
Management and Utilization of Knowledge for the Automatic
Improvement of Workflow Performance

Trent Jaeger
Atul Prakash

Software Systems Research Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48105, USA
E-mails: jaegert laprakash@eecs.umich.edu

T 4C
ABSTRACT
We present a framework that enables reengineers to
build a base of performance improvement knowledge
that can be used to automatically improve workflow
performance. Automatic improvement of workflow per-
formance involves modification of a business informa-
tion system such that the predicted performance of its
business workflows satisfies a performance goal. The
number of possible modification options is very large,
so a significant body of knowledge is needed to choose
among them. We demonstrate, using a simple example,
the requirements for the types of knowledge necessary
in a automatic improvement framework. We define a
knowledge model for representing these types of knowl-
edge. We use the model to provide the framework with a
body of domain-independent performance improvement
knowledge. We then describe how the framework en-
ables reengineers to provide additional performance im-
provement knowledge to the model and how the frame-
work utilizes that knowledge to automatically improve
workflow performance to meet the performance goal.

KEYWORDS
Workflows, business process reengineering, simulation,
knowledge acquisition, knowledge representation, search
algorithms.

INTRODUCTION
The popularity of business improvement methodologies,
such as Business Process Reengineering [7], Business
Process Innovation [5], and Business Process Improve-

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
COOCS 95 Milpitas CA USA © 1995 ACM 0-89791-706-5/9 5/08..$3.50

ment [8], demonstrates the importance of workflow de-
sign to the business community. These methodologies
espouse the theory that business performance is a result
of its workflows. Therefore, these methodologies im-
prove business performance through the improvement
of the business workflows.

Determination of a satisfactory set of workflows is a
complex, time-consuming task. Three major tasks com-
prise workflow improvement:

1. Definition of the system

2. Identification of performance bottleneck(s)

3. Selection of the modifications to the system that
mitigate the performance bottlenecks

In the past, research effort has concentrated on the first
two tasks in domains such as PERT network analysis [2],
software performance engineering [14], parallel program
performance improvement [1, 13], and business process
reengineering [3, 10]. All these tools simulate the system
in question for collecting information about its perfor-
mance. Some of these tools support specialized anal-
ysis of the simulation results. For example, PrM [14]
uses sensitivity analysis to identify performance bottle-
necks. Also, IPS-2 [13] and Quartz [1] use specialized
performance metrics to identify possible performance
improvement options.

Support for choosing the modification options to remove
a performance bottleneck is currently lacking, however.
Two systems that provide some support for the third
task are the START/ES [4] expert system and our Au-
tomatic Improvement Framework [9]. START/ES rec-
ommends resource (i.e., hardware) changes to improve a
computer system's performance. The major limitation
of START/ES is that it does not suggest any modifica-
tions to the computer system processes (i.e., workflows).

32

Often a performance bottleneck may be removed by re-
designing a process, so workflow modifications should be
supported. In the Automat ic Improvement Framework,
both resource and workflow modification options are
suggested by the framework. In addition, the frame-
work uses performance analysis metrics, such as those
suggested by IPS-2 and Quartz, to est imate the effects
of applying each option. The Automat ic Improvement
Framework uses these est imates to guide a search for
a workflow design tha t satisfies the performance goals
of the reengineer. We demonstrated the ability of the
framework to reengineer a workflow in a business infor-
mat ion system to meet its performance goals in [9].

In this work, we further investigate the knowledge re-
quirements necessary to effectively find satisfactory work-
flow designs using the Automat ic Improvement Frame-
work. We choose a simple, well-documented example
that demonstrates that our framework tends to settle
on a local op t imum Using our current set of modification
operators. From this example, we identify t he several
types of knowledge that are necessary to escape local
optima. We extend the reengineering knowledge model
to represent these types of knowledge and initialize the
model with some domain-independent examples of this
knowledge.

After extending the knowledge base, the framework is
still missing some valuable reengineering knowledge: the
reengineer's domain knowledge about possible modifi-
cations. Obtaining this domain knowledge is difficult,
however. Reengineers often have significant domain knowl-
edge, but they do not want to spend the t ime to en-
ter it unless they know it will be relevant. Therefore,
we modify the f ramework 's improvement mechanism to
integrate knowledge acquisition with the search for a
solution.

The goal of the revised Automat ic Improvement Frame-
work is now to support the reengineer in the develop-
ment of a knowledge base for workflow improvement.
Like previous tools, the framework identifies workflow
bottlenecks for the reengineer. However, the framework
does not require the reengineer to choose a specific mod-
ification, but rather, the reengineercan suggest multiple
potential modifications that the framework can eval-
uate. With this knowledge, the framework can then
automatical ly perform the arduous task of identifying
a business information system that satisfies the perfor-
mance goal.

