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ABSTRACT

In this paper, we describe scheduling and synchronization
support for a novel multimedia document, referred to as a
session object. The session object captures a voice-annotated,
interactive session with an application | it contains audio
and window streams. This paper addresses media scheduling
and synchronization issues for the support of faithful replay
of session objects when subject to timing variability at the
replay workstation. The replay is supported by an adaptive
scheduling algorithm. The algorithm preserves relative inter-
stream synchronization between window and audio streams.
Run-time temporal deformations are applied over the sched-
ule of the window stream. We show that the inter-stream
asynchrony 
oats under statistical control as a function of
the scheduling interval. The mechanisms could be general-
ized to the replay of streams that are subject to timing vari-
ability. Our object-oriented toolkit, ReplayKit, enables an
application to become replay-aware through access to session
capture and replay functionality.
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INTRODUCTION

In synchronous collaboration, users of a multi-user applica-
tion �rst �nd a common time and then work in aWYSIWIS
(What You See Is What I See) collaborative session. How-
ever, a synchronous mode of collaboration can often be too
imposing on the schedule of the participants. It requires that
users be able to �nd a common time to work together but,
in many cases, that is not easy. In [24, 25], we presented the
WYSNIWIST (What You See Now, Is What I Saw Then)
paradigm for asynchronous collaboration that allows users to
record and replay an interactive session with an application.
The paradigm introduced an associated data artifact, the

session object, used to capture an interactive session. Fig-
ure 1 shows a high level view of the capture and replay of
an interactive session with an application. During the cap-
ture of the session, user interactions with the application,
audio annotations, and resource references (e.g., fonts, �les,

environment) are recorded into a session object (Fig. 1a).
The replay of the session uses the data stored in the session
object to simulate the original session (Fig. 1b).
Our replay approach is application-dependent. During re-

play, input events are re-executed (as opposed to a passive re-
play form such as a series of screen dumps). The re-execution
approach to session replay exhibits bene�ts that are of par-
ticular interest in collaborative work:

� If a participant misses a collaborative session, our ap-
proach allows the participant to replay the session,
catch up with the team, and if desired, continue fur-
ther work.

� Because input events are recorded (as opposed to
recording display updates or even screen dumps), ses-
sion objects are typically small in size and thus easier
to exchange among collaborators.

� Because the application is re-executing the original
session (as opposed to re-displaying screen dumps of
a session), the highest possible �delity of replay is
achieved, which for some domains may be essential
| consider the medical domain discussed below.

The following examples, being pursued as part of our re-
search, illustrate the needs and bene�ts for session objects
in asynchronous collaboration scenarios:

UARC: The ReplayKit research was originally motivated
by the uarc project, (see Fig. 2), a collaboratory
experiment among domain scientists in a wide-area
network [8]. The domain of research among the sci-
entists is space science. Because domain scientists
often work from di�erent time-zones and it is not
known a-priori when interesting phenomena will be
observed, providing support for session capture, an-
notation, replay, and exchange should facilitate col-
laborative work among scientists.

MedRad: As part of an NSF project, we plan to support
the type of collaboration that occurs between a radi-
ologist and a doctor over radiographs to diagnose a
patient's medical problem. We would like a radiolo-
gist or a doctor to be able to record a session in which
they are interacting with one or more images, point-
ing to speci�c areas of interest, using audio to explain
their understanding or raise questions about regions
of interest in the images, and adding text or graphi-
cal annotations. They can collaborate by exchanging
such recordings. Such digital, high resolution session
recordings will not only help to capture radiologists'
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Figure 1. Capture and replay of an interactive session with a Replayable application. During the capture of the session, user
interactions, audio-based annotations, and resource references are encapsulated into a persistent, transportable, session object.
During the replay, the session object makes these accessible to the application.

Figure 2. Snapshot of the interface presented by the multi-user
UARC software to one of the users. During a session, experts
navigate through many views and settings. Replay of these
sessions is of interest to them.

diagnostic conclusions, but also their diagnostic pro-
cess. This is important because in many instances
how the diagnosis was reached is as important as the
diagnosis itself.

The approach, however, requires addressing issues such as
capture of application state, assumptions of determinism,
and timing-variability during re-execution of events (due to
performance di�erences in replay workstations, varying load
conditions, timer inaccuracies, etc.). The focus of this paper
is on addressing timing variability issues.

Session objects are used for (asynchronous) collaborative
work. The basic collaboration mechanisms allow a partici-
pant who misses a session with an application to catch up
(and if desired, continue further work) on the activities that
occurred during the session. The session object captures a
voice-annotated, interactive session with an application |
it contains audio and window streams, modeled as time-
based discrete streams. Session objects are replayed by re-
executing these streams.
Session objects are transportable multimedia objects. The

re-execution of events from a stream is subject to timing
variability. During replay, voice annotations (i.e., the au-
dio stream) must maintain relative timing wrt user inter-
actions (i.e., the window stream). That is, synchronization

must be performed wrt the relative progress of a stream
and not wrt the progress of schedule time. The window
stream is a stateful, aperiodical, discrete, and asynchronous
stream. The audio stream is a stateless, periodical, con-
tinuous, and synchronous stream. Adaptive strategies for
integrated replay of stateless, periodical and continuous me-
dia can not e�ciently address requirements of the window
stream (e.g., dropping/duplicating frames cannot be usu-
ally allowed). This paper discusses media scheduling and
synchronization issues for the support of faithful replay of
session objects.
The rest of the paper is organized as follows. First, we

present the goals and requirements of session objects. Then,
we discuss related work. Next, we discuss modeling and
design issues. Then, we compare the performance of several
synchronization protocols and analyze our �ndings. Next,
we describe our implementation. Finally, we present our
concluding remarks. Also, in Appendix A, we further discuss
our experimental setup, and in Appendix B, we formally
specify our adaptive scheduling algorithm.

