
(9) Requirements of Role-Based
Access Control for Collaborative

Systems

Trent Jaeger and Atul Prakash

Software Systems Research Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor
Primary contact: jaegert@xcs.umich.edu, (313) 747-3780

Abstract

In many collaborative systems, users can trigger the execution of
commands in a process owned by another user. Unless the access rights
of such processes are limited, any user in the collaboration can gain
access to another’s private files; execute applications on another user’s
behalf; or read public system files, such as the password file, on another
user’s machine. However, some applications require limited sharing of
private files, so it may be desirable to grant access to these files for a
specific purpose. Role-based access control (RBAC) models can be
used to limit the access rights of processes, but current implementations
do not enable users to flexibly control the access rights of a process at
runtime. We define a discretionary access control model that enables
principals to flexibly control the access rights of a collaborative process.
We then specify the requirements of RBAC models necessary to
implement this discretionary access control model.

1 .O Introduction

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard
copy of all or part of this work for personal or
classroom use is granted without fee pro-
vided that copies are not made or distributed
for profit or commercial advantage; the
copyright notice, the title of the publication,
and its date appear; and notice is given that
copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on
servers, or to redistribute to lists requires
prior specific permission and/or a fee.

ACM RBAC Workshop, MD, USA
0 1996 ACM O-89791-759-6/95/001 1 $3.50

We examine how the access control requirements of collaborative
systems affect the design of RBAC models. A collaborative system or
groupware is a computer-based system that supports groups of users
engaged in a common task and that provides an interface to a shared
environment [ELLI9 11. Examples of collaborative systems include
computer conferencing systems, multi-user editors, group decision
support systems, and workflow systems. Collaborative systems permit
multiple principals to execute commands on a single process, so the
access rights of those processes must be limited to prevent unauthorized
access to the process owner’s system. RBAC models enable the access
rights of a process to be limited, but current implementations do not
support the dynamic, user-level access control required by collaborative
systems. At present, RBAC is being used almost exclusively to develop
mandatory access control (MAC) support, but we believe that within a
MAC framework, RBAC models are also useful for discretionary access
control (DAC).

Collaborative system processes must be run with limited access rights
because multiple users can specify commands to a single process. For
performance and fault-tolerance reasons, collaborative systems often use

II-53

a replicated process architecture. In a replicated process architecture,
each user has a process on his machine that maintains a copy of the state
of the collaboration. Each command is executed independently by each
replicated process. Therefore, collaborative processes execute
commands written by users other than the owner of the process.

Unless the access rights of a collaborative process are limited, any user
may obtain unauthorized access to the system objects owned by another
user. For example, consider the use of mobile agents (also known as
computational E-mail, command scripts, and enabled mail) as the
mechanism for transporting commands to replicated processes (see
Figure 9-1, Collaboratior~ Using Mobile Agent Systems). First, the
writer composes the agent’s code to specify the command. Through
some mechanism (e.g., HTTP or mail) the agent is sent to each of Ihe
other users, called the readers of the agent. When a reader reads the
agent (number 2 in the figure), a process is created to execute the
agent’s code (or an existing process may be used). This process runs on
the reader’s machine and is owned by the reader, so the agent is
executed with the reader’s access rights. A malicious writer can use
these additional access rights to read and write the reader’s private
objects; execute applications, such as mail, to masquerade as the reader
to other users; and read the password file on the reader’s machine.
Note that this problem is endemic to any process that executes
commands supplied by multiple principals.

sends
Writer toReader

Reader

Figure 9-1. Collaboration Using Mobile Agent Systems

Current solutions are not suitable for enforcing the access rights of
collaborative systems. To enforce access control, mobile agent systems
preclude the agents from performing potentially useful types of actions,
such as executing existing applications. For example, a Java [GOSlL95]
agent (called an appler in Java) cannot execute a non-Java application.
Also, these systems use cumbersome approaches to control read and
write access. Java’s access model forces all concurrent agents to use the
same access rights. RBAC models can flexibly specify the access rights
of a process, but they do not enable users to dynamically specify access
rights. At present, RBAC implementations are being developed only for
MAC, so only system administrators can specify access rights.
However, the appropriate access rights of a collaborative process are

II-54

based on dynamic information, such as the set of collaborators or the
purpose of the collaboration. Therefore, users or collaborative
applications need to be able to limit access at runtime.

