
Stateful Group Communication Services

Radu Litiu and Atul Prakash
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122, USA
E-mail: fradu,aprakashg@eecs.umich.edu

Abstract

Reliable group multicasts provide a nice abstraction for
communicating data reliably among group members and
have been used for a variety of applications. In this pa-
per we present Corona, a group communication service for
building collaboration tools and reliable data dissemination
services in Web-based environments, where clients connect
independently of other clients and are not necessarily con-
nected to the group multicast services all the time. The key
features of Corona are: (1) the shared state of a group con-
sists of a set of objects shared collectively among group
members; (2) Corona supports multiple state transfer poli-
cies to accommodate clients with different needs and re-
sources; (3) the communication service provides the current
group state or state updates to new clients even when other
clients are not available; (4) the service supports persistent
groups that tolerate client failures and leaves. We show that
the overhead incurred by the multicast service in managing
each group’s shared state has little impact on the latency
seen by the clients or the server throughput. We also show
that the multicast service does not have to be aware of the
client-specific semantics of the objects in the group’s state.

1. Introduction

Group communication services, such as ISIS, Transis,
Psync, provide an excellent abstraction for building a va-
riety of distributed applications, including fault-tolerant
groups, groupware services, and reliable data dissemination
services using the publish-subscribe model. In these sys-
tems, group communication services provide reliable de-
livery of data with various guarantees (e.g., FIFO, causal
broadcast, atomic broadcast) as well as state-transfer ser-
vices among group members so that consistency of state can
be maintained among group members.

0This work is supported in part by the National Science Foundation
under cooperative agreement IRI-9216848 and under grant ATM-9873025,
and by an IBM research partnership award.

In this paper, we consider the following question: can
we provide a general-purpose group communication service
to clients in Internet-like environments where clients (e.g.,
data publishers, data subscribers, or group members) are
not necessarily reliable and may frequently be disconnected
from the service, but where reliable state and data transfer
when clients connect with the service is a key requirement?

The management of shared data orshared statein such
an environment places unique requirements that are not
met by existing group multicast services. For example,
the application responsiveness is much more important in
a collaborative system designed to provide a highly inter-
active environment. Different collaborative applications
may have different consistency/correctness requirements
for replicated state. Another important class of services im-
plemented using group communication, data dissemination
services, manage large amounts of data of various types,
obtained from differentpublishers. The delivery semantics
ranges from apush-basedscheme where the communica-
tion system distributes the data to the existingsubscribers
to apull-basedapproach where clients connect occasionally
and transfer in asynchronous mode data previously existing
in the system. For the latter operating mode, the data dis-
semination service has to keep the data long time after it has
received it from its publisher, since it would be expensive to
retrieve the information every time a new client requests it.

Our work on the management of shared state and group
communication has been done primarily in the context of
computer-supported synchronous collaboration and it orig-
inated in a project focusing on developing an experimental
testbed for wide-area scientific collaboratory work. Criti-
cal issues concerning the design of a collaborative system
include:

� Join in the presence of unreliable clients:A process
should join a group of collaborating processes as fast
as possible. The current state of the shared data should
be transferred to the new process with a predictable
response time even in the presence of network failures
and faulty processes. Furthermore, a process should
be able to join and leave a group unobtrusively; the



existing processes in the group should be able to carry
on with their operations in the presence of multiple,
concurrent joins and leaves.

� Customized state transfer: Client applications
should be able to specify the way they receive the
shared state (only the latest updates of the shared state,
or only the state of certain objects within the group
state) when joining a collaboration group.

� Client-based semantics: A general purpose group
communication service should be provided. The in-
terpretation of the semantics of shared data should be
the responsibility of collaborating processes.

� Persistence: A group and its shared data should be
able to outlive the process members of the group. A
process joining a group after the group has assumed
the null membership is transferred the persistent state
of the group’s shared data.

� Group membership support: In distributed systems
knowledge of membership of a group is important to
maintain consistency of replicated state and to ensure
strict guarantees of message delivery and ordering. In
a collaborative system, group membership takes on an
important social aspect ofawareness– users collabo-
rating over shared state want to be aware of each other
and their activities.

