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Abstract

A security policy is a means by which participant ses-

sion requir ements are speci�ed. However, existing

frameworks provide limited facilities for the automated

reconciliation of particip antpolicies. This pap ercon-

siders the limits and methods of reconciliation in a

gener al-purpose policy model. We identify an algorithm

for eÆcient two-policy r econciliation, and show that, in

the worst-case, reconciliation of thr ee or more policies

is intr actable. F urther, we suggest eÆcient heuristics

for the detection and resolution of intractable reconcil-

iation. Based upon the policy model, we describ ethe

design and implementation of the Ismene policy lan-

guage. The expressiveness of Ismene, and indirectly of

our model, is demonstrated through the representation

and exposition of policies supp orte dby existing policy

languages. We conclude with brief notes on the inte-

gration and enfor cementof Ismene policy within the

A ntigone communication system.

1. Introduction

P olicy is frequently the means by which the require-
ments of communication participants are identi�ed and
addressed. Session policies are stated by the di�erent
participants and organizations for the services support-
ing the communication. A tpresent, facilities for the
reconciliation of participant policies in existing policy
frameworks are limited in scope and semantics. Hence,
policies must be reconciled manually, a frequently com-
plex process. Alternatively, governing authorities must

�This work is supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Researc h Lab-
oratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0508. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyrigh t annotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the oÆcial
policies or endorsements, either expressed or implied, of the De-
fense Advanced Researc h Projects Agency (DARPA), the Air
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dictate policy. In that case, session participants accept-
ing dictated policy have limited abilit y to a�ect ho w
session security is de�ned.

Automated reconciliation is a means by which the
possibly divergen t requirements of session participants
can be met. P articipants specify their requirements
through policy. These policies are reconciled at run-
time, resulting in a session-de�ning speci�cation. In
this case, session securit y is the result of all require-
ments, rather than dictated by a single authority.

A session securit y policy de�nes securit y-relevant
properties, parameters, and facilities used to support
a session. Thus, a session policy states ho wsecurit y
directs behavior, the en tities allo w edto participate,
and the mechanisms used to achiev e securit y objec-
tives. This broad de�nition extends muc h of exist-
ing policy; dependencies betw een authorization, access
con trol,data protection, key management, and other
facets of a communication can be represented within
a unifying policy. Moreover, requirements frequently
di�er from session to session, depending on the na-
ture of the session and the environment in which it is
conducted. Hence, the conditional requirements of all
parties are de�ned in a policy speci�cation.

This paper considers the de�nition, eÆciency, and
methodologies of securit ypolicy reconciliation within
a general-purpose policy model. This model de�nes
policy as the collection of interdependent statements of
provisioning and authorization. Each statement identi-
�es context-sensitive session requirements. A reconcil-
iation algorithm attempts to identify a policy instance

compliant with the stated requirements. Our investi-
gation shows that in the worst case, reconciliation of
tw o policies is tractable, but reconciliation of three or
more is not. We identify sev eral heuristics for detecting
and combating intractable policy reconciliation.

We further consider the related problems of policy
compliance and analysis. A compliance algorithm de-
termines whether an instance is consistent with the
requirements stated in a policy. The analysis algo-
rithm determines whether the provisioning of a ses-

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02) 
1081-6011/02 $17.00 © 2002 IEEE 



sion adheres to a set of assertions that express cor-
rectness constraints on a policy instance. We identify
eÆcient algorithms for both compliance and analysis.
We demonstrate that a more general form of analysis
is intractable (coNP).

The Ismene policy language and supporting infras-
tructure is built upon the model and algorithms de�ned
throughout. The expressiveness of Ismene, and indi-
rectly the applicability of our policy model, is demon-
strated through the representation and exposition of
policies de�ned in several popular policy languages.
We describe the integration and enforcement of Ismene
policy within the Antigone communication system.

P olicyhas been used in di�erent con textsas a ve-
hicle for representing authorization and access control
[31, 5, 9, 32, 29], peer session security [33], quality of
service guarantees [7 ], and netw ork con�guration [3, 2].
These approaches de�ne a policy language orsc hema
appropriate for their target problem domain. This pa-
per expands on this w orkby de�ning a general ap-
proach in which policy is used to both provision and to
regulate access to communication services.

The problem of reconciling policies in an automated
manner is only beginning to be addressed. In the
tw o-part ycase, the emerging Security P olicySystem
(SPS) [33] de�nes a framework for the speci�cation and
reconciliation ofsecurit y policies for the IPSec proto-
col suite [23]. Reconciliation is largely limited to in-
tersection of speci�ed data structures. In the multi-
part y case, the DCCM system [13 ] pro vides a nego-
tiation protocol for provisioning. DCCM de�nes the
session policy from the in tersection of policy propos-
als presented by each potential member. Each pro-
posal de�nes a range of acceptable values along a multi-
dimensional policy structure. Hence, reconciliation in
these systems is largely based on the intersection of
policy schema. In con trast, this w ork attempts to
de�ne a general framework upon which more 
exible
expression-oriented policies are de�ned and reconciled.

Language-based approaches for specifying autho-
rization and access control ha ve long been studied [31,
9, 32, 29], but they generally lack support for recon-
ciliation. These systems typically iden tifya rigorous
semantics for the evaluation of authorization state-
ments. The P olicyMaker [5] and KeyNote [6] trust
management systems provide a pow erful framework for
the evaluation of credentials. T rustmanagement ap-
proaches focus on the establishment of chains of con-
ditional delegation de�ned in authenticated policy as-
sertions. Hence, policy is dictated by entities to which
session authority is delegated, rather than through the
reconciliation of participant requirements.

The following section considers the requirements of

a general-purpose policy language. Section 3 considers
the limits and methods of reconciliation in our general
policy model. Section 4 presents the Ismene language.
Section 5 illustrates the use of Ismene by represent-
ing policies supported by existing languages. Section 6
brie
y discusses our experiences with the implementa-
tion and use of Ismene. Section 7 concludes.

2. Requirements

T o illustrate the policy reconciliation needs, w e
present very simpli�ed security requirements for an ex-
ample conferencing application, tc. The tc applica-
tion is to be deployed within a company, widget:com.
widget:com's organizational policy for tc requires the
follo wing:

� the con�dentiality of all session con ten tmust be
protected by encryption using tripleDES or AES
(provisioning requirement)

� the session is restricted to widget:com employees
(authorization requirement)

Now suppose Alice wishes to sponsor a session of tc
under the following policy:

� Alice wishes to use only AES cryptographic algo-
rithm only (provisioning requirement); and

� she wishes to restrict the session to the
BlueWidgets team (access control requirement)

A basic requirement on a policy approach for this sce-
nario is that it must reconcile the provisioning and ac-
cess control requirements (policies) stated by any num-
ber of in terested parties. It is through this process
of reconciliation that a concrete, enforceable policy is
dev eloped.In the above example, Alice's and the wid-
get.com policies are reconciled to arrive at a policy that
restricts the participants to members of widget:com's
BlueWidgets team (access con trolrequirement), and
tc must be con�gured so that all conten t is encrypted
using AES (provisioning requirement).