We present an access control model that can flexibly control the access
rights of a collaborative process. Our model [JAEG95] is designed to
restrict the access rights of a process at runtime. The model is simple
because users or application writers need to know only a few common
classes of objects to specify the access rights of a collaboration. Also,
many of the access rights are deduced from the reader’s current access
rights, so their specifications are generally small. We then list the
requirements of RBAC models necessary to implement this DAC model.

In Section 2.0 we present the problem definition of DAC on
collaborative processes. In Section 3.0 we review related work. In
Section 4.0 we define our DAC model. In Section 5.0 we list the
requirements of RBAC models for implementing our DAC model. In
Section 6.0 we outline future work and conclude the paper.

2.0 Problem Definition

We assume a conventional systems model, where principals (e.g., users,
collaborators, etc.) execute processes that perform operurions (e.g.,
read, write, etc.) on objects (e.g., files, printers, etc.). The permissions
of a principal to perform operations on system objects are called the
access righrs of the principal in the system.

As an example, consider the DistEdit [KNIS90, KNIS93] system.
DistEdit is a toolkit for building collaborative editors using a replicated
process architecture. In a collaborative editing session, each user in the
collaboration has an editor process (see Figure 9-2, DistEdit System
Archirecrure). When a user edits the buffer, the DistEdit sends a copy
of the command to each editor process to ensure the consistency of the

command

d User’s
Editor
Fvocess

User’s
Editor 0 Pnxess

Figure 9-2. DistEdit System Architecture

II-55

editors’ buffers’. Unfortunately, this also raises the possibility that, for
example, if one user issues a command to save the buffer to a file, then
a file with the same name on another user’s machine may get
overwritten. DistEdit avoids this problem by not broadcasting file 1.10
commands, but, in general, system designers must identify and manually
close any security loopholes. This task could be arduous and error-
prone.

Instead, we would like to each editor be able to flexibly limit its access
rights given the purpose of the collaboration. When a user enters a
collaborative editing session, the editor first authenticates the other
collaborators. In this description, we assume that all the other colla‘bor-
ators are trusted. Then the user sets access rights for the collaborators
to read the user’s files. When the user decides to edit a file, he specifies
the access rights for the collaborators to the file. For example, suppose
a DistEdit Emacs editor is being used to collaboratively edit a Lisp
program. A reader allows others to edit the Lisp program, but the
reader may also want to edit documentation files that he does not want
the other users to overwrite. Also, some editors, such as Emacs, permit
applications to be executed, so the user may grant access to execute
other applications. For example, a collaborator may want to
demonstrate the execution of the Lisp program. The user would need to
grant permission to execute a Lisp interpreter on his machine for this
part of collaboration to proceed.

Therefore, the reader’s security requirements in this application are as
follows:

l Any collaborator can perform the read operation on any of the
reader’s public objects, except system-specific files like the
password file.

l Any user can perform the write operation on the Lisp program file.

0 Access to perform the write operation on any other system objects,
such as the documentation files, is prohibited.

0 Any collaborator can perform the execute operation on the Lisp
interpreter.

l Access to perform the execute operation on other system objects,
such as /bin/sh, is prohibited.

l The Lisp interpreter must have the same access rights as the editor.

The user described above wants to limit access rights based on the
application, the identities of the collaborators, and the purpose of the
collaboration. The level of trust in the collaborators determines the
types of actions they may be permitted. For example, only trusted
collaborators should be permitted to execute applications on another
user’s machine. Also, the purpose of the collaboration further specifies
the access rights of the collaboration. A collaborative editor can be used

’ The commands are ordered as well, but this task is outside the scope of the access control problem.

II-56

to edit a variety of files, but only access to files necessary to the
collaboration should be granted to enforce least privilege.

Also, users need to be able to flexibly control access rights at runtime.
The identities of the collaborators and the purpose of the collaboration
are often not known until runtime, so a user must be able to set access
rights on demand. Collaborations are often dynamic, so new
collaboration groups and purposes may evolve. Therefore, access rights
for a collaboration may be ad hoc, so users must be able to flexibly
specify those rights. In our example, write access to the Lisp program,
but not the documentation files, is granted. Future collaborations may
involve collaborators that are trusted to edit the documentation files, and
new files may enter into the collaboration as well, such as technical
papers or marketing reports.