GOALS AND REQUIREMENTS

The uarc and the MedRad domains illustrate the need for
transportable objects, suited for replay across similar work-
stations. The support of these domains imposes the following
requirements over our approach to session replay:

R1: Support transportable and faithful replay of a session
with an application's workspace. Synchronizing a ses-
sion's streams requires preserving the relative progress
of its streams. In particular, it requires compensat-
ing for timing variability introduced by di�erent load
conditions and workstations.

R2: Reduce reliance on hardware and operating systems
support, so as to reach a broad collaboration base. In
particular, it requires compensating for timing vari-
ability introduced by large overhead timing services.

R3: Support of interactions with the interactive workspace
of the session being replayed.

This paper focuses on timing variability issues in the re-
execution of discrete, functional streams in the replay work-
station. Our research focuses on:

� integration of stateful, aperiodical, discrete, asynchronous
media wrt synchronous media.



� management of timing variability due to prefetch,
schedule, execution, and synchronization of multiple
streams in a single workstation.

� scheduling subject to large overhead timing services.

� desirability for application layer control of the asyn-
chrony.

Our contributions are twofold. First, to address timing

variability, a new algorithm for run-time, adaptive schedul-
ing for the support of integrated media replay is proposed.
The algorithm periodically adjusts, if necessary, the run-time
schedule of a stream, to reverse trends in inter-stream asyn-
chrony. Adjustments are made to the scheduler of a stream
and not to a global session scheduler. We show that inter-
stream asynchrony 
oats under statistical control as a func-
tion of the scheduling interval.
Second, our object-oriented toolkit, ReplayKit, pro-

vides the Replayable object class. The ReplayKit toolkit
extends session capture and replay functionality into appli-
cations. Through subclassing, an application inherits session
capture and replay behavior as well as transparent access to
our infrastructure. The toolkit allows applications to: (1)
re-execute window events (e.g., gesturing, typing, moving
windows), (2) record and replay voice-annotations, (3) pro-
vide synchronized replay of these streams and (4) to replay
selected streams. In addition, an API for capture and replay
of data streams is provided.

RELATED WORK

Our research in the replay of interactive session recordings re-
lates to research in (1) the replay of application workspaces,
(2) the replay of stored multimedia, and (3) adaptive schedul-
ing for the support of replay.

The Replay of Application Workspaces

The replay of a user session with an application workspace
has collaborative value [1, 25]. The following are approaches
to replay a user session with an application's workspace.
Screen recorders, such as WatchMe (for NeXTs) and

QuickTime Conferencing (for the Macs), represent an
application-independent approach to session capture and re-
play. Capture of a session occurs at the screen level, inter-
cepting and recording screen updates (or even screen dumps).
Consequently, the replay of a session reproduces only the
external look of the workstation's screen. Since interaction
with the application's workspace is not possible, its suitabil-
ity for asynchronous collaboration work is also reduced.
Systems such as SharedX, Xtv [1], and Ceced [10] also

represent an application-independent approach that can sup-
port session capture and replay. Capture of a session is done
by intercepting events sent by an application to a collaboration-
aware server [7]. Although this approach, in principle, allows
replay of unmodi�ed applications, interacting with the ses-
sion's application workspace is not possible. Furthermore,
currently, these systems do not o�er �ne-grained audio syn-
chronization support. The ideas presented in this paper can
be used to extend these systems to include synchronized au-
dio support.
Toolkits and application-speci�c prototypes repre-

sent application-dependent approaches to session capture and
replay. The Scoot toolkit [9] proposes two approaches to

capture and replay of interactive sessions. The �rst approach
logs periodical application snapshots. This choice results in
coarse replay progress feedback and limited synchronization
precision. The second approach logs method invocations to
log-aware objects. However, synchronization of audio wrt

the replay of such an asynchronous log stream is not ad-
dressed. Finally, the prototypes found in [17, 26] capture and
replay both audio and window streams. However, their syn-
chronization requirements are simpli�ed since only Mouse-
Moved events, (to draw and move the pen), are replayed.
This removes signi�cant timing variability from the replay
of the window stream.
A media server approach is taken by the Tactus sys-

tem [11, 12]. Tactus is actually composed of an application-
independent media server and an application-dependent toolkit.
There are some important di�erences. First, the Tactus
server assumes the use of reliable timing services at the
scheduler. Our work, on the other hand, targets timing ser-
vices as a source of timing variability. Second, Tactus's
mechanisms to deal with schedule departures | (1) pre-
computation and (2) throttle control | do not suit our do-
main requirements. Although pre-computation works well
for continuous media presentations (i.e., synchronous and
stateless media), it not clear whether it extends to the re-
play of sessions containing both asynchronous and stateful
media. Tactus's throttle control implements two speeds:
normal speed (used for replay) and maximum speed (used
to catch-up). This increases the risk of abrupt updates to
the relative progress of one or more streams (which in our
domain is undesirable). On the other hand, we make use of
smoothed throttle controls over the relative replay rate of a
stream.

The Replay of Stored Multimedia

Our work relates to research in the replay of stored multime-
dia. There are two approaches to the replay of stored media:
network-based replay and workstation-based replay. How-
ever, there are important di�erences, explained as follows.
Research in network-based continuous media players, such

as [3, 23, 30, 31], addresses di�erent sources of over-

heads. The replay of stored media has three basic sources
of overhead: (1) fetch, (2) process, and (3) presentation. In
network-based replay, the media server implements media
access, bu�ering and synchronization tasks. Variability is
primarily attributed to latencies in the network.
Workstation-based replay has di�erent sources of overhead.