In general, security requirements can be more com-
plex. F or example, Alice may wish to restrict access
to certain hours of the day, require that the session be
rek ey edperiodically, etc. (en vironment-dependence).
In some cases, the session must be able to make access
control decisions based on the use and con�guration
of securit y mechanisms; for example, admit a member
only if AES is being used for ensuring con�dentiality.
Our language permits such dependencies betw een au-
thorization and provisioning policy. This represents a
div ergence from many existing works that treat autho-
rization and provisioning independently.
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Figure 1. Policy construction - A session-
specific policy instance for two or more par-
ticipants is created by an initiator. Each par-
ticipant submits a set of domain policies iden-
tifying the requirements relevant to the ses-
sion. The initiator constructs the policy in-
stance compliant with each domain and the
session policy through reconciliation.

3. Policy

This section presents the Ismene approach to policy
management. Depicted in Figure 1, a session is estab-
lished between tw o or more entities. Each participant
in the session submits a set of relevant domain policies
to the initiator. The initiator may be a participant or
external entity (e.g., policy decision point [14]). Stated
by a policy issuer, a session policy is a template describ-
ing legal session provisioning and the set of rules used
to govern access.

Domain policies state conditional requirements and
restrictions placed on the session. In the scenario de-
scribedin the previous section, Alice's domain policy
states that AES must be used and the session restricted
members of the BlueWidget team. The set of policies
appropriate for a particular session is dependent on the
en vironment in which it is to occur. The scenario de-
scribed in Figure 1 depicts an environment in which the
tw o participants state policies for the supported appli-
cation, as w ellas their local en terprise environments.
The instance is the result of the reconciliation of the
session, application, and enterprise policies.

An initiator uses the reconciliation algorithm to cre-
ate a policy instance compliant with the session and
each domain policy. A policy is compliant if all stated
requirements and restrictions are realized in the result-
ing instance. If an instance is found, it is used to govern
the provisioning and authorization of the subsequent
session. If an instance cannot be found, then the par-
ticipants must revise the domain policies or abort the

session. An instance concretely de�nes session provi-
sioning and authorization. The initiator is trusted to
reconcile the session and domain policies correctly1.

A session policy in Ismene is authoritative; the in-
stance must be directly deriv edfrom the session pol-
icy2. Domain policies are consulted only where 
ex-
ibilit y is expressly gran tedby the issuer. Hence, the
session policy acts as a template for operation, and do-
main policies are used to further re�ne the template
tow ard aconcrete instance. Conversely, domain poli-
cies represent the set of requirements that are deemed
mandatory and relevan t.

3.1. Policy Expressions

Session provisioning identi�es the con�guration of
the securit y services used to implement the session.
Ismene models pro visioning as collections of securit y
mechanisms. Associated with a mechanism is a set of
con�guration parameters used to direct its operation.
Throughout, we use the term con�guration to refer to
a singular statement specifying a parameterized mech-
anism con�guration. Each mechanism provides a dis-
tinct communication service that is con�gured to ad-
dress session requirements. A pro visioning expression
explicitly states con�guration through a set of mecha-
nisms and parameters. T o illustrate, consider thefol-
lowing (incomplete) Internet Key Exchange (IKE [19])
session policy:

cryptographic algorithm: 3DES (and)

hash algorithm: MD5 (and)

exchange algorithm: MODP, (Group 1 (or) Group 2)

This policy states that there are three mechanisms used
to implement IKE; a cryptographic algorithm, a hash
algorithm, and a DiÆe-Hellman exc hange. Moreover,
the exchange must use either group 1 or 2 MODP val-
ues, but not both or neither. The policy requirements
can be expressed more precisely as:

Crypto((3DES) ^Hash(MD5) ^
(Exchange(MODP;Group1)�Exchange(MODP;Group2)

where each element of the expression speci�es a mech-
anism (e.g., Crypto) and con�guration (e.g., 3DES).

Note that this policy must be further re�ned for it to
be enforced; the session participants (IKE initiator and
responder) must agree upon an exchange group (group
1 or group 2). Pr ovisioning reconciliation resolv es these

1Where deemed necessary, participants can eÆcien tlyvali-
date an instance against the relevant domain policies prior to
acceptance of the instance (see Section 3.4).

2Where no such authority is available, a default session pol-
icy that places no constraints on session securit y is used. In that
case, participan t domain policies are reconciled to derive the in-
stance, and the default (session) policy where domain policies
provide no guidance.
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ambiguities by attempting to �nd an instance that is
consistent with each policy expression. Where multiple
policies are considered, each must be satis�ed.

In the rest of this paper, policy statements iden tify-
ing a range of acceptable, but mutually exclusive, be-
ha viors (identi�ed by the XOR operator �) are called
pick statements.

P olicy expressions give an alternative and more gen-
eral w ayof viewing the reconciliation problem than
that provided in current policy languages. F or exam-
ple, In IKE, a requester (acting as the entity pro viding
a domain policy) must provide a proposal that precisely
mirrors that of the responder (whose policy represents
a session policy). IKE reconciliation trivially �nds an
in tersection of the �elds of the policy proposal. In con-
trast, reconciliation in Ismene is formulated as a sat-
isfaction problem; the initiator seeks an instance that
satis�es the set of expressions. Hence, the provisioning
expression in domain policies need only specify those
aspects of policy that the issuer wishes to in
uence.

Authorization policy maps iden titiesor credentials
onto a set of access rights [31 ]. As in provisioning, au-
thorization statements are modeled as logical expres-
sions. Each authorization expression, called an action

clause, is de�ned as a conjunction of positiv econdi-
tionals3. F or example:

read : ACL(=etc=hosts; bob; read)^ID(bob)^FILE(=etc=hosts)

states that \read operation should succeed if the user
is Bob, the �le being accessed is /etc/hosts, and the
ACL for the �le allo ws read access to Bob". As in
other systems such as KeyNote [5], the interpretation
of eac h conditional is leftto the en vironment; the es-
tablishment of the identity, �le, and the evaluation of
the �le's ACL is outside the scope of the policy speci-
�cation.

3.2. Provisioning Reconciliation

Pro visioning reconciliation searc hes for a set of
mechanism con�gurations that satisfy the policy ex-
pressions. We show in Appendix A that in its most
general form, reconciliation of even one expression is
in tractable; any instance of positiv e,one-in-k satis�-
abilit y [30, 15], a kno wnintractable problem, can be
reduced to the problem of �nding a solution that sat-
is�es a policy expression with pic k statements. This
result is in stark con trast toneeds of policy manage-
ment; the algorithms used to manage policy must be

3Because of the complexity imposed by the negative condi-
tions, w e only consider positive conditions in this paper [5]. As
many systems adopt this approach, this does not signi�cantly
a�ect our abilit y to represen t existing policies (see Section 5)

eÆcient. In response, we place the following restriction
of the construction of policy:

Policy R estriction: A mechanism con�gura-
tion can only be stated in at most one pic k
statement in a policy.

For example, if a, b, and c are mechanism con�gura-
tions, the following policy expression is not allow ed b y
the above restriction in a single policy becausea occurs
twice in the policy expression:

(a� b) ^ (a� c)

On the other hand, the policy expression presented
in Section 3.1 is legal because Exchange(MODP;Group1)

and Exchange(MODP;Group2) are considered di�erent
mechanism con�gurations, though they refer to the
same mechanism.