This paper presents our approach to providing a multi-
cast service that meets the various shared state management
needs of collaborative environments, and that can also be
used in a much larger range of distributed applications (Fig-
ure 1). Our Corona stateful multicast service is designed to
support both synchronous and asynchronous collaboration
over the World Wide Web, where collaborating clients may
be dynamically downloaded over the Internet.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 details the architectural
features of the Corona system, as well as the suite of shared
state management and multicast services provided. Sec-
tion 4 describes some of the issues which arise in a fault-
tolerant replicated implementation of the communication
service. Section 5 discusses the current implementation sta-
tus, presents some performance results and briefly outlines
our future plans. Finally, Section 6 presents some conclud-
ing remarks.

2. Related Work

As transport layer subsystems, ISIS [5, 4], and Transis
[2, 3] support the notions of process groups, notification of
membership changes, and group multicast and may be used

push

server

server

server

server

server

persistent
storage

data
publishers

permanent
subsrcibers

collaboration group

asynchronous
subscribers

pull

Figure 1. Stateful group communication ser-
vices. A server pool maintains the shared
information, both in memory and on stable
storage. Publishers submit data to the com-
munication servers, subscribers receive the
data either in synchronous or asynchronous
mode. Collaborative applications are pro-
vided services such as: shared state main-
tenance, incremental state update, persis-
tence, group membership awareness.

to build services such as group awareness and group notifi-
cation services. Both support a fully replicated architecture
with individual members maintaining replicated state. In
ISIS, the join of a new member involves the execution of a
join protocol among all group members, and slow members
can slow down the join operation. Furthermore, in ISIS any
state associated with a group must be transferred to the join-
ing client from an existing client, which may occasionally
fail. Thus the time to complete the join reflects the time-
out for failure detection and making an additional request
to another client.

Transis provides a transport layer with a variety of mul-
ticast ordering and delivery semantics and it is used primar-
ily in the context of distributed replicated database systems.
By having replicated Transis processes, a higher level of
fault-tolerance than a single server can achieve has been
realized. One Transis-based approach [1] to achieve con-
sistent replication suffers from the inefficiencies of using
global total ordering with Lamport clocks. Corel [9] ad-
dresses this problem and also the fault-tolerance. However,
these approaches require consistent membership views and
require end-to-end acknowledgments for each message.

Horus [16] achieves consistent and fault-tolerant data
replication by implementing the virtually synchronous pro-
cess group, in which all processes receive consistent infor-
mation about the group membership in the form ofviews.

Consul [13] implements thereplicated state machineap-
proach to provide a collection of fault-tolerant services for

2



building distributed applications. It is based on the x-kernel
[8] and Psync [12], a group-oriented atomic multicast pro-
tocol that preserves the partial/causal order of messages.

JavaSoft’s JavaSpace is a RMI-based service for cooper-
ative computing, implemented as an object repository (sim-
ilar to Linda) that provides persistence, template-matching
lookup, and transactions. The client-server protocol is seen
as an exchange of objects, clients write tasks to a space as
objects. One of the available servers retrieves and processes
a request and writes back the object representing the result,
which is read by the client that submitted the task. JavaS-
pace advocates simplicity and good scalability for coopera-
tive, loosely-coupled systems, in which clients and servers
don’t have any knowledge about each other.

3. Group Communication Services in Corona

In this section, we discuss the architectural features of
the Corona system and the group communication services
provided.

3.1. Communication Groups and the Shared State
Model

In CSCW, collaboration is achieved by a group of pro-
cesses sharing data. The shared data, orshared statein
Corona, is defined as a setS of shared objects:

S = f(O1; S1); (O2; S2); :::; (On; Sn)g,
wherei is a unique identifier of a shared objectOi, and

Si is a byte streamencoding ofOi. The state of a shared
object is type-independent; a shared object should be able
to write its internal state to a stream as well as to set its state
to the data encoded in a stream upon request.