Our approach is workstation-based replay (i.e., a multiple
stream, single-site model), since collaboration is asynchronous
and access to local disk(s) is preferable. In our approach,
variability is due to two factors: (1) varying latencies in
fetching events from the local disk and (2) variability, such
as timer inaccuracies and variability in execution time intro-
duced in the scheduling and re-execution of events, respec-
tively. One can deal with varying latencies by attempting to
minimize them via bu�ering. However, both timer inaccura-
cies and the variability in execution time are more di�cult
to deal with. Our work extends existing workstation-based
replay management of stored media through integration of
stateful, asynchronous media that is subject to timing vari-
ability.
Research in the management of fetch overheads, such as



in [20, 29, 30] focus on low-level �le system extensions (such
as predictive prefetching, disk layout, optimal bu�ering, etc.)
for the support of continuous media streams. Our work can
be built of top of these and bene�t from this research.

Research in the management of scheduling overheads,
such as in [14, 28, 19] focus on low-level operating system
techniques for the support of multimedia (such as bounding
of scheduling latencies, use of pre-emptive deadline schedul-
ing, use of correlated task scheduling, etc.). Our work dif-
fers from these in several points. First, these techniques as-
sume that the media stream is composed of periodical tasks,
each with the same constant duration. On the other hand,
our �ne-grained asynchronous media (e.g., window stream)
has neither periodicity nor constant duration. Second, these
techniques tend to remove interrupt costs from their formu-
lation. On the other hand, our timing variability model is a
statistical formulation to compensate for interrupt and sim-
ilar costs, through indirect performance measurements.

Finally, continuous media players assume negligible pre-

sentation overheads for the presentation of the streams.
Our domain requires �ne-grained integration of both con-
tinuous and discrete media. The playback integrated me-
dia a�ects our choices for both scheduling and synchroniza-
tion, as found in [26]. The re-execution of �ne-grained, dis-
crete, asynchronous media requires additional compensation
for timing variability on the re-execution of the stream. Both
fetching and scheduling overheads introduce contention to
the re-execution overheads, as a result, the �ne-grained syn-
chronization of asynchronous media establishes a need for an
end-to-end (i.e., fetch, schedule, and execution) solutions to
the management of overheads

Adaptive Scheduling Strategies for Replay

The scheduling of discrete events has also been addressed
in computer-based musical systems [2]), however, there
are two major di�erences. First, no variability is introduced
by the re-execution of MIDI events on the real-time syn-
thesizer. Second, integrated media replay is not supported.
Steinmetz [32] provided early illustrations for the need for
integration of synchronous and asynchronous media.

Some issues in speci�cation and presentation of multimedia
documents have been addressed in the Firefly system [6]
and in Cmif [5]. However, the focus of their work is on speci-
�cation and enforcements of synchronization constraints

among high-level parts of a multimedia document. Synchro-
nization at internal points among media segments is not ad-
dressed. In our work, the focus is on enforcing �ne-grain
synchronization at internal points among streams.

Research in multimedia network interfaces, such as [13,
18, 26, 27, 31], propose adaptive scheduling protocols to
manage bounded network variability. Their focus is on the
management of overheads up to the delivery of data to the
presentation workstation. These approaches assume negligi-
ble overheads on the processing and presentation of streams
by the client workstation. Since asynchronous media is par-
ticularly sensitive to timing variability, relative inter-media
timing can be lost. Our approach focuses on timing variabil-
ity issues at the client. As a result, our adaptive mechanisms
can be used on top of these approaches.
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Figure 3. Intuitive look at our adaptive scheduling mechanism.
Part (a) of this �gure shows the inter-event delay �1;2 = 50ms

between events e1 and e2. Our approach adapts inter-event
delays (i.e., the idle time between events) to compensate for
trends in asynchrony. Adjustments are made independently to
slave streams. Part (b) shows a possible adjustment when this
stream runs behind schedule. In this case, the inter-event delay
is scaled down | the total wait or idle time observed by this
stream is reduced. For example, if the original inter-event delay
was 50ms, using a compensation factor of 80% decreases the
wait to 40ms. Independent of other streams, this stream is
awarded a 20% time credit towards its schedule. Part (c) shows
a possible adjustment when this stream runs ahead of schedule.
The inter-event delay is scaled up | e�ectively, the amount of
wait or idle time observed by this stream is increased.

MODELING AND DESIGN

In this section we discuss scheduling and synchronization
issues for the support of integrated replay of window and
audio streams, when subject to timing variability. We start
by presenting our media model and introduce the timing
variability problem.
Our proposed solution to this problem has two parts:

� a synchronization mechanism and

� an adaptive scheduling mechanism.

First, our synchronization scheme and its operation are de-
scribed. Finally, our adaptive scheduling mechanism and its
derived scheduling algorithm are analyzed. Figure 3 provides
an intuitive look to our adaptive scheduling mechanism.

Asynchronous Media

The prototype currently supports two streams, window and
audio. Both window and audio streams were modeled as
discrete streams, however, with clearly di�erent tolerances.
During re-execution, events from both streams are sub-

ject to timing variability. Therefore, the time needed for
re-executing an event or frame ei is modeled as:

t(ei) = E(ei) + fo(ei) (1)

E(ei) represents the expected execution time for an event.
fo(ei) models variability introduced in the handling and re-
execution of ei. In particular, variability in the re-execution
of window events must be compensated to maintain the origi-
nal timing behavior wrt the audio stream. Variability in the
re-execution of audio frames must be compensated too, to
preserve continuity of playback.
What are the sources of timing variability? Two compet-

ing random processes introduce timing variability into the
replay: the overhead functions fo(A) and fo(W ), where A is
the audio stream and W is the window stream. The fo(A)
overheads have the following components:



A1: prefetch overheads, due to disk access of audio frames,

A2: scheduling overheads, due to thread overheads, pre-
emption, timing services, context switches, etc., and

A3: presentation and synchronization overheads.