Based on this restriction, the follo wing algorithm
reconciles a session policy and one domain policy. Fig-
ure 2 presents an example of thealgorithm beingap-
plied on a sample session and domain policy. A thor-
ough treatment of this and all algorithms identi�ed in
this paper is presented in [26].

Two-Policy Reconciliation Algorithm

1. Collapse equivalent con�gurations (describ ed be-
low), if necessary. This step is not necessary on
the example policy in Figure 2.

2. Reduce the session and domain policies.

(a) Remove eac h con�guration inthe session or
domain policy that is not in the other policy.

� If any pick statement in the session pol-
icy becomes empty, then it is removed
(the domain policy does not provide any
guidance of that pick).

� If any pick statement in the domain pol-
icy becomes empty, then the policy can-
not be reconciled (the session policy does
not allow any con�guration in the pic k
statement).

3. Remove an y pic k statement containing a single
con�guration in one policy, and remove the cor-
responding pick statement containing that con�g-
uration in the other. Place the single con�guration
in the instance.

4. Represent each pick statement as a node in a
graph. Add an edge betw eentw onodes, labeled
with the con�guration, if the pick statements share
the con�guration. The problem of �nding an ac-
ceptable con�guration is equivalen tto �nding an
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(Session Policy) S =(a� b� c) ^ (d� e� f) ^ (g � h� i) ^ (j � k � l)
(Domain Policy) D=(f) ^ (d� e� b) ^ (h� k) ^ (g � j)

1) S=(abc) ^ (def) ^ (ghi) ^ (jkl)
D=(f) ^ (deb) ^ (hk) ^ (gj)
I =;

!

2) S=(b) ^ (def) ^ (gh) ^ (jk)
D=(f) ^ (deb) ^ (hk) ^ (gj)
I =;

!

3) S=(gh) ^ (jk)
D=(hk) ^ (gj)
I =b; f

! 4)

j

h gh

gj

hk

jk

gk ! I=b; f; h; j

Figure 2. Reconciliation - the Ismene reconciliation algorithm iteratively reduces the intersection of
the session (S) and domain (D) policies. Any reconcilable policy will converge on configurations
(denoted by single letter variables – e.g. a) existing exactly once in each policy. The remaining pick
statements can be reconciled into a concrete instance (I) using an (efficient) edge cover algorithm.

edge cover of size N=2 on the resulting graph,
where N is the n umber of nodes in the graph. If
N is odd, or no suc h cover can be found, then
the policies cannot be reconciled. The edge cover
problem on graphs is kno wnto be in P and an
eÆcient algorithm can be found in [18].

An equivalent con�guration is a set of t w o or more
con�gurations contained within the same pic k state-
ment in both policies. Consider the sub-clauses (d �
e�f) and (d�e�b) of the example session and domain
policies. With respect to the reconciliation algorithm,
d and e can be considered to be equivalent con�gu-
rations; any instance including d can replace d with
e and still satisfy both policies. Equivalen t con�gura-
tions must be replaced with a single meta-con�guration
in step 1, and restored in the instance after reconcil-
iation is completed. F or tw opolicies, equivalen tcon-
�gurations can be easily found in polynomial time by
simply looking for overlap betw een pick statements of
the tw opolicies. With equivalen tcon�gurations, the
output of 2-policy reconciliation can be a policy ex-
pression, rather than an instance.

n-Policy Reconciliation Algorithm
In the case where more than one domain policy

needs to be reconciled with a session policy, a simple
algorithm would be to reconcile the session policy with
one domain policy at a time. The policy expression re-
sulting from each 2-party reconciliation is used as the
session policy for reconciliation with the next domain
policy .As a �nal step, a speci�c con�guration is chosen
from pick statements remaining after the �nal reconcil-
iation (due to equivalen t con�gurations).A reasonable
strategy chooses the �rst con�guration in each remain-
ing pic k statement from the session policy ,assuming

that the session policy lists con�gurations in decreas-
ing order of preference.

The ordering of reconciliation may a�ect the recon-
ciliation results; some orderings of domain policies will
not be reconcilable, while others will. F or example,
consider the following session and domain policies:

SessionPolicy (a� b) ^ (c� d)
DomainPolicy 1 (a� c) ^ (b� d)
DomainPolicy 2 (b) ^ (d)

If domain policy 1 is considered �rst, the policies may

reconcile to (a ^ c). Thus, domain policy 2 would not
be reconcilable. If domain policy 2 w ere considered
�rst, reconciliation would arrive at (b^ d), and thus be
reconcilable with domain policy 1. The introduction
of the third policy violates the property that a speci�c
con�guration occurs in at most tw opick statements
in the reconciliation expressions { the reduction to the
edge cover problem fails in such a case. It can be shown
that the problem is intractable by a reduction from the
one-in-three satis�ability problem.

Where reconciliation is not possible, it may be de-
sirable to �nd a subset of policies that can be recon-
ciled. One potential reconciliation algorithm, Largest
Subset Reconciliation (LSR), would attempt to �nd an
instance reconcilable with the largest number of do-
main policies. LSR has the undesirable property that
it may fail to allow the participation of required mem-
bers (for example, by excluding the video source in a
video conference). Moreover, as shown in Appendix B,
LSR is also intractable.

An extension to the reconciliation algorithm estab-
lishes an ordering of domain policies. Higher prior-
itized policies are considered �rst and low erpriorit y
policies are considered only when higher priority poli-
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cies provide no guidance; otherwise they may be ex-
cluded. This algorithm is polynomial time and has
been used extensively to deriv ethe securit y policy in
the Antigone communication system [28].

Our experience in using the policy framework for a
range of group communication applications indicates
that often pick statements intersect with at most one
pic k statement of all other policies. F or example, all
IKE policies will de�ne similar pic k statements for
Crypto, Hash, and Exchange mechanisms. In this case
the problem of reconciliation is tractable. Any viola-
tion of this property (over a set of session and domain
policies) can be eÆciently detected by a simple scan
of the policies { in that case, the heuristic suggested
above of prioritizing domain policies can be used.

3.3. Authorization Reconciliation

The authorization policy de�ned in an instance is
the result of the reconciliation of action clauses of all
considered policies. How ev er,the semantics of such
an operation are unclear; one may view reconciliation
of access control to be an intersection (logical OR of
each policy), a union (logical AND), or something else
(session AND at least one domain policy). The �rst ap-
proach (logical OR), how ev er, has the unfortunate side
a�ect that a permissive domain policy can circumven t
any controls stated in the session or domain policies.

Our reconciliation algorithm takes the conservative
approach of accepting the logical AND of all access
control policies. This approach will not allow an y con-
trols to be circumven ted; however, a restrictive domain
policycan cause access to be denied. We discuss our
experience with this issue further in Section 6.