3.0 Related Work

We review the access control capabilities of current mobile agent
systems and RBAC models. Access control in mobile agent systems is
restrictive because the access rights of other applications cannot be
controlled. RBAC models provide system-wide access control, but are
designed for MAC not DAC. Therefore, it is not possible for users or
their applications to limit the access rights of their processes.

Historically, access control of mobile agent systems has been
implemented using the following techniques: preventing processes from
accessing system objects [BORE92], limiting access to read and write
operations in a single public directory [BORE94], using a global
properties file to describe permissible access rights [SUN95], and
providing an intersection of the access rights of the collaboration’s
principals [JAEG94].

The restrictive security provided by the first two options, implemented
in ATOMICMAIL [BORE921 and Safe-Tel [BORE94], prevents access
to shared data at its normal location and prevents the execution of
applications. Moving data to a safe location is time-consuming and can
lead to inconsistencies between versions if a crash occurs. The
execution of existing applications is also necessary for some
applications. For example, we want to use an existing editor in our
collaborative editing application.

In the third option, Java [SUN951 enables agents to read and write files
in their normal locations, but the execution of existing applications is
still not permitted. In Java, each user defines a properties file that
describes the access rights of any agent. Therefore, the same rights
apply to any agents being run by the user at the same time, so it is not
possible to run two agents simultaneously with different rights.

In [JAEG94], we describe a service that enables a reader to limit the
agent’s access rights to the intersection of the reader and writer’s rights.
This service enables trusted users to collaborate while protecting their
private system objects from access. The service is implemented using

II-57

the UNIX operating system’, so the access rights of agents whose
writers do not belong to the reader’s domain are more difficult to
control. In this implementation they are given no access rights, but if
the reader wants to grant some access rights to an agent to execute an
application it is difficult to limit this process’s access. Current file
systems grant access to all world-readable or world-executable files to
any process, so permitting execution of arbitrary applications while
preventing access to sensitive world-readable files, like the password
file, is not possible. Typically, access rights for a UNIX process are
restricted using chroot, but chroot requires files to be moved to the safe
area at runtime.

Current implementations of access control models based on RBAC also
are insufficient for collaborative applications. RBAC implementations
for file systems [GASS90, TING92, VINT88, WOBB94] are designed to
provide MAC. Therefore, only system administrators can define the
roles that a user can assume. As described above, access rights of
collaborative applications may not be known until runtime, so DAC
models are necessary to enable a user or application to limit access
rights.

A few RBAC models do enable some dynamic modification of a role’s
access rights [BORN94, MOHA94]. These models permit system
administrators to specify rules that can modify the access rights of a
process at runtime. Because the access requirements of many
collaborative applications are ad hoc, it is unlikely that the rules
necessary to control access for these applications have been specified.
Also, the purpose of an application cannot be deduced very easily, so
the specification of rules for collaborative applications is difficult if not
impossible.

Another important issue in RBAC model implementations is the power
of the specification language. In some RBAC model implementations,
when a new role is added the access control lists of all the affected
system objects must be updated. Unlike other RBAC models, the
Domain Type Enforcement (DTE) [BADG95] model provides a concise
language for specifying process access rights. For example, read access
to all the system objects in a directory tree can be specified in a single
statement.

Currently, DTE is designed for MAC, so users cannot dynamically
modify their rights. Even if DTE permitted users to limit their own
access rights, specification of these new rights is cumbersome. Sup:pose
the reader wants to limit the access rights of a process such that only the
rights shared by the reader and writer are available to the process.
First, the reader must create a new domain (i.e., role) to represent the
new set of access rights. Next, the reader must specify the access rights
for this domain given the reader’s and writer’s access rights. Because
general directory structures are graphs (due to the existence of links),
the reader may have to check whether the writer has access to every file
to which he, the reader, has access. However, the number of links
should be significantly less than the number of files, so handling these

UNIX is a registered trademark of the Unix Open Foundation, Inc.

II-58

specially should reduce the complexity significantly. Finally, the
current domain must be permitted the ability to create an instance of the
new domain. Thus, the mechanism to create a new domain may be
inefficient for large file systems, and it requires that users understand
the relationships between domains in order to create a new one.