A group represents the basic unit of communication in
Corona. A group consists of a set of processes, called
members1, that communicate with each other by exchang-
ing messages and operate on the shared state by accessing
and modifying the shared objects in the shared state. Only
members of a group can operate on the shared state of the
group. A group may be characterized as eitherpersistentor
transient. A persistent group and its shared state exist even
when it has no members. A transient group ceases to exist
when it has no members, and its shared state is lost.

The major component of Corona is astateful logical2

server that provides group multicast services. The server
is stateful because it maintains up-to-date copies of shared
states of various groups. From the server’s point of view,
the shared state of a group is a set of byte streams tagged
with object identifiers, and thus the server cannot perform
application-specific operations on its copy of the shared

1member roles (principal, observer) are used to specify the relation-
ships among members of a group

2the server may be replicated

state. Instead, the group members update the server’s copy
through the server’s group multicast services.

3.2. Corona Services

Corona provides a suite of services for building group-
ware applications, such as:group membership, group mul-
ticast, andstate log reduction. Corona also provides in-
terfaces for synchronizing client updates through locks. A
group of clients may subscribe to any combination of ser-
vices and specify how a particular service is provided de-
pending on the collaboration semantics.

Thegroup membership serviceprovides interfaces for
creating, deleting, joining, leaving groups, etc. The Corona
server works in conjunction with an external workspace ses-
sion manager that determines which client is allowed to exe-
cute these actions. When creating a group, a client specifies
the initial state of the group as defined in Section 3.1. A per-
sistent group’s state is kept by the service even if its mem-
bership has become null. The service deletes the group only
in response to thedeleteGroup()message, and the shared
state of a deleted group is lost.

When a client joins a group, the service transfers a copy
of the current shared state of the group to the new client.
Based on the speed of its connection to the server and ap-
plication characteristics, the client may request either to re-
ceive the whole state of the group or the latestn updates
to the state (for incremental updates). It may also request
to be transferred only the state of certain objects in the
shared state of the group. The join protocol does not in-
volve the existing members of a group, which are not aware
of the fact that a new client is joining, unless they request
explicitly membership change notifications. In this case,
when the membership of a group changes, the service mul-
ticasts membership change notifications to group members.
A member may also query the service for the membership
information at any time by sending agetMembership()mes-
sage.

Thegroup multicast and message logging servicepro-
vides interfaces for broadcasting updates on shared state.
The service is stateful in the sense that all the multicast mes-
sages are logged both in memory and on stable storage, thus
ensuring persistence of shared state and fault tolerance.

The service provides two forms of group multicast:
bcastState()andbcastUpdate(). The information in abcast-
State()contains a new state of the object specified, and the
new stateoverridesthe present state of the object. In con-
trast, the update information in abcastUpdate()contains an
incrementalchange to the state of the object, and the change
is appended to the existing state, thus preserving the history
of updates on a shared object.

A multicast message,M , is sent by a client eithersender-
inclusively or sender-exclusively. If M is sent sender-

3



inclusively, the service multicastsM to all the members of
a group to which the sender ofM belongs, including the
sender itself. IfM is sent sender-exclusively, the service
does not multicastM to the sender. A client multicasts a
message sender-inclusively when the client needs certain
operations that the service performs on the message (e.g.,
timestamping the message with real time).

State log reduction service:At the request of the com-
munication service (several policies may be implemented
based on factors such as the state log size and the type
of the data) or, under certain circumstances, when desired
by a client, the history of state updates for a group may
be trimmed up to a point and replaced with the consistent
group state existing at that point. The new state is equiv-
alent with the initial state plus the history of state updates.
For groups with incremental state update, log reduction may
simply cause discarding the old state updates up to a certain
sequence number.