The fo(W ) overheads have the following components:

W1: prefetch overheads,

W2: scheduling and re-execution variability due to timer in-
accuracy, pre-emption, context switches, CPU avail-
ability, page faults, etc., and

W3: synchronization overheads due to locks, signals, pre-
emption, context switches, CPU scheduling, etc..

The playback of a session object on a workstation requires
balanced management of prefetch, schedule, and synchro-
nization tasks and their overheads. Since these tasks com-
pete locally for resources within a single workstation, the
susceptibility of the playback session objects to timing vari-
ability is ampli�ed. Overhead components A1 and W1 can
be dealt by using bu�ering strategies. The management of
timing variability introduced by overheads A2, A3, W2, and
W3 is the focus of this paper.

Synchronization Precision

Application layer control of the synchronization process is
needed to reduce platform dependencies. A high level mod-
eling paradigm for the replay of stream facilitates integra-
tion of the toolkit with existing applications. To support
these goals, each stream is replayed by separate thread-based
handlers (see Appendix A). A duality between streams and
threads exists. Scheduling of stream handlers is inherited
from OS thread-based scheduling primitives. Synchroniza-
tion of stream handlers is inherited from OS thread-based
synchronization primitives. New streams can be introduced
through modular thread-based handlers. Using thread-based
stream handlers, however, reduces our synchronization pre-
cision since thread models are subject to interrupts, pre-
emption, and large system call overheads while lack peer-
to-peer guaranteed scheduling time. Our synchronization
precision was targeted to support about 0:1 to 1s, (e.g.,
audio-annotated slide shows as quoted from [4]). Finer grain
synchronization would have imposed demands requiring OS-
level support [4] and thus compromising our goal for high
level support (R2).

Synchronization Operations

Under the presence of timing variability, a way to preserve
the relative synchronization of streams is needed. Synchro-
nization is based on the use of synchronization events, widely
accepted in the synchronization literature [32]. A synchro-
nization event, si(lhs  rhs), preserves relative timing be-
tween lhs and rhs streams involved in a synchronization
dependency. In this notation, rhs streams synchronize to
the lhs stream. In terms of temporal speci�cation notations
found in [21, 22], our synchronization speci�cally preserves
the relative synchronization relationship (ei same aj) be-
tween window and audio streams. Figure 4 shows the use of
a synchronization event si(A  W ), where A is the audio
stream and W is the window stream.
Synchronization events are used as follows. During the

capture of a session, a synchronization event is posted at a
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tion between our A (audio) and W (window) streams. The
inter-stream asynchrony between corresponding synchronization
events is variable. It is estimated by the substraction of observed
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e.g., �i = t(si(A))� t(si(W )).
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Figure 5. Overhead in record and replay of audio frames. Plots
observed t(ai) duration, (as in equation 1), of audio frames
during record and replay of the 250sec test session. Variability
fo(A) normally present on the master stream is removed during
replay since the master stream not longer initiates inter-stream
synchronization protocols.

well-de�ned endpoint of a lhs stream (e.g., the end of an au-
dio frame) and it is then inserted into all rhs streams (e.g.,
window), thus establishing a relative synchronization depen-
dency. During the replay of the session, the scheduling of
a synchronization event triggers an attempt at inter-stream
synchronization. Inter-stream asynchrony between consecu-
tive synchronization events is variable. Each synchronization
event attempts to reset inter-stream asynchrony to zero. The
asynchrony is estimated by the substraction of the observed
schedule times of the latest synchronization event seen at
each stream | e.g., �i = t(si(A))� t(si(W )).

Inter-stream Synchronization Mechanism

The replay of streams must be kept synchronized. Our syn-
chronization model is based on the notion of a master and
multiple slave streams, (as in [4, 15, 32]).

However, unlike these master/slave models, our approach
di�ers in the following ways. First, synchronization is rela-
tive to the progress of the master stream (as opposed to the
progress of logical time, as in the Tactus system [11]). In
our prototype, the audio stream is used as the master stream
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Audio Treatment
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P2: 1 Way
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wait for matching
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P3: 1 Way

Adaptive
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matching audio

event (2) if this

is a trend (to be
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(1) if this is a
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speed.

P4: 2 Way

Blocking

(1) wait for

matching audio

event.

(1) if asynchrony

> Tmax, resync

audio and window

streams (audio

waits).

Table I. Speci�cation and side-by-side comparison of discrete
streams synchronization protocols. The �rst column lists the
protocol name, followed by the protocol handling of inter-stream
asynchrony. The window stream implements the treatment.
Tmax refers to the maximum asynchrony departure that can be
tolerated without requiring a synchronization restart.

and the window stream is its synchronizing slave.1 We chose
to synchronize window to audio because unlike the window
stream, audio has stringent temporal requirements.
Second, synchronization is initiated by the slave streams

(rather than by the master stream). This shift of initiator
responsibility also shifts synchronization overheads fo(A),
(normally present in the master stream), to overheads fo(W )
on the slave streams. This shift of synchronization semantics
had the following bene�ts: (1) reduced overheads fo(A) as
seen by the master stream and (2) relaxed semantics, that
facilitate relative synchronization. Figure 5 shows the e�ects
of this scheme on the overhead fo() as seen by the master
(audio) stream. Variability normally present on the mas-
ter stream is reduced during replay since the master stream
no longer initiates inter-stream synchronization protocols.
Overall, we found this scheme to yield better audio continu-
ity than a master-initiated synchronization scheme.

Synchronization Protocols

A synchronizing operation can be described (as in [32]) by:

(1) the involved partner(s), (i.e., to which stream to syn-
chronize). Our prototype implements (A W ).

(2) the type of synchronization, (i.e., whether to use a
non-blocking, 1-Way or 2-Way blocking protocol).

(3) the release mechanism, (whether and how to adapt
the scheduling of a stream).