We now illustrate authorization reconciliation. Con-
sider an example session policy that de�nes the action
clause4 (ti : c1 ^ c2 :: accept;) and tw o domain policies
with action clauses (ti: c3 :: accept;) and (ti: c4 :: ac-
cept;), respectively (where t1 is an action and each ci
a condition). The resulting policy from the Authenti-
cation reconciliation algorithm is:

t1 : ((c1 _ c2) ^ c3 ^ c4) :: accept

3.4. Compliance

Not all domain policies are required to (or often can)
be consulted during reconciliation. Hence, before par-
ticipating in a session, a participant must be able to

4The accept keyw ord closing eac h clause indicates that the
operation are accepted where the conditions are met. accept is
intended as syn tactic sugar, and is present in all authorization
clauses. There is no deny in the model; Authorization fails unless
explicitly accepted.

check the compliance of its domain policy with the in-
stance that is governing the active session. Compliance
is successful if all requirements stated in the domain
policy are satis�ed by the instance. Note that compli-
ance in this w orkserves a di�erent purpose than the
compliance algorithms in trust management [5, 10, 4];
our compliance algorithm determines whether an in-
stance is consistent with a domain policy. In contrast,
compliance in trust management systems attempts to
determine if the available credentials and the current
system state satisfy the trust policy.

As with reconciliation, there are two phases of com-
pliance; provisioning and authorization. The provision-
ing compliance algorithm compares domain policy with
a receiv ed policy instance.Each con�guration and pick
statement must be satis�ed by the instance. A con�gu-
ration is satis�ed if it is explicitly stated in the instance.
A pick statement is satis�ed if exactly one con�gura-
tion is con tainedin the instance. Thus, provisioning
compliance is as simple as testing the containment of
the evaluated domain policy by the instance. More
precisely , an instance describes a truth assignment for
the (con�guration) variables in the domain policy ex-
pression. The instance is compliant if the expression is
satis�ed (evaluates to TRUE) by the truth assignment.

Sev eralresearc hers have examined the problem of
compliance in an authorization policy. Gong and
Qian's model of a policy composition (i.e., recon-
ciled policies) de�ne a tw o-principlecompliance de�-
nition [17]. The principle of autonomy requires that
an y action accepted by one policy must be accepted
by the composition (reconciled instance is not less per-
missive). The second principle, secur e inter op erability,
requires that the composition must be no more per-
missive than either policy. How ever, this two-fold def-
inition of compliance is extremely restrictive; all poli-
cies must specify equivalen t authorizations.Moreover,
Gong and Qian show edthat compliance detection in
their model is intractable.

Ismene adopts the Gong and Qian's secure inter-
operability as a de�nition of compliance, but not the
principle of autonomy. More precisely, compliance de-
termines if, for an y action and set of conditions, an
action acceptedb y the policy instance is accepted by
the domain policy. This embodies a conservative ap-
proach to compliance, where any action that would be
denied by the domain policy must be denied by the
instance. Hence, compliant instances always respect
the limitations stated in the domain policy. How ever,
if a domain policy is more permissive than the policy
instance, the policy instance's restrictions are not re-
laxed.

The authorization compliance algorithm assesses
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whether the instance logically implies the domain pol-
icy. Given an expression e1 describing the condition-
als of action clauses in an instance, and a similar ex-
pression describing a domain policy e2, it is conceptu-
ally simple to check compliance betw een the policies by
testing whether the expression e1 ) e2 is a tautology.
T o illustrate, consider the action clauses de�ned in the
follo wing instance and domain policies:

Instance X : (c1 ^ c2) _ c3 :: accept;
X : c1 :: accept;Domain policy A
X : c3 :: accept;

Domain policy B X : c1; c3 :: accept;

The policy instance is compliant with the domain pol-
icy A because it is less permissive (e.g., (c1^c2)_c3 )
c1 _ c3). The instance is not compliant with domain
policy B because the session policy is more permissive
(e.g., (c1 ^ c2) _ c3 6) c1 ^ c3). General-purpose tau-
tology testing is intractable [11]. However, the lack of
negative conditionals in Ismene allows eÆcient compli-
ance testing. F or brevity, we omit further details.

3.5. Analysis

While a reconciliation algorithm may be able to
iden tify an instance satisfying the session and domain
policies, our approach makes no guarantees that the in-
stance is properly formed. A properly formed instance
adheres to a set of principles de�ning the correct com-
position and con�guration of security mechanisms. An
analysis algorithm determines whether a policy or in-
stance is properly formed.

Assertions are used to de�ne the meaning of prop-
erly formed policy by declaring legal and required rela-
tions betw een con�gurations. Each assertion contains
a tag (assert), a conjunction of conditions, and a con-
junction of consequences. Conditions and consequences
are restricted to pick and con�guration statement, and
may be negated. Semantically , assertions state that
the consequences must hold where the consequences
are true (i.e., condition conjunction c, consequence con-
junction q, c) q). F or example, an issuer may wish to
assert a completeness requirement [22, 8] that con�den-
tiality of application data always be provided. Thus,
kno wing that thessl, ipse c, and ssh transforms are the
only means by which con�dentiality can be pro vided,
the issuer states the following (conditionless) assertion
expression:

(ssl � ipsec� ssh)

Analysis determines if an instance (or policy) satis�es
the assertion: exactly one con�dentiality mechanism
must be con�gured.

Analysis techniques guaranteeing correct softw are
construction have been studied extensively within com-
ponent architectures [20, 25 ]. These approaches typi-
cally describe relations de�ning compatibility and de-
pendence betw een components. A con�guration is
deemed correct if it does not violate these relations.
F or example, Hiltunen [20] de�nes the con
ict, depen-
dency, containment, and independence relations. The
following describes assertion expressions representing
these relations (where independence is assumed):

con
ict (A is incompatible with B) !(A ^B)
dependency (A depends onB) A) B

containment (A provides B) A) (!B)

An analysis algorithm assesses whether a policy can
or an instance does violate the relevant assertions. The
online policy analysis algorithm assesses an instance
with respect to a set of assertions. This algorithm
evaluates the assertion expressions against the truth
assignment de�ned by the instance. Any false eval-
uation result indicates that an assertion has been vi-
olated, and the instance cannot be used. Obviously,
by virtue of the tractability of expression evaluation,
online analysis is eÆcient.

An o�ine policy analysis algorithm (OFPA) at-
tempts to determine if an y instance resulting from
reconciliation can violate a set of assertions. Demon-
strated in Appendix B, o�ine analysis is intractable
(coNP). How ev er, this algorithm need only be executed
once (at issuance), and thus does not impact session
setup. Moreover, most reasonable con�gurations w e
have encountered exhibit a degree of independence; the
in troduction of a con�guration is largely the result of
the reconciliation of a few clauses. Hence, the evalua-
tion of an assertion can be reduced to the analysis of
only those clauses upon which the con�gurations stated
in the assertions are dependent. We present an opti-
mized algorithm for OFPA in [26].

4. Ismene

This section presents a brief overview of the Ismene
policy language. Ismene speci�es conditional provision-
ing and authorization requirements through a general-
purpose policy language. A thorough survey of the
grammar and semantics of Ismene is presented in [26].
Ismene policies are collections of totally ordered pro-
visioning, action, and assertions clauses. F orbrevity,
w e omit the discussion of assertion clauses (see sec-
tion 3.5).