4. Replication

One of the challenges of a distributed server implemen-
tation is to optimize the distribution of groups over multiple
servers. One alternative is to use servers dedicated to dif-
ferent groups, thus eliminating the potential traffic among
servers that maintain the shared state of particular groups.
The broadcast messages within a group are sent only among
the members of the group and the corresponding server.
A server exchanges with other servers control and mem-
bership information, as well as queries the other servers
for information that does not exist locally. This approach
works well for groups of moderated size, especially when
the clients are located in the proximity of the server, but in
the case of large groups of users, the performance can be
significantly degraded due to the high load on a server. On
the other hand, if the users are widely distributed over dif-
ferent networks, bandwidth is wasted for sending the same
data multiple times over the same network segments. The
latter problem is eliminated if IP-multicast is used for com-
munication between a server and its clients. Using solely
IP-multicast is not a feasible solution in all cases, since the
system is designed as a general purpose group communica-
tion layer in a web-based environment, where some clients
are connected through ISPs that do not provide IP-multicast
capabilities. Moreover, group membership awareness and
secure and reliable communication are harder to implement
over IP-multicast and also require point-to-point connec-
tions.

Another alternative for organizing the groups is to split
each group over multiple servers, taking advantage of the
location of the users relatively to the servers. This elim-
inates some of the network traffic due to the broadcast of
a message to large groups and also reduces the load per

server. This approach is more scalable for large groups and
it is the one we chose in the design of our system.

We have designed and partially implemented a replicated
version of the Corona server, described in the subsequent
sections. The crash recovery scheme presented in section
4.2 has not been fully implemented yet.

4.1. Topology

Our replicated architecture has a star-like topology (Fig-
ure 2), with one server acting as coordinator and the other
servers being its clients. The coordinator acts as a sequencer
for messages. A multicast message is assigned a unique
sequence number, which increases monotonically and thus
imposes a total order on multicast messages within a group.
When a client sends a broadcast message to its server, the
server forwards the message to the coordinator, which dis-
tributes it to the whole group through the corresponding
servers. Only the servers who have members in that par-
ticular group will receive the broadcast message. By using
a centralized sequencer we obtain a total and causal order
of the messages, and a FIFO order with respect to a sender
of messages. To increase the efficiency, in some cases, the
totally ordered semantics may be relaxed (e.g., when a new
client joins a group, leaves a group or changes a parame-
ter which does not directly affect the other members of the
group) and a broadcast message may be distributed locally
by the server connected with the sender of the message be-
fore being sent to the clients connected to other servers.

Server

A

Coordinator

C EE

G4G1

D

G2 G3

B

Server

GF

Server

Figure 2. Replicated Corona Server. Rect-
angles represent servers, circles represent
clients, and different shapes represent differ-
ent shared states. Clients may belong to dif-
ferent groups: client A belongs to group G1,
Client B belongs to groups G1 and Group G2,
etc.

Using an architecture with a coordinator and a few tens
of servers, we can achieve a potential scale up in the num-
ber of clients supported of at least an order of magnitude

4



for the price of doubling the costs (communication cost +
the cost of message handling by the server). Since the co-
ordinator manages only a reduced number of connections,
it is not heavily loaded and thus it does not represent a per-
formance bottleneck. Moreover, since it is assumed that the
servers run on well established and reliable hosts, it is pos-
sible to use IP-multicast for broadcasting messages among
the servers, while also maintaining point-to-point connec-
tions for direct communication and for running the crash
recovery protocol.

Depending on the scale that we want to achieve, the
topology can be extended to a tree with multiple levels. In
this situation the complexity of the recovery scheme in case
of a crash increases, since the tree has to be reorganized.
For the tree structure we also have to consider more elab-
orate algorithms for balancing the load on different servers
and on communication paths.

Recall that, in order to ensure fast state transfer, the
Corona service keeps the state of a group. The replicated
service maintains multiple copies of the state for a group.
All the server replicas who directly support some members
of a group keep a copy of the state for that group. At least
two copies of the state exist at any moment, in order to pro-
vide a hot standby in the case of a server crash. Otherwise,
although a server saves the state on stable storage, the in-
formation may be unavailable during the time the server is
down. When there is only one server replica which sup-
ports members of a group, a backup is elected from one of
the other servers. The above approach works for availabil-
ity purpose provided that there are no simultaneous server
crashes. The next section shows how the system can be ex-
tended to support multiple server crashes.