4.0 Our Approach

In [JAEG95], we define a DAC model for specifying the access rights
available to a mobile agent. The goal of the DAC mode1 is to enable the
reader and writer in a mobile agent computation to flexibly control
access to system objects. Therefore, using this DAC mode1 a user can
specify any access rights desired, although the model is biased toward
the easy specification of the access rights that we think will be common.

Below, we define the major concepts of this DAC model:

l Definition 1: A writer, w, is a principal that forwards the mobile
agent to the reader for execution. Note that the writer does not
necessarily compose the agent.

l Definition 2: A reader, r, is a principal that executes the mobile
agent.

l Definition 3: An object uccess right of a mobile agent, obu E
OBA, is a tuple, ob = (obj, OPobj), where obj is a unique identifier
of the object and OP,, is a set of operations (e.g., read, write,
execute) that the mobile agent can perform on the object. Object
access rights can be either granted or revoked.

l Definition 4: A sharingfunction of a principal i for a mobile agent,
sf(i), is a function, sf(ij = si or sf(i) = si n j. where s, is a sharing
value (one of none, public, or all) that specifies a class of objects
accessible to i and j is another principal. For example, if the writer
specifies sf(writer) = all n reader, the writer grants permission to
all of the writer’s objects shared by the reader. This is the set of
objects shared by the writer in 0 of Figure 9-3, Operation Access
Rights.

l Definition 5: An operation access right of a mobile agent, opa E
OPA, is a tuple, opa = (op,sf(r),sf(w)), where op is an operation,
sf(r) is the sharing function of the reader for op, and sf(w) is the
sharing function of the writer for op. The value of opa specifies
that the agent has permission to perform op on the union of the
objects represented by the domains sf(r) and sf(w). (See
Figure 9-3.) If an value is not specified for an operation op, then
opa = (op, none, none).

l Definition 6: A mobile agent compufation is a set of processes that
execute a mobile agent. In our case, a computation is a set of
processes, p E P, including the process that executes the agent, its
descendant processes, and any service processes that these processes
use.

II-59

I
lG!!aa && p&&

Reader Writer Writer

Reader: Public Writer: All ll Reader

Reader: Public IJ Writer: All flFteader

Figure 9-3. Operation Access Rights

l Definition 7: Mobile agent access rights, ar, is a tuple, ar =
(r, w,OPA.OBA,,OBA,J, where r is the identity of the reader that
executes the agent, w is the identity of the writer of the agent, IOPA
is a set of operation access right specifications, OBA, is a set of
object access rights granted to the agent, and OBA, is a set of
negative object access rights of the agent. The order of precedence
of the access rights specifications is (from highest to lowest):
OBA,, OBA,, and OPA. The mobile agent access rights must be
enforced on all processes in the mobile agent computation.

In this DAC model, the access rights of a mobile agent to the file system
are specified by operation and by object. Operation access rights permit
the reader and the writer to limit the operations that can be performed
on a class of objects. For example, the read operation can be limited to
only the writer’s public objects. Object access rights permit the rea.der
and writer to grant or revoke operations on a specific object. Read
access may be precluded for the password file, but write access may be
granted to a private object, such as the Lisp program.

In the DistEdit example, the writer does not provide any access rights to
the reader, but the reader needs to limit the access rights of the agent.
We specify the mobile agent access rights for this example as shown in
Table 9- 1, Mobile Agent Access Rights for DistEdit. When a file system
access is requested, the access rights specifications are checked in the
following order: (1) object access revoked; (2) object access granted;
and (3) operation access rights. First, the object access revoked
specification is checked to determine if access to the object is prohibited.
The specification (/etc,read,write,execute) prohibits access to any file in
the system’s /etc directory, such as the password file. Object access
rights revoked always supersede those granted if there is a conflict.
Next, the object access granted specifications are checked to determine

II-60

if access has been granted directly to the agent. The specification,
(/usr/bin/lisp,execute) and (- /lisp/program.lisp,read,write), grants
access to the Lisp interpreter and the Lisp program, respectively. Note
that the reader must already possess these access rights in order to grant
them. This can be verified at specification time. Finally, the operation
access rights are checked. In this case, the specification
(read,public,none) grants read access to all the reader’s public objects.
Because operation access rights are not provided for other operations,
these operations are precluded on all other objects.