In this section, we address the latter two.
Based on the use of both a master/slave model and syn-

chronization events, we evaluated several synchronization
protocols. The synchronizing operations of these protocols

1| the window stream schedule is adjusted to preserve syn-
chronization wrt audio stream's schedule.

can be compared by examining their handling of a synchro-
nization event, as discussed below.
When performing a synchronization check, the inter-stream

asynchrony between the slave and the master stream is esti-
mated. There are two cases of asynchrony to consider, both
illustrated in Fig. 4:

� (window ahead of audio condition): the window event
stream reaches its synchronization event before the
audio stream (right side of Fig. 4).

� (window behind audio condition): the window event
stream reaches its synchronization event after the au-
dio stream (left side of Fig. 4).

Table I speci�es these protocols in terms of their han-
dling of these asynchrony cases. Protocol P1 and P2 re-
late to Gibbs' NoSync and InterruptSync synchroniza-
tion modes between master and slaves found in [16]. Proto-
col P3 is our adaptive scheduling algorithm. Protocol P4 is a
two-way, stop and wait, protocol for relative synchronization
of discrete streams.

Adaptive Scheduling Mechanism

The basic idea behind our adaptive mechanism was illus-
trated in Fig. 3. Next, we analyze this adaptive mechanism.
Our approach to per-stream scheduling intervals is di�erent

from the use of global (that is, across all streams) schedul-
ing intervals. The scheduling interval of a stream contains
all events between consecutive synchronization events si and
si+1. In general, because of the asymmetry of 1-Way pro-
tocols, a window synchronization event (A  W ) can only
preserve synchronization under the (window ahead audio)
condition. However, under the (window behind audio) con-
dition, nothing is done. We propose the following adaptive
scheme to address the (window behind audio) condition.
In general, the duration of the scheduling interval for n

events in a stream, (s0; e1; e2; � � � en; s1), is of the form of

T = t(e1) +�1;2 + � � �+ t(en) + �n;s1 (2)

In a discrete stream, an inter-event delay time �i;i+1 sepa-
rates any two consecutive events ei; ei+1.
Because re-execution time t(ek) is subject to variability

fo(), as de�ned in equation (1), the realizable scheduling in-
terval duration T becomes

T = E(e1)+fo(e1)+�1;2+ � � �+E(en)+fo(en)+�n;s1 (3)

Ideally, a faithful replay of these events should follow the
same timing observed during the recording of these events.
By assuming the overheads fo() ! 0, the ideal scheduling
interval duration T � is then modeled as

T
� = E(e1) +�1;2 + � � �+E(en) +�n;s1 (4)

When comparing the ideal schedule duration T � against
the realizable schedule duration T , we obtain the e�ective
departure from timing faithfulness. This is estimated by

�
� = T � T

� =
X

fo(ei) (5)

Our algorithm is based on the use of time deformations
over the inter-event delay of event in a scheduling interval.
Time deformations are used to better adapt �� | the timing
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Figure 6. Time deformations and !-modi�ed scheduling inter-
vals. Time line diagram showing potential adjustments to a
scheduling interval of the window stream. Part (a) shows the
original scheduling interval. Part (b) shows the e�ects of the
expansion time-deformation: the !-modifed scheduling interval
compensates with idle time a trend to faster execution. Part (c)
shows the e�ects of the compression time-deformation: the !-
modifed scheduling interval compensates with idle time a trend
to slower execution.

departure | to timing variability during replay at a work-
station. The basic mechanism was previously illustrated in
Fig. 3. In Fig. 6, we illustrate the e�ect of a time defor-
mation over the scheduling interval, when subject to tim-
ing variability trends. On each scheduling interval, a time
deformation may be applied | when granted by trends in
asynchrony. In such case, the time deformation is applied
by scaling the inter-event delay of all events in the current
scheduling interval by a factor ! | (a smoothed compensa-
tion factor, de�ned in Appendix B). Consequently, we obtain
a !-modi�ed scheduling interval duration T! formulated as

T! = E(e1)+fo(e1)+!�1;2+� � �E(en)+fo(en)+!�n;s1 (6)

When comparing the ideal schedule duration T � against
our !-modi�ed schedule duration T! , we obtain the com-
pensated departure from timing faithfulness, �!. This is esti-
mated by �! = T! � T �. Equivalently,

�! =
X

fo(ei)� (1� !)
X

�i;i+1 (7)

which by equation (5) can be rewritten as

�! = �
� � (1� !)

X
�i;i+1 (8)

This is important because now, the replay of a !-modi�ed
scheduling interval accounts for the estimated departure from
timing faithfulness, �� =

P
fo(). Trends in asynchrony were

modeled as departures from timing-wise faithfulness to the
original schedule. A compensation factor !, determined at
run-time, was used to produce compensating time deforma-
tions (1 � !). The time deformations (1 � !) are applied
over the inter-event delay distribution �i;i+1 of events in
the scheduling interval. These time deformations scaled up
or down, (as needed), the schedule of a stream with trends in
asynchrony. The schedule compensation adjustment is vari-
able and revised, (upgraded or downgraded, as needed), on
every scheduling interval. However, asynchrony 
oats, under
statistical control, during the scheduling interval.
Our time deformations are di�erent from temporal trans-

formations, (as in [2, 15, 23, 30]). Temporal transformations

40 ms

0.8

e1 e2

Scheduled
Sync Event

Synchronized
Streams

Collected
Measurements

Analyzed
Asynchrony

History

Processed
Synch Event

Implement
Policy

Update
Forecast

Look-for
Trends

Sync
Streams

Measure
Asynchrony

Formulated
Scheduling

Policy

50 ms

1.0

e1 e2

Figure 7. Overview of the per-stream adaptive scheduling pro-
cess. The ! = 1:0 compensation is revised to ! = 0:8, resulting
in 20% smaller inter-event delays for events in the next schedul-
ing interval. A synchronization event may trigger a �ve phase
analysis cycle to measure, synchronize, analyze, forecast, and
prevent further inter-stream asynchrony.

scale the rate of execution of a global scheduler so as to sup-
port features such as fast forward or fast replay. Our time
deformations are a mechanism to compensate inter-stream
asynchrony, through variable, graded compensations, to the
schedule of a slave stream.

