations,

logically and physically */

(doPtr “next ‘.op, doPtr ‘.op) =

Transpose (doPtr ‘.op, doPtr ‘next ‘.op);

ListSwap(doPtr, doPtr “next)

endif

endwhile

/’ The operation is now adjacent to its undo;

remove them both from HistTemp list */

ListDelete(Hist Temp, doPtr ‘next);

ListDelete(Hist Temp, doPtr)

+ndproc

by which operations to be undone can be selected. De-

termining the most appropriate variation is a subject

of future research and is not the focus of this paper.

However, we give some of the interesting variations to

illustrate the basic techniques.

7.1 Individual History Undo

The Emacs-style history undo described in Section 3.3

can, with minor modifications, be made to work in our

framework, allowing each user to undo his most recent

operations one by one.

The first time a user does an undo, the system searches

backward from the end of the history list until an opera-

tion tagged with that user’s identity is located; a pointer

to that history record is stored for later use by the user.

The selective undo algorithm is then applied to the op-

eration. Should the user immediately do another undo,

the history search continues backward from the stored

pointer. Thus, the user can proceed back through his

most recent changes. When an operation other than an-

other undo is performed, the stored pointer is deleted,

making the undo operations appear as normal opera-

tions which can be undone.

If the undo algorithm fails due to a conflict, a simple

Conflict List Generation [6] algorithm can be used to

locate the conflicting operations, which must belong to

other users. At this point, the interface can inform the

user of the problem and show whose work must be un-

done. He might then be given a choice of canceling or

proceeding to undo the operations of those other users.

7.2 Regional Undo

Another useful criterion for selecting undo operations

is a region in the document. For example, a user may

want to undo his most recent changes to the abstract of

a paper, but not any other changes.

Using a region as a selection criterion is slightly more

difficult than using user-id or timestamps, because op-

erations performed historically on a region refer to the

location where the region used to be, rather than where

it is now.

To locate an operation which affects a region R, we

start by defining a special region-identifying operation

S which we define to conflict with any operation per-

formed in R. We place S at the end of the history list,

and use transpose to shift it backward. If it cannot be

transposed due to a conflict, that conflicting operation

must be within the region, and can now be undone.
Note that for any operation A, !i%-anspose(A, S) should

give (S’, A), where S’ is the region that corresponds to

S prior to doing A. To implement repeated undo on a

region, it is necessary that Transpose (A, S) be defined

even if A conflicts with S, so that S cau be shifted past

Figure 1:” Selective Undo Algorithm

279



A after A is undone for subsequent undos. This appar-

ent anomaly is not a problem since S is not a update

operation — it is simply introduced to identify a region

and determine which operations were carried out in the

associated region.

7.3 Multi-operation actions

Situations often arise in which an application may wish

to treat a group of primitive operations as a single, high-

level, operation. For instance, consider the following

scenarios:

One user-level action (e.g. IndentParagraph) could

result in numerous primitive operations (a bunch of

lNSERTS). Users would expect to be able to undo

the high-level operation in entirety using one undo

operation rather than having to undo the primitive

operations one by one.

Undoing many steps at once could be useful for re-

turning to a known previous state. For example, a

user may wish to revert chapter 15 of a paper back

to the way it was at 5PM last Tuesday (i.e., undo all

operations done on chapter 15’s region with times-

tamps after 5PM last Tuesday), assuming sufficient

history with appropriate tags is kept.

Multiple-operation actions and corresponding undo ac-

tions are similar to the notion of transactions in

databases. Either all the primitive operations should be

performed collectively, or conflicts should be reported

and handled first. For instance, suppose that a para-

graph is indented and then modified so that conflicts

arise. It would not be desirable to allow a partial undo
— its effect is likely to be hard to understand.

Multi-operation undo can be implemented in our frame-

work with the following extensions:

1.

2.

3.

The history list needs to be extended to keep suffi-

cient information around so that the set of opera-

tions that constitute a high-level operation can be

determined.

When undoing a high-level operation, all the prim-

itive operations that constitute the high-level oper-

ation need to be shifted to the end and then undone
as a single transaction. If conflicts arise during

shifting, the undo should not be permitted with-

out first undoing the conflicts.

Do-undo pointers need to go between correspond-

ing operations, which could be high-level. -

8 CONCLUSIONS

We have presented a framework for group undo which

is simple and generally applicable to a variety of doc-

uments. The techniques proposed in this paper are

presently being implemented in the DistEdit toolkit [4].

The techniques are presented in the context of history

undo; however, many aspects of the techniques, such as

the notions of Transpose and Conflict, are also appli-

cable to implementing undo based on linear and US&R

models. The focus of the paper was on developing a gen-

eral framework for group undo; research is still needed

to determine appropriate interfaces for supporting undo

in collaborative applications.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Ellis, C.A. and Gibbs, S.J. Concurrency Con-

trol in Groupware Systems, in Proceedings of the

ACM SIGMOD ’89 Conference on the Manage-

ment of Data (Seattle, Washington, May 1989),

ACM Press, pp. 399-407.

Ellis, C. A., Gibbs, S.J., and Rein, G.L. Design and

Use of a Group Editor. In Engineering for Human-

Computer Interaction, G. Cockton, Ed., North-

Holland, Amsterdam, 1990, pp. 13-25.

Ellis, C. A., Gibbs, S.J., and Rein, G.L. Groupware:

Some Issues and Experiences. Communications of

the ACM(January 1991), 38-58.

Knister, M. and Prakash, A. DistEdit: A Dis-

tributed Toolkit for Supporting Multiple Group

Editors, in Proceedings of the Third Conference on

Computer-Supported Cooperative Work, Los Ange-

les, California, October 1990, pp. 343-355.

McGuffin, L. and Olson, G.M. ShrEdit: A Shared

Electronic Workspace. CSMIL Technical Report

No. 45, The University of Michigan, Ann Arbor,

1992.

Prakash, A. and Knister, M.. Undoing Actions

in Collaborative Work. Technical Report CSE- TR-

125-92, Computer Science and Engineering Di-

vision, The University of Michigan, Ann Arbor,

March 1992.

Stallman, R. GNU Emacs Manual, 1985.

Teitelman, W. Interlisp Reference Manual, Xerox

Palo Alto Research Center, 1978.

Thimbleby, H. User Interface Design. ACM Press,

New York, 1990, pp. 261-286.

Vitter, J .S. US&R: A New Framework for Redoing.

In IEEE Software (October 1984), pp. 39-52.

Yang, Y. A New Conceptual Model for Interactive

User Recovery and and Command Reuse Facilities,

in Proc. CHI’88 Conference on Human Factors in

Computing Systems (Washington, D. C., May 15-

19, 1988), ACM Press, pp. 165-170.

280