4.2. Fault tolerance

A companion paper [15] shows how we built support for
fault-tolerance in a single server implementation. It also
shows how to deal with client or link failures and how
to maintain state consistency through client reconnection.
This section discusses the issues encountered in the design
and implementation of a fault-tolerant replicated service.

Several approaches to the design of fault-tolerant repli-
cated systems exist [14, 10], depending on the failure as-
sumptions. We assume thefail-stop fault model. The solu-
tion we propose is similar to thestate-machinemodel in the
sense that multiple sites maintain the shared state and pro-
vide services simultaneously. A difference is that not all the
servers keep the state for all the groups. For any group there
exist at least two sites that maintain the state of the group,
as in theprimary-backupmodel, but these sites are active
simultaneously. Another difference from the state-machine
approach is that the servers are not identical, one of them
having the special role of coordinator.

The configuration of the communication service is not
fixed, servers may crash and new servers may be started.
It is important that every server has enough information to
establish connections with other servers. All the servers,
including the coordinator, maintain a list (sorted in the or-
der the servers have been brought up) of the other servers,
containing their IP addresses and port numbers. This infor-
mation is loaded at startup from the configuration files and it
is updated as a result of the changes (server joins or leaves)
sent from the coordinator to every server. Maintaining this
information can be done for a negligible cost, since the ad-
dition and removal of servers does not happen too often.

To detect failures, we use heartbeat messages between
the coordinator and the other servers and timeouts as upper
bounds for communication delays. After an interval (greater
than the heartbeat interval) in which the coordinator hasn’t
been able to communicate with a server, the coordinator as-
sumes that either the server is disconnected or it is down, in
which case it removes it from the list. When the coordinator
crashes, the first server in the list becomes the new coordi-
nator. Due to the heartbeat, the servers should detect the
coordinator crash at about the same time. The first server
sends a message to all the other servers and it assumes the
role of coordinator when it receives acknowledgments from
half+1 of the remaining servers. If the first server wrong-
fully assumes that the coordinator is down, (some of) the
other servers will notice this and will respond with anack.

A system made up byk+1 servers can toleratek simul-
taneous crashes by using increasing timeouts. If the coor-
dinator does crash at the same time with the first server, the
first server in the list which is up and running will become
the new coordinator. An increasing timeout interval is al-
lowed for each of the servers at the top of the list, e.g., the
first server detects that the coordinator is down after timet,
the second server detects that both the coordinator and the
first server are down after time2t, and so on. Alternatively,
one of the election algorithms existing in the literature [7, 6]
may be used in case of a coordinator crash to select a new
coordinator.

In case of anetwork partition, there will ultimately ex-
ist two subsets of the server set which run without having
knowledge about each other. From the moment the parti-
tion occurs, the two server subsets evolve separately and the
state updates are made independently in the two subgroups
based on the client activity in each subgroup. When the net-
work connectivity between the two subsets is re-established,
for each group the last globally consistent state is identified
based on the previous checkpoints and the sequence num-
bers assigned to the state update messages. The applica-
tion is given the choice of either rolling back to the consis-
tent state, selecting one of the available updated states or
evolving as two different groups. The selection of one of
these choices is application dependent and should be imple-

5



mented in the client code.

5. Implementation Status and Performance

5.1. Implementation

The communication servers in the Corona architecture
have been implemented as multi-threaded Java applications,
supporting downloadable Java applet clients. Corona sup-
ports the multicast, membership, state transfer, state log re-
duction, and synchronization services. The collaboration
tools built on top of Corona include a chat box, a draw tool,
and a set of instrument data viewers. The chat box provides
an edit area for composing messages and a scrollable area
for displaying a list of received messages. Similar both to
a shared notebook and a whiteboard in its functionality, the
draw tool provides a canvas for drawing, taking notes, and
importing images. The data viewers provide configurable
windows for displaying different kinds of instrument data.
The awareness of other users is provided via a membership
status window that displays the group membership service’s
notifications of group membership changes.