Stream Scheduler(s)

Our scheduling strategy consists of applying time deforma-
tions to scheduling intervals of a stream. Our !-modi�ed
scheduling intervals compensate for trends in inter-stream
asynchrony. Run-time schedules are independently revised,
for every discrete stream, on every scheduling interval.
Our scheduling is statistical. The behavior of the adaptive

algorithm is speci�ed as follows.2 If the current asynchrony
is large enough, the asynchrony history is examined to de-
termine the presence of trends wrt (2�) warning and (3�)
control limits.3 If a trend exists, a run-time, compensated,
!-modi�ed scheduling interval for the window stream is for-
mulated. The e�ects of this compensation over the schedul-
ing interval were illustrated in Fig. 6. Part (b) shows a com-
pensated scheduling interval for the window ahead of audio
condition. Part (c) shows its e�ect under the window behind
audio condition.
Each stream scheduler attempts to maintain statistical pro-

cess control over inter-stream asynchrony between the slave
stream and its master. Smoothed forecasts are used to de-
termine statistically signi�cant trends in asynchrony.
Each stream implements a di�erential time scheduler. On

each scheduling interval of a stream, the scheduler dispatches
an event and then, sleeps for the event's (compensated) inter-
event delay time. The scheduler cycles between these two
tasks (sleep and dispatch), for all events in the current schedul-
ing interval. Note that during the scheduling interval, no
timing services lookups are performed. At the end of the
scheduling interval, (due to the scheduling of the synchro-
nization event), we (1) 
ush any bu�ered window events, (2)
measure the inter-stream asynchrony, and then (3) initiate

2| formally speci�ed in Appendix B.
3| where � is estimated by the stream tolerance T1 (see Ap-

pendix B).
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Figure 8. Comparison of mean (front row) and variance (second row) on inter-stream asynchrony for protocols P1, P2 and P3.
Desirable characteristics are low mean and variance, across all load conditions. Protocol P3, based on our adaptive scheme, meets
these requirements. Replay results shown for lower (left), similar (center), and higher (right) load conditions. Session object
re-executed encapsulated about 250 seconds of voice-annotated, user-interactions with a MacDraw-like application.

Protocol �async �async

P2 (Abs Sched) 0.49200 0.71007

P2 (Diff Sched) 0.41089 0.65735

P3 (Abs Sched) 0.59340 0.60323

P3 (Diff Sched) 0.54330 0.54015

Table II. Di�erential scheduling was found to be statistically
better. Variability in asynchrony �async is signi�cantly reduced
by the use of a di�erential scheduler and adaptive synchroniza-
tion, as in our P3 protocol. Frequent lookups to timing services
in an absolute scheduler result in greater variability than the
one introduced by periodical lookups of a di�erential scheduler.
Replay and record performed under similar load conditions.

an attempt to reset the inter-stream asynchrony to zero. The
actions carried out in Step 3 are further detailed in Fig. 7.
After this, a new scheduling interval is started.

Our scheduler approach has the following two bene�ts.

� Dependency on timing services is reduced to only syn-
chronization events.

� Variability introduced by (frequent) timing services
lookups (due to probe e�ects) is signi�cantly reduced.4

Table II quanti�es this variability component by comparing
asynchrony for modi�ed P2 and P3 protocols (using schedule
departure corrections on every event) vs. both P2 and P3
(using periodical departure corrections).

In conclusion, our adaptive scheduling is based on the use
periodical, statistical schedulers, running malleable logical
time systems. On every scheduling interval, each stream
scheduler revises its run-time schedule. Run-time schedules
are adjusted to �t their corresponding stream's tolerances.
This is important, because streams sharing execution on a
processor may have di�erent tolerances to asynchrony.

4| Our baselining experiments found that the timing preci-
sion of theMach OS timing services lookups was unreliable, (i.e.,
lacked small variance), unless requests were at least an order of
magnitude greater than Mach's base precision of 15ms.

COMPARATIVE ANALYSIS

The protocols described in Table I were analyzed under dif-
ferent background load conditions for the parameter values
given in Appendix A, (i.e., expected scheduling interval
duration E(T ) = 2:0s). A load generator capable of creating
a speci�able job-mix of CPU-, memory- and I/O-bound jobs
generated the background load.

To test the ReplayKit toolkit, a MacDraw-like drawing
application was made replay-aware through our toolkit. Us-
ing a baseline background load, a 256-second session with
this application was recorded. Tasks included drawing �g-
ures, entering text, moving �gures, grouping objects, resizing
objects, scribbling, etc. Each action was voice- annotated by
a remark explaining the action.

To compare the performance of the protocols, the session
was replayed under several background loads: a lesser load
(25% of baseline load), a similar load (100% of baseline load),
and a higher load (400% of baseline load).5 The results of
this testing for protocols P1, P2, and P3 are shown in Fig. 8.
Desirable characteristics are low mean and variance for
the asynchrony, across all load conditions.

Under similar load conditions for record and replay, pro-
tocols P1, P2 and P3 showed similar performance (in terms
of mean and variance of asynchrony), and were judged to be
good enough by observers.

Under lower and higher load conditions during replay than
at record time, protocol P1 exhibited higher variance in asyn-
chrony. The audio quality continued to be good but the time
interval between window events tended to drift from that at
record time. Since no attempt was made at synchroniza-
tion between the two streams, larger asynchrony and larger
variance was observed than the other two protocols.