Table 9-1. Mobile Agent Access Rights for DistEdit

ar Attribute Value II

Reader

Writer

DistEdit-reader

one of collaborators

OPA

OBA,

{(read,public,none)}

{(lusrlbin/lisp,{execute}).
(-/listJprogram.lisp,{read,write})}

OBA, {(letc,{read,write,execute})} II

This DAC model permits principals to limit the access rights of a
process and its descendants relative to its current access rights, so the
effort necessary to specify the restricted access rights is reduced.
Operation access rights define an intersection of the principal’s current
access rights with the rights to a class of objects. Therefore, it is not
necessary for the user to specify the set of objects in the class explicitly.

Using this model, principals do not need to be aware of domains and
their relationships, but rather, the principal must be aware of some
general types of objects. Only a few general types are necessary, so the
model is fairly simple.

Finally, the performance of an authorization mechanism that uses this
model should be satisfactory. Using other implementations, object
access rights can be checked in constant time (e.g., using a hash table
representation), and two authorizations must be made for operation
access rights: one for the principal’s current role and one for the object
group of the operation access rights. If both are authorized, then the
access is permitted.

5.0 RBAC Requirements

In [SAND94b], a set of dimensions for RBAC model requirements are
proposed. Below, we specify values for these dimensions to implement
the DAC model described above. We list values only for the dimensions
relevant to the DAC model implementation.

l Nature of privileges: Access rights are represented by roles,
operation access rights, and object access rights. A role represents
the MAC domain of a principal. The operation access rights can be
used to dynamically limit a process’s access rights given the current

II-61

role. The object access rights specify positive and negative
capabilities, so the access rights of a mobile agent computation can
be flexibly specified.

0 User assignment: System administrators assign users to roles.
System administrators select which users can limit their access
rights using operation or object access rights.

l Privilege assignment: The system administrators set the privileges
of roles and define the object groups for operation access rights.
Users select operation access rights and objects access rights for a
mobile agent computation.

l Object attributes: Operation access rights or object access rig,hts
may be defined using object groups.

In this type of RBAC model, system administrators define roles for
users as they did previously, but also can define a model that will enable
users to limit the access rights of their own processes. First, system
administrators specify the types of object groups that can be used to
specify operation access rights. Also, system administrators specify the
principals that are authorized to limit their own rights dynamically.
Then, authorized users may flexibly control access to their system
objects using these operation access rights and object access rights.
Therefore, system administrators enforce MAC using the RBAC as well
as specifying some DAC features and who can use them. Users with the
privilege to use the DAC model can flexibly control access to their
processes.

6 .O Conclusions

The access control requirements of collaborative systems place
interesting demands on RBAC models. Because commands can
originate from multiple principals, each principal that owns a
collaborative system process must be able to restrict the process’s access
rights to protect its system from unauthorized access. These restrictions
are often ad hoc because the choice of access rights is based on the
identities of the collaborators and the purpose of the collaboration.
Current RBAC model implementations do not permit users to define new
roles, so it is not possible for users to dynamically control access to their
system objects. Also, the specification models used by RBAC model
implementations require significant effort for a user to create a new role
and require the users to understand complex concepts.

We propose requirements of an RBAC system for implementing a DAC
model that enables users and their applications to flexibly control the
access of collaborative processes at runtime. The DAC model enables
users to define the access rights of a process relative to their current
role. Access rights are specified either by operation on a commonly
understood group of objects or by a specific object. This DAC model
enables access rights to be specified using a small number of statements
and only requires that users understand the meaning of the object groups
used by the operation access rights. To implement this model within an
RBAC framework, RBAC systems need to provide a DAC model u.sing

II-62

simple primitives, permit some users to define more limited versions of
their roles, and be able to generate roles efficiently using these
specifications.

In the future, we plan to extend the DAC model to enforce the
communication security requirements of collaborative systems.
Collaborating principals must be able to communicate with one another,
but unlimited communication is not possible because there are security
loopholes that can result in an agent sending a reader secrets to an
attacker [DEAN95].

Acknowledgments

The authors would like to thank the workshop participants for their
valuable comments regarding this work.