4.1 Provisioning Clauses

Each provisioning clause is de�ned as the tuple:

Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P�02) 
1081-6011/02 $17.00 © 2002 IEEE 



<tag> : <conditionals> :: <consequences>;

T ags are used to associate meaningful names with
provisioning requirements. Conditions are predicates
that iden tifythe circumstances under which the con-
sequences are applicable. Consequences state ses-
sion provisioning requirements through con�gurations

and pick statements, or iden tifyrelevant sub-policies
through tags. The reserved provision tag is used to
name the overall provisioning requirements. Consider
the follo wing simple example, where x, y, z, and w
specify mechanism con�gurations:

provision: :: confidentiality, keymgmt;

confidentiality: c1, c2 :: x, y;

confidentiality: :: pick(w, z);

rekeying: :: d

The �rst (provision) clause says that the policy must
provision both con�dentiality and key management ser-
vices (tags). The second and third clauses state that
if c1 ^ c2 is true, x and y must be con�gured; other-
wise either w or z (but not both or neither) must be
con�gured. The �nal clause says that d must be con-
�gured under all circumstances. Therefore, the policy
expression used as input to reconciliation is x ^ y ^ d
where c1 ^ c2 is true at the time of reconciliation, and
(w�z)^d where c1^c2 is false. Note that the ordering
of clauses with the same tag (e.g., con�dentiality tag)
dictates the order of evaluation. If the conditionals for
an earlier instance of the tag holds (e.g., c1^ c2), those
consequences (e.g., x and y) must be enforced, and the
subsequent clauses for the same tag are ignored.

Conditionals in a clause often refer to attributes. An
attribute describes a single or list-valued invarian t.F or
example, the following attributes de�ne a single-valued
version number and list-valued ACL:

version := < 1.0 >;

JoinACL := < {alice}, {bob}, {trent} >;

An occurrence of the symbol \$" signi�es that the at-
tribute should be replaced with its value. As in the
KeyNote action en vironment [4], the attribute set is
the set of all attributes. Enforcement infrastructures
(e.g., applications) provide additional evaluation con-
text by adding attributes to the attribute set. Con-
ditional evaluation is outside the scope of Ismene; the
en vironment in which Ismene is used is required to pro-
vide a predicate in terface for eac h condition. This is
similar to GAA API condition upcalls [29]).

Consider the provisioning clauses in Figure 3 that
de�ne requirements for public and priv atesessions of
tc. If the session is priv ate (as classi�ed by session
address attributes), then the strong key mgmt clauses
are evaluated; otherwise weak key mgmt is evaluated.
The confidentiality clause is evaluated in either
case. The strong key management clause states that

% Ismene Provisioning Clauses
provision : PrivSession($inaddr,$ipt,$oaddr,$opt)

:: strong_key_mgmt, confidentiality;
provision : :: weak_key_mgmt, confidentiality;
strong_key_mgmt: Manager($ent) :: config(dh_key(refresh,60));
strong_key_mgmt : :: config(dh_key(refresh,240));
weak_key_mgmt : :: config(lm_key(refresh,300));
confidentiality : :: pick( config(dhndlr(3des)),

config(dhndlr(des)) );

% Ismene Action Clauses
join : config(dhndlr(des)), In($JoinACL,$joiner),

Credential(&cert,sgner=$ca,subj.CN=$joiner) :: accept;
join : Credential(&cert,sgner=$ca,delegatejoin=true),

Credential(&tocert,sgner=$cert.pk,subj.CN=$joiner)
:: accept;

Figure 3. Ismene Policy - The provisioning
clauses in the session and domain policies
are evaluated to arrive at the policy expres-
sions used as input to reconciliation. Action
clauses are evaluated over the lifetime of the
session to enforce authorization policy.

a DiÆe-Hellman [12] keying mechanism must be used.
The behavior of this mechanism is further re�ned to
refresh the session key ev ery 60 (240) seconds where a
management is (is not) present. Where the session is
not deemed private, the weak key mgmt clause simply
provisions the Leighton-Micali key management mech-
anism [24]. The con�dentiality clause instructs the
data handler mechanism to use either 3DES or DES,
depending on the result of reconciliation.

Note that the mechanisms indicated in the policy
speci�cation (e.g., dh key and dhndlr) must be pro-
vided by the enforcement infrastructure. These are
not keywords in the language; mechanism names are
mapped to the service implementations by the enforce-
ment infrastructure.

4.2 Action Clauses

Each action clause has the following structure:
actionName: c1; :::; cn :: accept

The speci�ed action (operation) is allow ed if all the
conditions hold when the action is attempted (i.e. at
run-time). accept is the only allow ed consequence.
Hence, Ismene represents a closed world in which de-
nial is assumed. The protected actions are de�ned by
the enforcement infrastructure, and assumed known a

priori by the policy issuer.

Used exclusively in action clauses, the reserv ed
credential() conditional evaluates available creden-
tials. All credentials are modeled by Ismene as a set
of attributes. For example, an X.509 certi�cate [21]
is modeled as attributes for subj.O (subject organiza-
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tion), issuer.CN (issuer canonical name), etc. To illus-
trate, consider the following action clause:

join : Credential(&cert,sgnr=$ca,subj.CN=$part) : accept;

The �rst argument of a credential conditional (denoted
with \&" symbol) represents binding. The credential
test binds the matching credentials to the (&cert) at-
tribute. Binding is scoped to the evaluation of a sin-
gle clause, and conditionals are evaluated left to right.
The second and subsequent parameters of a credential
conditional de�ne a matching of credential attributes
with attribute or constant values. The above example
binds the credentials that were issued by a trusted CA
(sgnr=$ca) and ha vethe subject name of the partic-
ipant (subj.CN=$part) to the &cert attribute. The
conditional returns true if a matching credential can
be found. The enforcement architecture is required to
iden tify the set of credentials associated with an action.

Credential conditions are similar to trust manage-
ment assertions [5, 10 , 4]; evaluation determines
whether the attributes of an assertion satisfy the rele-
van t policy expression.Conditionals in action clauses
can also contain chec ksfor mechanisms that are cur-
rently pro visioned in the session.Hence, authorization
policy can be predicated on session provisioning.

Consider the action clauses in Figure 3. The �rst
join action clause describes an ACL-based policy for
admitting members to the session. The member is ad-
mitted if she is identi�ed in the JoinACL attribute, she
can pro vide anappropriate certi�cate credential, and
the session is provisioned with the DES-enabled data
handler mechanism. The second join is consulted only
when the conditionals of �rst clause are not satis�ed.

The second join clause describes a delegation pol-
icy. The �rst credential conditional binds &cert to
the set of credentials delegating join acceptance (the
delegation certi�cates issued by the trusted CA), and
second tests the presence of an ycredential signed by
the delegated public key.

5. Modeling Policy

This section demonstrates the use of Ismene pol-
icy by modeling the semantics of existing policy ap-
proaches. These policies serve to highlight the similar-
ities and di�erences betw een Ismene andother policy
languages and architectures.