Comparing P2 and P3 for lower and higher loads, P3 was
judged to be both qualitatively and quantitatively superior
than P2. The main di�erence between P2 and P3 is that
P3 is an adaptive protocol implementing our compensated
scheduling interval strategy, (as shown in Fig. 6), on the
window stream. The compensation factor ! varied between

5| in terms of the number of jobs waiting in the ready queue,
as given by the w Unix command, (baseline load index was ap-
proximately 3:5 jobs).
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Figure 9. Detailed time-line performance of protocol P3 under
higher load conditions for the same session object. Shaded area
represents replay schedule for the window stream, diagonal rep-
resents replay schedule for the audio stream, and horizontal line
represents compensation factor !. On each scheduling interval,
the compensation factor ! adapted to trends in the measured
asynchrony.

80% and 110% of the original scheduling interval.6 These ad-
justments provided some compensation for timing variability
during the replay of the session.
We also ran experiments with protocol P4, but we found

audio playback quality to be unacceptable because of gaps
introduced in the playback by the 2-Way synchronization
scheme used by P4.
Figure 9 shows the behavior of protocol P3 under higher

load conditions, for one of the runs. The horizontal axis ref-
erences the ith scheduling interval (n ! 250). The diagonal
represents the schedule of the audio stream. The shaded
area represents the compensated schedule of the window
stream. A perfect diagonal match between both schedules
would represent ideal scheduling and synchronization. Also
shown is the compensation factor (actually, 1 � !), in per-
centage points. An horizontal line at 100% would correspond
to the use of uncompensated scheduling intervals, such as in
P2. Values below 100% correspond to \speeding up" the
window-event stream and values above 100% correspond to
\slowing down" the window-event stream. Careful examina-
tion of the data shows that P3 attempts to slow down the
window-event stream when it is continuously ahead of audio
and speed it up when it is continuously behind.

Analysis of the Results

Some very interesting conclusions, (refer to Table III), can
be drawn for our protocol P3 across all load conditions.

� The average asynchrony �async for protocol P3 was
about half the mean scheduling interval duration7 �T ,
(�async !

�T
2
).

6| recall that a rate of 80%, for instance, would imply that
in order to provide an inter-event delay of 50 ms, the timer would
be set for 40 ms.

7| scheduling interval duration was de�ned by equation (2).

Audio Frame Size �T �async �async

4K ! 0:500s 0.49247 0.22698 0.16709

8K ! 1:000s 0.95785 0.52493 0.34628

16K ! 2:000s 2.03606 0.96771 0.60582

Table III. Relationship between frame size and asynchrony.
Mean asynchrony �async is about half the audio frame �T .
Variability in asynchrony �async is about one third �T .
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Figure 10. Application model for record of window and audio
streams. The audio and window streams are sampled, times-
tamped and recorded into a persistent repository.

� The standard deviation of the asynchrony �async for
protocol P3 was about one third �T , (�async !

�T
3
).

These parameters could be lowered by using smaller schedul-
ing intervals (and thus, smaller audio frame sizes), but then
the audio quality was found to deteriorate on the NeXTs
because of the increased thread scheduling overheads. Fi-
nally, both parameters �async and �async were stable across
all load conditions, as one would expect for an inter-stream
asynchrony random process in statistical process control.
Timing variability was modeled by random variables fo().

There are two competing asynchrony random processes: the
overhead functions fo(A) and fo(W ), (both were discussed in
Section ). For negligible fo(), a simpler protocol such as P2
should work. However, for bounded, large fo(), the support
of synchronized replay requires adaptive scheduling support.
Finally, for unbounded fo(), a 2-Way, adaptive protocol is
needed.

IMPLEMENTATION

We implemented an object-oriented prototype toolkit, Re-
playKit, for NeXT workstations.8 The ReplayKit toolkit
provides the Replayable object class. The Replayable
class provides applications transparent access to infrastruc-
ture services. AMacDraw-like object oriented drawing ap-
plication and a Text editor application were retro�tted with
the toolkit. Replayable applications access toolkit features
through menus and windows added to the application. The
ReplayKit toolkit allows applications to: (1) re-execute
window events (e.g., gesturing, typing, moving windows), (2)
record voice-annotations, (3) provide synchronized replay of
these streams, and (4) to replay selected streams. In addi-

8| the NeXTs run Mach OS.



Infrastructure Support

Disk-Based
Stream

Repository

Window
Server
(CPU)

Audio
Processor

(DSP)

Replay Able
Application

Audio
Extension

Window
Stream

Window
Extension

Window

Audio
Frame

Fetch

Audio
Stream

Stream
Prefetch

Stream
Synchronization

Stream
Scheduling
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serve relative synchronization.

tion, an API for stream capture and replay is provided.
The prototype currently supports two streams: the window

and the audio stream. Each stream is dispatched to a sep-
arate processor. The window event stream is dispatched to
the CPU | which is subject to arbitrary load conditions.
The audio stream is dispatched to the DSP | assumed
to be dedicated. These components (application, streams,
DSP, CPU, infrastructure services, disk, and data paths)
are shown in Figures 10 and 11. Fig. 10 shows the record-
time view. Fig. 11 shows the replay-time view of the pro-
totype. The infrastructure provides a logical time system
(LTS) to support time-stamping of events. It also provides
e�cient, disk access to streams. The experimental setup

is further discussed in Appendix A. Finally, it provides
per-stream scheduling and inter-stream synchronization pro-
tocols to support faithful replay of streams.

CONCLUSION

This paper addressed media scheduling and synchronization
issues for the support of faithful re-execution of session ob-
jects when subject to timing variability. In our prototype,
audio and window streams were kept synchronized during
the re-execution of the session. An adaptive scheduling algo-
rithm was designed to account for timing variability present
in the replay of these streams. Smoothed forecasts and sta-
tistical process control guidelines were used to detect trends
in inter-stream asynchrony.
When replay was subject to timing variability, our protocol

P3 was e�ective in providing relative inter-media synchro-
nization. The management of overheads fo(A) and fo(W )
was achieved through integration and signi�cant extensions
to existing synchronization frameworks.