References

[BADG95] L. Badger, D. F. Sterne, D. L. Sherman, [GOSL95] J. Gosling and H. McGilton, The Java
K. M. Walker, and S. A. Haghighat, “Practical Domain Language Environment: A White Paper, 1995.
and Type Enforcement for UNIX, n IEEE Symposium on Available from: http://java.sun.com/whitePaper/
Security and Privacy, Oakland, CA, 1995, 66-77. java-whitepaper-l .html.

[BORE921 N. S. Borenstein, “Computational Mail as a
Network Infrastructure for Computer-supported
Cooperative Work,” Proceedings ACM I992 Conference
on Computer Suppofled Cooperative Work (CSCW),
Toronto, Ontario, Canada, 1992, 67-74.

[BORE941 N. S. Borenstein, =Email with a Mind of its
Own: The Safe-tcl Language for Enabled Mail,”
ULPAA ‘94, Barcelona, Spain, 1994, 389-402.
Available from: ftp://ics.uci/edu/safe-tcl/safe-tc1.tar.Z.

[JAEG94] T. Jaeger and A. Prakash, “Support for the
File System Security Requirements of Computational
E-mail Systems,” Proceedings of the 2nd ACM
Conference on Computer and Communications Security,
Fairfax, VA, 2-4 November 1994, l-9. Available from:
ftp://ftp.eecs.umich.edu/people/aprakashl
collaboration/papers/cccs94.ps.Z.

[BORN941 E. Born and H. Stiegler, “Discretionary
Access Control by Means of Usage Conditions,
Computers and Security, 13:5, 1994, 437-450.

[JAEG95] T. Jaeger and A. Prakash, “Implementation
of a Discretionary Access Control Model for Script-
Based Systems,” Proceedings of the 8th IEEE Computer
Security Foundations Workshop, Dronquinne Manst,
Kenmare, County Kerry, Ireland, 13-15 June 70-84.
Available from: ftp://ftp.eecs.umich.edu/people/
aprakash/collaboration/papers/csfw95.ps.Z.

[DEAN951 D. Dean and D. Wallach, A Security
Analysis of the HotJava Web Browser, 1995. Available
from: http://www.cs.princeton.edu/sip/java/.

[ELLI91] C. A. Ellis, S. J. Gibbs, and G. Rein,
“Groupware: Some Issues and Experiences,”
Communications of the ACM, January 1991, 38-5 1.

[KNIS90] M. Knister and A. Prakash, “DistEdit: A
Distributed Toolkit for Supporting Multiple Group
Editors,” Proceedings of the Third ACM Conference on
Computer-Supported Cooperative Work, Los Angeles,
CA, 7-10 October 1990, 343-355.

[GASS90] M. Gasser and E. McDermott, “An
Architecture for Practical Delegation in a Distributed
System, n IEEE Symposium on Security and Privacy,
1990, 20-30.

[KNIS93] M. Knister and A. Prakash, ‘Issues in the
Design of a Toolkit for Supporting Multiple Group
Editors,” Computing Systems-7he Journal of the
Usenix Association, 6:2, 1993, 135-166.

[MOHA94] Imtiaz Mohammed and David M. Ditts,
“Design for Dynamic User Role-Based Security,”
Computers and Security, 13:8, 1994, 661-671.

II-63

[SAND94b] R. S. Sandhu, E. J. Coyne, H. L.
Feinstein, and C. E. Youman, “Role-Based Access
Control: a Multi-dimensional View,” Proceedings of
the Tenth Computer Security Applications Conference,
Orlando, FL.. 5-9 December 1994, 54-62.

[SUN951 Sun Microsystems, Frequently Asked
Questi0n.s: Applet Securiry, Version 1 .O Beta 2, 1995.
Available from: http://java.sun.com/sfaq.

[VlNT88] S. T. Vinter, “Extended Discretionary Access
Controls,” IEEE Symposium on Security and Privacy,
Okland, CA, 18-21 April 1988, 39-49.

[WOBB94] E. Wobber, M. Abadi, M. Burrows, and
B. Lampson, “Authentication in the Taos Operating
System, ACM Transactions on Computer Systems, 12: I,
February 1994, 3-32.

[TING92] T. C. Ting. S. A. Demurjian, and M. Y. Hu,
“Requirements, Capabilities and Functionalities of User-
Role Based Security for an Object-Oriented Design
Model,” Database Securiry V: Status and Prospects,
C. Landwehr and S. Jajodia (Eds.), North-Holland,
1992, 215-296.

II-64