Corona has been successfully tested and used in vari-
ous scientific campaigns and project meetings, supporting
numerous collaborative scientific experiments and on-line
group discussions. In one recent campaign, approximately
40-50 participants utilized our tools to conduct science on
atmospheric phenomena over a three day period. The scien-
tists were dispersed throughout North America and Europe,
operating on a variety of platforms, including Solaris, Win-
dows NT and 95, MacOS and HP-UX, with connectivity
ranging from high-speed links to modems.

5.2. Performance Measurements

A goal of our architecture is that the management of
shared state by the Corona multicast service should not sig-
nificantly increase the cost (in terms of message latency)
of message multicast or impact the scalability of groups
compared to groups without server-maintained shared state,
where the server acts as a sequencer only. We compared the
performance of group broadcasts when the service main-
tains shared state and when the service does not maintain
shared state, in terms of client throughput, round-trip deliv-
ery time to clients, and scalability in terms of the number
of clients and message size. In the implementation evalu-
ated, Corona’s group multicast service sends a multicast via
multiple point-to-point messages from the server to clients3,
using TCP connections.

3in contrast to using IP multicast

5.2.1. Overhead of Shared State Maintenance

In Figure 3, we compare the round-trip delay for a multi-
cast using a single server maintaining state (both in memory
and on the disk) with the case of a server not maintaining
state. The message size is fixed at 1000 bytes, typical for
our client applications. For these tests, the machines used
were a mix of Sun Sparc 20s and UltraSparc 1s running So-
laris and connected through a 10Mbps Ethernet LAN. The
server runs as a stand-alone Java application on a UltraSparc
1 with 64 MB RAM.

In this experiment, all clients but one are just receivers;
they connect to the server, join a group and receive the
broadcast messages addressed to that group. The extra
client is both a sender and a receiver and it is used to mea-
sure the round-trip delay. This client is the last one (in the
group) a broadcast message is sent to, therefore the values
measured correspond to the worst case. The clients are at
any moment uniformly distributed over 6 machines. A data
point is obtained by averaging over 600 successive mes-
sages, sent with the rate of a message every 100 msec. The
standard deviation ranges between 2-19% of the mean value
measured.

0

50

100

150

200

0 10 20 30 40 50 60 70
number of clients

stateful server
stateless server

de
la

y 
(m

se
c)

Figure 3. Group multicast with a single
server: Round-trip delay vs. #clients for mes-
sages of size 1000 bytes. The latency is al-
most identical regardless whether the server
does logging or not.

The round-trip delay increases approximately linearly
with the number of clients, when the message size is fixed.
As illustrated in Figure 3, the overhead of maintaining the
state at the server is for the most part minimal; the two
curves are very close to each other. Since the size of the
message is fixed in this example, the overhead of storing
the state in the server’s internal data structures is constant
regardless of the number of clients. Other costs such as
network communication latency, data processing in the ap-

6



plication protocol stack, thread scheduling and occasional
garbage collection in the server application are included in
the round-trip delay seen by a client.

In these and other experiments, we observed that for
messages of size up to a few hundreds of bytes (the typical
size of messages generated by the chat or draw tools) the
size makes little difference in round-trip times. The influ-
ence of the message size is more evident above 1000 bytes.
A significant part of the cost associated with broadcasting
a message is due to the serialized read/write operations on
the shared objects and can be reduced by overloading the
default JDK implementation of these methods.

We repeated the experiment with messages of size 10000
bytes and the delay remained linear with the number of
clients, but with a higher slope. The delay increases sig-
nificantly as the number of clients grows, since, for exam-
ple, for 60 clients, a broadcast rate of one message per sec-
ond would correspond to an aggregated throughput of 600
kBytes/sec.

5.2.2. Throughput

We also measured the server throughput obtained us-
ing 6 clients running on separate machines (Sun Sparc 20s
and UltraSparc 1s) and multicasting data as fast as possible
through the Corona server, running either on an UltraSparc
1 with 64 MB RAM running Solaris or on a quad proces-
sor Pentium II 200 with 256MB RAM running Windows
NT. The machines are connected over a 10Mbps Ethernet
network. Table 1 presents the results.