� To implement inter-media synchronization, we imple-
mented a modi�ed master/slave model. Synchroniza-
tion was initiated by the slave streams.

� To bound inter-stream asynchrony, we used periodical
synchronization.

� To remove dependencies and overheads from timing
services during a scheduling interval, we used di�er-
ential scheduler(s).

� To control variability within a scheduling interval,
we used statistical guidelines to adapt the schedule
of slave stream(s). Schedule(s) were revised on each
scheduling interval and asynchrony trends were used
to drive adjustments.

� To adjust slave stream schedule(s) and compensate
for trends in asynchrony, we adjusted idle schedule
time (in the form of inter-event delays).

� To allow adjustments to multiple slave streams, we
implemented a scheduler per stream, running mal-
leable time.

� Finally, to integrate these multiple stream schedules,
we implemented relative inter-media synchronization,
as opposed to absolute media timing.

Our adaptive algorithm seems well suited for use in other
environments having some of the following characteristics:
(a) subject to unreliable or large overhead timing services
(e.g., lookups to network time services), (b) subject to dy-
namic, varying load conditions resulting in timing variability
as seen by the media's integration processor, (e.g., varying
tra�c conditions, as in ATM networks), and (c) requiring
application layer control of the inter-stream asynchrony.

The ReplayKit toolkit allows us to extend these synchro-
nization services to other applications in general purpose
workstations. To explore issues in the use of session objects,
we have already started to apply the ReplayKit toolkit to
both the Uarc and theMedRad projects (both discussed in
Section 1). Future work includes extensions to video streams
and to explore the use of the paradigm in collaborative en-
vironments.
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APPENDIX A: EXPERIMENTAL SETUP

Streams execute in separate threads. The infrastructure pro-
vides two generic thread models. The sequential nature of
operating systems causes parallel synchronization and rela-
tive progress to su�er. Figure 12 shows the thread model
used to replay window events. During the replay of the win-
dow stream, events must be produced as well as consumed
by the application itself. To simulate generation of events
by the user, a producer and consumer thread pair is needed.
The producer thread prefetches events from disk and puts
them in the shared queue at intervals determined by the dif-
ferences between event time-stamps as well as by the protocol
used for inter-stream synchronization. The consumer thread
gets events from the shared queue and dispatches them to
the window system for replay.

Figure 13 shows the thread model used to replay audio
frames. To reduce overheads in disk I/O access of audio
frames, we implemented bu�ered sampling and prefetching
of frames, (as in Cmss [30]). We baselined three important
parameters that a�ect overheads fo(A1) during the record
and replay of audio frames: (1) the audio frame size, (2)
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frames. Audio frames execute asynchronously on the audio de-
vice.

the bu�ering e�ort for writes, and (3) the bu�ering e�ort for
prefetches. We summarize these baselined values below:

� Audio frame sizes of 16KB were found to work well
on the NeXTs. Smaller frame sizes made thread
scheduling overheads fo(A2) appreciable so as to af-
fect the quality of audio playback, (see Table III).
Larger values did not cause signi�cant additional im-
provements in performance.

� Writing 2 frames at a time (32KB of data) to the
disk led to good amortization of disk overheads during
recordings.

� Prefetching 4 frames at time (64KB of data) was
found to give good amortization of disk overheads
during playback.

The above parameter values were used in the experiments
described throughout this paper.

APPENDIX B: PROTOCOL P3

The adaptive algorithm undergoes �ve phases, as shown in
Fig. 7. The inputs to the algorithm are the stream tolerance
to timing departures T1, the past compensation factor !i

(!0 = 1), the stream's compensation update function 
i(),
and the past inter-stream asynchrony history between this
stream and its master, (�0; � � � ; �i). The algorithm outputs a
new compensation factor !i+1. The !i+1 policy formulated
by the ith synchronization event is applied to all window
events between the ith and i+ 1th synchronization events.
During the processing of the ith synchronization event, the

following actions are carried out:

� ASYNCHRONY-MEASURE: At the scheduling of the ith

synchronization event on the window (slave) stream
and the last known jth synchronization event seen on
the audio (master) stream, the ith inter-stream asyn-
chrony estimate �i is generated as:
�i = t(audioj)� t(windowi).

� STREAM-SYNCHRONIZATION: If i > j the window stream
waits until the ith synchronization event occurs on the
audio stream. Otherwise, do nothing.

� TREND-ANALYSIS:This phase makes use of the stream's
tolerance level T1, the inter-stream asynchrony his-
tory, (�0; � � � ; �i), to detect trends in asynchrony, un-
der SPC �-based guidelines. In general:
if (j�ij > T1) and (j�i�1j > T1) then
if (isWindowAheadTrend()) then � = DECREASE

if (isWindowBehindTrend()) then � = INCREASE

else � = SAME

� FORECAST-UPDATE: The replay speed for the (i+ 1)th

scheduling interval is updated as:
if (� == DECREASE) then !i+1 = !i + 
i(�i)
if (� == INCREASE) then !i+1 = !i � 
i(�i)
if (� == SAME) then !i+1 = !i

where the stream's compensation update function 
i(�i)
determines an update based on the magnitude of the
current inter-stream asynchrony �i. We found that
discrete compensation updates work better than up-
dates proportional to the asynchrony because the lat-
ter tends to be less forgiving of random asynchrony
hits. We used the following discrete step function:


i(�i) =

�
0:001 T1 < j�ij < 2T1
0:01 j�ij > 2T1

�

� POLICY-IMPLEMENTATION: For every event in the win-
dow stream on the next (i+ 1)th scheduling interval,
the inter-event delay time between window event k

and k+ 1 is set to:
�k;k+1 = ft(windowk+1)� t(windowk)g � !i+1
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