5.1. Internet Key Exchange

The Internet Key Exchange [19] (IKE) dynamically
establishes security associations (SA) for the IPSec [23]

IKE Session Policy (Responder)
provision : selector(12.14.0.0,any,17,23,any,$name)

:: pick( config(ike(idea-cbc,md5,group1)),
config(ike(blowfish,sha1,group2)),
config(ike(cast-cbc,sha1,group2)) ),

pick( config(preshare()), config(kerberos()) );

auth : config(ike(preshare)),
Credential(&cert,modulus=$prekey.mod) :: accept;

auth : config(kerberos()),
Credential(&tkt,issuer=$realmtgs) :: accept;

IKE Domain Policy (Requestor)
provision : selector(any,12.14.9.1,17,23,any)

:: pick( config(ike(cast-cbc,sha1,group2)),
config(ike(cast-cbc,md5,group2)) ),

config(preshare());

auth : config(ike(preshare)),
Credential(&cert,modulus=$prekey.mod) :: accept;

Figure 4. IKE Policy - session (responder) and
domain (requestor) policies are used to im-
plement IKE phase one policy negotiation.
The IKE SA policy (instance) is arrived at
through the intersection of the responder
(session) policy and requestor (domain pol-
icy) proposals.

suite of protocols. The IKE phase one exchange nego-
tiates an IKE SA for securing IPSec SA negotiation
and key agreement. P olicy is negotiated through of a
round of policy proposals de�ning the algorithms and
means of authentication protecting the IKE SA.

Figure 4 depicts Ismene policies whose reconciliation
models an IKE phase one policy negotiation. The ses-
sion policy (IKE policy of the responder) and domain
policy (IKE policy proposal) are reconciled to arrive at
the SA policy. Similar to IPSec selectors, the selector
condition in the example identi�es where the identi�ed
policy is relevant. Hence, by creating similar policies
with di�erent selectors, it is possible to construct poli-
cies for all IPSec traÆc supported by a particular host
or net work; a provision clause and associated selector
is created for each class of traÆc that requires IKE SA
negotiation.

As in IKE negotiation, the reconciliation algorithm
intersects the policy proposals resulting in the provi-
sioning of ike(cast-cbc,sha1,gr oup2)and preshare
mechanisms. The reconciliation of the action clauses
results in a single auth (peer authentication) clause.
Note that the config condition in the Kerberos auth
clause is statically evaluated; Kerberos is not con�g-
ured in the instance, so the clause can nev erbe sat-
is�ed. In this case, the clause is removed during rec-
onciliation. The preshare action clause (which simply
tests whether the peer has proved knowledge of the
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DCCM Session Policy (CCNT)
provision: ::

pick( config(conf(3DES)), config(conf(CAST)),
config(conf(IDEA)), config(conf(RC4)) ),

pick( config(kman(OFT)), config(kman(LKH)),
config(kman(DH)), config(kman(pswd)) ),

pick( config(trans(SSH)), config(trans(SSL)),
config(trans(IPSec)) );

DCCM Domain Policy 1 (member)
provision: :: pick( config(conf(3DES)), config(conf(CAST)) ),

pick( config(kman(OFT)), config(kman(LKH)) ),
pick( config(trans(SSH)), config(trans(SSL)),

config(trans(IPSec)) );

DCCM Domain Policy 2 (member)
provision: :: pick( config(conf(CAST)), config(conf(RC4)) ),

pick( config(kman(OFT)) ),
pick( config(trans(SSH)), config(trans(SSL)) );

Figure 5. DCCM Policy - Designed for pol-
icy negotiation in multi-party communication,
DCCM creates a session policy through in-
tersection of (domain) policy proposals de-
fined over a template structure (session pol-
icy). DCCM does not specify authorization
policy.

pre-shared key) is identical in both policies, and thus
reconciles to a single condition clause.

5.2. Dynamic Cryptographic Context Management

Designed for policy negotiation in multi-party com-
munication, the Dynamic Cryptographic Context Man-
agement (DCCM) [13] system de�nes a protocol used
to negotiate a group session policy. The abstract Cryp-
tographic Context Negotiation Template (CCNT) de-
�nes a provisioning policy structure from which the
session policy is negotiated [1]. Each CCNT struc-
ture is de�ned as a n-dimensional space of independent
services. T osimplify, a session policy is constructed
by intersecting the points on each dimension satisfy-
ing member policy proposals. DCCM does not specify
authorization policy.

The creation of session policy DCCM is opera-
tionally similar to that of IKE; policy is calculated
from the intersection of known policy structures. How-
ever, where no suc h in tersection exists, an unde�ned
algorithm is used to iden tifywhich proposals to rec-
oncile. The extended (prioritized) reconciliation algo-
rithm pro vides guidance; important member policies
are considered �rst, and others afterward. How ev er,
de�ning a total ordering to the policies frequently re-
quires human interv en tion.

GAA-API Printer Policy

Token Authority Value

USER Kv5 joe@acme.edu
rights manager submit job

time windo w PST 6am-8pm
printer load lpd 20%

T ok en Authority Value

GROUP Kv5 operator@acme.edu
rights manager submit job

Ismene Printer P olicy
submit_job : Credential(&tkt,srvr=Kv5,id=joe@acme.edu),

timeWindow(6am,8pm,pst),
printerLoad($lp,lpd,20%) :: accept;

submit_job : Credential(&tkt,srvr=Kv5,id=operator@acme.edu)
:: accept;

submit_job : Credential(&tkt1,srvr=Kv5,id=joe@acme.edu),
Credential(&tkt2,srvr=Kv5,id=$id),
Credential(&del,id=$tkt2.id,

grantor=$tkt1.id,rghts=submit_job),
timeWindow(6am,8pm,pst),
printerLoad($lp,lpd,20%) :: accept;

Figure 6. GAA-API Policy - GAA-API defines
session-independent authorization policies
through extended ACL tokens. The seman-
tics of tokens are realized in Ismene through
structured action clause conditionals.

Ismene session and domain policies modeling the se-
mantics of DCCM policy creation within an example
CCNT (from [13]) is depicted in Figure 5. The session
policy de�nes the template CCNT, and domain poli-
cies represent policy proposals submitted by expected
group members (domain policies). Ismene reconcili-
ation �nds the intersection of policies associated with
the three essential mechanisms securing the group; con-
�dentiality (conf), key management (kman), and key
management transport (trans).

5.3. GAA-API

The Generic Authorization and Access Control API
(GAA-API) provides a general-purpose framework for
describing authorization in distributed systems [29 ].
Hence, policy in GAA-API is not session oriented, but
used to continuously govern access to resources. Is-
mene, how ever, can be used to de�ne non-session pol-
icy. Reconciliation and compliance approaches enable
administratively disconnected communities to share re-
sources while maintaining the integrity of independent
authorization policies.

GAA-API policies, called extended ACLs (EACL),
consist of tok ens describing the authorization, righ ts,
and conditions of access. T ok ens are associated with re-
sources to precisely describe to whom and under what
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conditions access is granted. Access is allo wed where
conditions are satis�ed and credentials matching the
policy statements are found. F or example, Figure 6 de-
scribes equivalent GAA-API and Ismene authorization
policies associated with acme.edu's prin ters. These
policies state that the user joe (authenticated by the
local Kerberos service) should be allo w edto submit
prin tjobs only betw een6am and 8pm and when the
prin ter is not loaded.Moreover, the policy states that
an operator can always submit a print-job.