1000 bytes 10000 bytes

UltraSparc 1 91 251
Pentium II 267 455

Table 1. Server throughput obtained using
multicast messages of size 1000/10000 bytes

For each one of the server machines used, the limitation
of the system did not seem to be as much in the server code
as in the network capacity and the inability of some of the
slower clients to send, receive and process data at a faster
rate, since every time a new client was added, the server
throughput increased. By adding more clients we have been
able to sustain a throughput of 600 kbytes/sec using the NT
server. Moreover, the CPU utilization for the machines run-
ning the server code rarely went above 50%. We also no-
ticed significant differences in the throughput obtained by
clients running simultaneously on different machines.

5.2.3. Replicated Service Performance

We ran some stress tests using an architecture made up
by a coordinator and six servers running on a combination

of SPARC machines running Solaris and Intel Pentium ma-
chines running Windows NT and with the clients distributed
over 12 machines (in the same domain with the servers, but
some of them in different local networks, situated a few
routers away). Typical results for the round-trip latency for
a broadcast message are presented in Table 2. These num-
bers show that by using the replicated service, in addition to
increasing the fault-tolerance of the system, better scalabil-
ity and responsiveness to user requests are achieved.

100
clients

200
clients

300
clients

single server 160 350
multiple servers 40-63 78-100 120-150

Table 2. Roundtrip delay (msec) for a multi-
cast message of size 1000 bytes, using a sin-
gle server vs. multiple servers

5.3. Current and Future Work

We have implemented a QoS-based adaptive version of
the Corona service [11], based on priorities and explicit
control over the scheduling of different activities and on dy-
namic adjustment of its policies according to system load,
user input, application requirements and current global con-
figuration. We have also developed a version of the com-
munication system which uses both IP-multicast, whenever
possible, and point-to-point TCP connections in order to
implement scalable and reliable group communication.

For the future, we intend to extend the range of applica-
tions that make use of the communication services provided
by Corona. More experience is needed in order to determine
the usability of our system and potential directions for ex-
tending the services offered. We also intend to add security
mechanisms and access control to the system.

6. Conclusions

In this paper, we argued for a group multicast service that
also manages replicas of shared state - a set of shared ob-
jects - when providing support for computer-supported col-
laboration in Internet-like environments. Traditional group
multicast services solely rely on client processes to man-
age the consistency of shared state that is fully replicated at
clients. In such services, accommodating a new process to
a group may block operations of existing clients for an un-
predictable amount of time, especially over a wide area net-
work, as they run a complex state-transfer and membership
view agreement protocol. In a highly interactive collabo-
ration environment, such a performance degradation may

7



significantly reduce the effectiveness of collaborative work
of end users. On the other hand, client applications are un-
reliable, may crash or may operate in disconnected mode,
connecting occasionally for the purpose of communicating
with other applications and shared state transfer.

Our work on designing and implementing a stateful
group communication services shows the following:

� The implementation of a stateful multicast service is
feasible and the overhead of maintaining the state at the ser-
vice is most of the time negligible, compared with other
costs such as network communication overhead, thread
scheduling and data processing in the application protocol
stack. State logging does not depend on the semantics of the
data and it is not in the critical path as far as communica-
tion latency is concerned; the service can multicast data to
a group in parallel with disk logging. There exists a chance
that in the case of a server crash some of the latest updates
of the shared state have not been flushed to the disk and
they are lost. For typical applications, we consider this risk
acceptable, since servers can be replicated and if none of
the replicas has logged an update, the update message can
be retrieved by the crash recovery algorithm from the orig-
inal sender of the message, based on the sequence number
assigned to the message.

� State logging could limit the server throughput due
to disk I/O (typical disk transfer rate is around 3-5
Mbytes/sec). But techniques such as RAID, log-structured
file systems or main-memory logging with power backup
could be used in order to obtain better I/O bandwidth to the
log device.

� New clients join a multicast group and transfer the
shared state of the group fast from the communication ser-
vice. Moreover, the group state is persistent, being main-
tained even after the group has assumed null membership.

� The multicast service does not have any knowledge of
the semantics of data, thus allowing the exchange of infor-
mation among all types of communication processes and
potentially supporting a broad range of applications.