The example delegation policy in Figure 6 demon-
strates a fundamental di�erence betw een GAA-API
and Ismene. While GAA-API implicitly permits del-
egation, Ismene requires the issuer to state a policy
allo wing it. The Ismene policy states that joe is al-
low ed to delegate (through a delegation credential) the
submit job right to any entity authenticated by the
same Kerberos service. Moreover, the clause states
that conditions under which joe is allo w edaccess are
explicitly imposed on any suc h delegation.F or brevity,
w e omit the operator's right to delegate job submission.

5.4. KeyNote

Central to KeyNote trust management system is the
notion of credentials [4, 6]. A credential is a struc-
tured policy describing conditional delegation; an au-
thorit y (authorizer) states that a principal (licensee)
has the right to perform some action under a set of
conditions. An action isallo w ed ifa delegation chain
can be constructed from a credential matching the re-
quested action to a trusted local policy. Users supply
credentials as is needed to gain access. Hence, KeyNote
signi�cantly eases the burden of policy management
by allo wing policy to be distributed to users, rather
than con�gured at all policy enforcement points. The
KeyNote policy depicted in Figure 7 delegates decisions
about IPSec policy to the ADMIN KEY, and restricts the
provisioning to a range of cryptographic algorithms.
The ADMIN KEY credential encapsulates a policy that
the user Bob (who is identi�ed by a key) should be al-
low ed access ifIPsec is con�gured with the 3-DES or
CAST encryption algorithms and SHA-1 HMACs are
used for message authentication.

The Ismene policies state a similar requirement,
while also providing a reconciliation algorithm for gen-
erating an acceptable policy instance to provision the
session. How ev er, onefacet of KeyNote not captured
in Ismene is the explicit delegation of policy; KeyNote
credentials are only consulted where they have been
explicitly delegated authority by a local policy. In con-
trast, Ismene does not make an y assumptions about
the origin and authentication of policy ,but focuses

on the construction of session policy. In the exam-
ple, the Keynote delegation approach is partially mod-
eled in the Ismene policies. The session policy is con-
sulted for the accept policy action prior to the ac-
ceptance of any domain policy and accepted where
signed by ADMIN KEY. In this case, Ismene enforces pol-
icy through reconciliation; only instances consistent
with the KeyNote conditions can result from recon-
ciliation.

6. Implementing Ismene

The Ismene Applications Programming Interface

(IAPI) de�nes interfaces for the creation, parsing, rec-
onciliation, and analysis of Ismene policies5 . The Is-
mene policy compiler, ipcc, validates the syntax of a
session and domain policies and implements the algo-
rithms presented in Section 3. We ha vefurther inte-
grated IAPI with Antigone communication system [27],
and used it as the basis for several non-trivial diverse
group applications [28]. These include a group white-
board, �le-system mirror, and reliable group services.
Our experience indicates Ismene is suÆciently po werful
to capture a wide range of application-speci�c policies.
The investigation also suggested areas of further study:

Performance - The enforcement of �ne-grained access
control can negatively a�ect performance. F or exam-
ple, one �le-system mirroring policy requires the evalu-
ation of send action clauses prior to each packet trans-
mission. Suc h evaluation slow ed�le transfers. We
noted that because action clause evaluation was often
invarian t, results could be cached. We present the de-
sign of a policy evaluation cache and a comprehensive
study of enforcement performance in [26]. Caching sig-
ni�cantly mitigated the cost of policy enforcement.

A uthorizationR econciliation- As authorization poli-
cies de�ned by an instance are constructed from the
conjunction of the session and domain policies, clauses
can become restrictive. F or example, consider the case
where the session policy requires, for some action, the
presentation of an X.509 certi�cate, and a domain pol-
icy require the presentation of a Kerberos ticket. In
this case, the resulting instance requires that both a
certi�cate and a ticket be presented. We are currently
investigating ways in which overly-restrictive or unsat-
is�able authorization policies can be detected at recon-
ciliation time or at run-time.

Policy Dependencies - The e�ectiveness of analysis is

5All source code and documentation for the Is-
mene language, the augmented Antigone communi-
cation system, and applications are freely available
from http://antigone.eecs.umich.edu/.
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KeyNote Local Policy
Authorizer: POLICY
Licensees: ADMIN_KEY
Conditions: app_domain == `IPsec policy'
&& ( esp_enc_alg = `3des' ||

esp_enc_alg = `aes' ||
esp_enc_alg = `cast' )

&& ( esp_auth_alg = `hmac-sha' |
esp_auth_alg = `hmac-md5' )

Ismene Session Policy
ADMIN_KEY := < 0xba34... >;
provision : ::

pick( config(esp_enc_alg(3des)), config(esp_enc_alg(aes)),
config(esp_enc_alg(cast)) ),

pick( config(esp_auth_alg(hmac-sha)),
config(esp_auth_alg(hmac-md5)) );

accept_policy :
Credential( &policy, policy.issuer=$ADMIN_KEY )

:: accept;

KeyNote IPSec Credential
Authorizer: ADMIN_KEY
Licensees: Bob
Conditions: app_domain == `IPsec policy'
&& ( esp_enc_alg = `3des' ||

esp_enc_alg = `cast' )
&& esp_auth_alg = `hmac-sha' ;

Ismene Domain Policy
signer := < 0xba34... >;
signature := < 0x98cc... >;
id := < Bob >;
provision : :: pick( config(esp_enc_alg(3des)),

config(esp_enc_alg(cast)) ),
config(esp_auth_alg(hmac-sha));

Figure 7. KeyNote Policy - KeyNote credentials are only consulted where they have been explicitly
delegated authority by a local policy. Conversely, Ismene regulates the acceptance of policy through
the proper assignment of accept policy conditions.

predicated on the correct construction of policy asser-
tions. In practice, mechanisms and con�gurations have
complex relationships. Assertion construction requires
a comprehensive knowledge of use of the cryptographic
algorithms, protocols, and services. This kno wledge
must be re
ected in the policy construction. This situ-
ation is not unique to Ismene; any policy infrastructure
must ensure that unsafe instances are rejected.

7. Conclusions

In this paper, we have presented a model and lan-
guage for the speci�cation and reconciliation of security
policies. We show that the general problem of reconcil-
iation is intractable. How ev er, b yrestricting the lan-
guage, we show that reconciliation of tw o policies be-
comes tractable. Reconciliation of three or more poli-
cies remains intractable. We iden tifyheuristics that
detect situations where intractability is likely to occur
and prioritize policies during reconciliation to achieve
eÆcient reconciliation.

A compliance algorithm determines whether a pol-
icy instance is consistent with a participant's domain
policy . The analysis algorithm determines whether
the provisioning of a session adheres to a set of asser-
tions that express correctness constraints on a policy
instance. We identify eÆcient algorithms for both com-
pliance and analysis. We demonstrate that the more
general problem of determining if an y instance gen-
erated from a policy can violate a set of correctness

assertions is intractable (in coNP).
Based on the model, w epresented an overview of

the Ismene policy language and demonstrated its ex-
pressiv eness and limitations through the representation
of policies de�ned in several policy languages. The lan-
guage has been implemented and is being used in sev-
eral non-trivial applications.

Net w orksare becoming more open and heteroge-
neous. This stands in stark contrast to the singular
nature of contemporary security infrastructures; com-
munication participants ha velimited abilit y to a�ect
session policy. Hence, the participant security require-
ments are only addressed inasmuch as they are foreseen
by policy issuers. Ismene, and works similar to it, seek
to expand the de�nition and usage of policy such that
run-time policy is the result of the requirements eval-
uation, rather than dictated by the policy issuers.
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Appendix A - Unrestricted Policy Rec-
onciliation (UPR)

The following construction reduces Positive, ONE-IN-
THREE 3SAT to UPR in polynomial time. We begin
with de�nitions these algorithms.

De�nition 1 (Unrestricted Policy Reconciliation
(UPR))
Given: A session policy g .
Question: What is an instance satisfying all con�gu-
ration and pick statements in g?

De�nition 2 (Positive, ONE-IN-THREE 3SAT
(13SAT+))
Given: Set U variables, expression e = C disjunctions
overU suc h that eac h c 2 C has jcj = 3, no negated
literals.
Question: Is there a truth assignment for U such that
each clause in C has exactly one true literal?

Construction: Assume U = fx1; x2; : : : ; xng. For each
ci 2 C; ci = (x1 _ x2 _ x3), create the pick statement
pick(x1; x2; x3). F or example, the expression (a _ b _
c)^ (a_ c_d)^ (b_d_ e) would generate the following
policy:

g = pick(a; b; c); pick(a; c; d); pick(b; d; e)

Now assume a polynomial-time algorithm for UPR
exists. Any instance resulting from UPR must spec-
ify exactly one con�guration from each pic k statement.
T rivially ,suc h an instance represents satisfying truth
assignment for e. Hence, because 13SAT+ is NP-
complete [30], so is UPR. 2

Appendix B - Largest Subset Reconcili-
ation (LSR)

The following construction reduces MAX2SAT to LSR
in polynomial time. We begin with de�nitions for LSR
and MAX2SAT.

De�nition 3 (Largest Subset Reconciliation
(LSR))
Given: A session policy g and a set of domain policies
L to be considered by reconciliation.
Question: What is the largest L̂ � L such that g and
all policies li 2 L̂ are successfully reconciled?

De�nition 4 (MAX2SAT)
Given: The set U variables, conjunction ofC disjunc-
tions o verU suc h that each c 2 C has jcj = 2, and a
positive integer K � jCj.
Question: Is there a truth assignment for U that si-
multaneously satis�es at least K of the clauses in C?

Construction: Assume U = fx1; x2; : : : ; xng. For each
ci 2 C; ci = (x1 _ x2), create three domain policies:

lc11 : pick(x1); pick( �x2); pick(x3; �x3); : : : ; pick(xn; �xn)
lc12 : pick( �x1); pick(x2); pick(x3; �x3); : : : ; pick(xn; �xn)
lc13 : pick(x1); pick(x2); pick(x3; �x3); : : : ; pick(xn; �xn)

Note that each policy describes mandatory con�gura-
tions (pic k statements con tainingonly one con�gura-
tion). Negative variables are inverted. F or example,
the following domain policies are generated for the ex-
pression c1 = (a _ �b) overU = fa; b; cg:

lc11 : pick(a); pick(b); pick(c; �c)
lc12 : pick(�a); pick(

�b); pick(c; �c)
lc13 : pick(a); pick(

�b); pick(c; �c)

Create the session policy by creating a pick statement
for each variable in U as follo ws:

g = 8vi 2 U : pick(vi; �vi)

Returning to the example above (whereU = fa; b; cg),

g = pick(a; �a); pick(b;�b); pick(c; �c).

Note by this construction, reconciliation g with the set
of all domain policies (L) satis�es at most 1 of the
clauses associated with eac h ci. Each domain policy
represents the (mutually exclusive) ways in which eac h
clause ci can be satis�ed, and the reconciliation of g
with D is simply a truth assignment for U .

Assume a polynomial time algorithm exists for LSR.
Answering MAX2SAT simply becomes the process of
reconciling the policies resulting from the construction.
If jL̂j � K, then MAX2SAT returns true, and false

otherwise. Thus, because MAX2SAT is a kno wnNP
complete problem [16], LSR is NP complete. 2
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Appendix C - O�ine Policy Analysis
(OFPA)

The follo wing construction reduces V ALIDITY to
OFPA in polynomial time. We begin with de�nitions
for VALIDITY and OFPA.

De�nition 5 (O�ine Policy Analysis (OFPA))
Given: A session policy g and set of assertions S.
Question: Would an y reconciliation of g with arbi-
trary domain policies violate an assertion in S?

De�nition 6 (VALIDITY)
Given: An arbitrary Boolean expression e de�ned over
the variables U . F or con venience,w eassume e is in
DNF.
Question: Is e valid?

Construction: Create g by de�ning a provision clause
containing the tag consequence (l1), and four clauses
for each variable xi 2 U as follows;

provision : :: l1;
l1 : x1; x1 :: fail;
l1 : x1 :: l2;
l1 : x1 :: l2;
l1 : :: fail;
l2 : x2; x2 :: fail;
: : :
li : xi :: p;
li : xi :: p;
li : :: fail;

Note that the last set of clauses for xi 2 U references
a tag to the clauses for p. For eac h conjunct ci 2 e,
create the clause p : ci :: r;, where the conditionals enu-
merate the (possibly negated) variables of ci, and r is
a arbitrary con�guration. Appending a default clause
containing a single f con�guration (p : :: f ;), and a
fail clause (fail : :: t;). Complete the construction by
creating a single assertion (assert : ::!f ;). T o illustrate,
an expression (a^ b^ c)_ (a^ b^ d)_ (c^ d^ e) would
result in the following g and S;

g = provision : :: l1;
la : a; a :: fail;
la : a :: lb;
la : a :: lb;
la : :: fail;
lb : b; b :: fail;
: : :
le : :: fail;
p : a; b; c :: t;
p : a; b; d :: t;
p : c; d; e :: t;
p : :: f ;
fail : :: t;

S = assert : :: !f ;

Now consider the possible evaluations of g. Each
positive or negative assignment of variable x1 2 U is
de�ned as a unique condition. The evaluation of the
clauses l1 has t w o possible results; if the conditionx1
and x1 are both true or neither is, the evaluation algo-
rithm will immediately drop to the fail clause which
de�nes a single condition t. In this case, the assertion
test will trivially be satis�ed by this evaluation. If ex-
actly one of the conditions x1 and x1 is TRUE, then the
clauses associated with x2 are consulted. This process
repeats until either the fail clause or the �rst clause
associated with p is reached. If the �rst p clause is
reac hed, then the conditions represent a legal truth as-
signment for U . Moreover, it is clear that no legal truth
assignment for U arrives at fail.

Now, consider the evaluation of the clauses of p. Be-
cause e is represented in DNF, an y truth assignment
for U must satisfy at least one conjunct for e to be
valid. The evaluation of some p clause will arriv e at
con�guration t if an y conjunct is satis�ed by the truth
assignment for U , and f otherwise. If e is valid, the
�nal p clause can never be reached (because all legal
truth assignments satisfy at least one conjunct of e),
and the assertion can never be violated. Hence, the
negation of the answer returned by OFPA is the an-
swer for V ALIDITY(OFPA returns false, where e is
valid and true otherwise). Because V ALIDITY is a
known to be in coNP-complete, so is OFPA. 2
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