� Our experience with using the system shows the feasi-
bility and usefulness of a group communication service that
maintains the shared state at the server. The Corona service
has run for several months in a row without experiencing
any problems, but client applications (i.e., applets running
in browser windows) crashed occasionally. Maintaining the
state of a group at the client would have led to a state loss
when the client crashed.

� A potential problem with logging the state at the ser-
vice is that maintaining the state for numerous groups si-
multaneously may cause a server to exceed its available re-
sources, e.g., memory and disk space. In the case of col-
laborative applications, in which clients are trusted, sub-
ject to authentication and access control, and the collabora-
tion activity has predictable resource needs, the size of the

shared data can be easily managed. But for some other dis-
tributed applications, such as data dissemination services,
large amounts of data may be generated. One way to deal
with this problem is to offload the logging of the shared
state for certain groups outside the communication service,
to application specific servers which act as clients for the
communication system and can do some semantic process-
ing of the data, such as compression, checkpointing, etc, in
order to reduce the size of the shared state.

References

[1] O. Amir, Y. Amir, and D. Dolev. A Highly Available Application in
the Transis Environment. InProc. of the Workshop on Hardware and
Software Architectures for Fault Tolerance, Lecture Notes in Com-
puter Science 774, June 1993.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communica-
tion Sub-System for High Availability. Technical Report TR CS91-
13, Computer Science Dept., Hebrew University, April 1992.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Robust and Effi-
cient Replication using Group Communication. Technical Report
TR CS94-20, Institute of Computer Science, The Hebrew University
of Jerusalem, Nov. 1994.

[4] K. P. Birman. The Process Group Approach to Reliable Distributed
Computing.Comm. of the ACM, 36(12):37–53, Dec. 1993.

[5] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight Causal
and Atomic Group Multicast.ACM Trans. on Computer Systems,
9(3):272–314, Aug. 1991.

[6] N. Fredrickson and N. Lynch. Electing a Leader in a Synchronous
Ring. Journal of the ACM, 34:98–115, Jan. 1987.

[7] H. Garcia-Molina. Elections in a Distributed Computing System.
IEEE Trans. on Computers, C-31(1):48–59, Jan. 1982.

[8] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architec-
ture for implementing network protocols.IEEE Trans. on Software
Engineering, 17(1):64–76, Jan. 1991.

[9] I. Keidar. A Highly Available Paradigm for Consistent Object Repli-
cation. InMaster’s Thesis, Institute for Computer Science, The He-
brew University of Jerusalem, 1994.

[10] B. Liskov and R. Ladin. Highly-Available Distributed Services and
Fault-Tolerant Distributed Garbage Collection. InProceedings of the
Fifth ACM Annual Symposium on Principles of Distributed Comput-
ing, pages 29–39, Calgary, Canada, 1986.

[11] R. Litiu and A. Prakash. Adaptive Group Communication Services
for Groupware Systems. InProceedings of the Second International
Enterprise Distributed Object Computing Works hop (EDOC’98),
San Diego, CA, Nov. 1998.

[12] S. Mishra, L. L. Peterson, and R. D. Schlichting. Implementing
Fault-Tolerant Replicated Objects Using Psync. InProc. of IEEE
8th. Symp. on Reliable Distributed Systems, pages 42–52, Seattle,
WA, Oct. 1989.

[13] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A Com-
munication Substrate for Fault-Tolerant Distributed Programs.Dis-
tributed Systems Engineeering Journal, 1(2):87–103, Dec. 1993.

[14] F. B. Schneider. Implementing Fault-Tolerant Services using the
State-Machine Approach.ACM Computing Surveys, 22, Dec. 1990.

[15] H.S. Shim and A. Prakash. Tolerating Client and Communication
Failures in Distributed Groupware Systems. InProc. of the Sympo-
sium on Reliable Distributed Systems (SRDS), Purdue, 1998.

[16] R. van Renesse, K.P. Birman, and S. Maffeis. Horus, a flexible Group
Communication System.Communications of the ACM, Apr. 1996.

8