The structure of the paper is as follows. First, we
review the formal definition for the problem of workflow
improvement which we call the automatic improvement
problem. We then define an example improvement prob-
lem that motivates the design of our knowledge base.
Next, we outline the revised automat ic improvement

framework. Then, we show how it is used to improve
the workflow performance of the example. Finally, we
present our conclusions and point out some open issues.

AUTOMATIC I M P R O V E M E N T PROBLEM
Before we state the problem, we define the major con-
cepts:

• D e f i n i t i o n 1: A business information system, S is
a triple, S = (W, T, R), where: (1) W is a set of
workflows; (2) T is a set of workflow triggers; and
3) R is a set of resources.

• D e f i n i t i o n 2: A work]tow, w E W, is a double,
w = (Nto, G), where Nv0 is the workflow's name and
G = (V, E) is a directed graph where V is the set of
steps and E is the set of precedence constraints be-
tween steps. The workflow model we use is similar
to the model used in Action Workfiows [12].

• D e f i n i t i o n 3: A business]low, b f , is a set of
workflows, wi E W, which are triggered directly
or indirectly by an external event (e.g., a customer
request). The set of all business flows is BF.

• D e f i n i t i o n 4: A resource, r E R, is a triple, r =
(Sk, A, P), where (1) Sk is r ' s set of skills; (2) A
is a sequence of t ime blocks tha t indicate when r
is available to perform a step; and (3) P is a set of
performance at t r ibutes tha t increment the values
of performance parameters when r executes a step.

• D e f i n i t i o n 5: A step, v E V, is a triple, v =
(c, SK, P), where: (1) c is a command to be exe-
cuted by v; (2) SK is a set of resource skills neces-
sary to execute e; and (3) P is a set of performance
at tr ibutes tha t increment the values of performance
parameters when v is executed. Conditional state-
ments are also steps. The result of evaluating a
conditional s ta tement determines the next set of
steps to execute in the workflow.

• D e f i n i t i o n 6: A trigger, t E T, is a double, t -~-
(An, N~), where: (1) An is an antecedent, which is
a set of boolean conditions and (2) Nw is a workflow
name. If a An is true, then an instance of the
workflow N~ is activated.

• D e f i n i t i o n 7: A performance goal, Gs, for a busi-
ness information system, S, is a set of goal ele-
ments, Gs = {gel,ge2,...,gen}. A goal element,
ge , is a quadruple, = (b f , p, g, In) , where: (1)
bf E BF; (2) p is a performance parameter for eval-
uating the performance of b f; (3) g is the desired
goal value of a performance parameter , p; and (4)
ffn is a predicate over p and g that returns true if
the current value of p in bf satisfies the goal.

33

Figure 1: Improvement Search Space

• D e f i n i t i o n 8: An operator, op, modifies an in-
stance of the business information system Si to
create a new business information system Sj.

The automatic improvement problem is to determine a
sequence of operators, O P = (opl,op2,...,Opn), that
transform a business information system, Sinitial, into
another business information system, Sgoat, which sat-
isfies a performance goal, Gs.

The automatic improvement problem is complex be-
cause: (1) operators interact by modifying the same
business information system objects and (2) the number
of operators for a large number of steps, triggers, and
resources is large. Operators interact, so the solution
space must be reevaluated after each operator applica-
tion. Thus, the solution space forms a graph of business
information system specifications created by operators
(see Figure 1). The size of this space is exponential in
the number of steps, triggers, and resources, so an auto-
matic improvement mechanism must prune the search
space to make the problem tractable.

ORIGINAL FRAMEWORK
We summarize the original framework's mechanism for
solving the automatic improvement problem. A detailed
description of the original framework can be found in [9].

The original framework implements a best-first search
over the space of business information systems to find a
system that satisfies the performance goals of the busi-
ness. Modifications to the business information system
can be made using operators. In the original framework,
operators for modifying steps, resources, and triggers
are defined. Note that these are the most primitive ob-
jects that define the business information system. Op-
erators are chosen based on the results of a simulation of
the current business information system. Data collected
during the simulation indicates the performance bottle-
necks in the system. In addition, more complex metrics

are computed from the simulation data to estimate the
effect that an application of an operator has on the
performance of the business information system. These
estimates are used by the best-first search algorithm to
choose at each step in the search the operator that leads
to the best predicted performance.

AN EXAMPLE
We test the ability of the framework to improve work-
flow performance using Dowdy and Lowery's JiffyBurger
example [6]. This example is chosen because it is simple,
yet still demonstrates the need for a broad range of
knowledge.

Problem Description
JiffyBurger is a restaurant run by two employees. The
JiffyBurger employees service customers using two steps:
1) taking a customer order and 2) filling a customer
order. The goal is to determine the best workflow for
the two employees to provide hamburgers for their cus-
tomers. The authors suggest five possible workflow and
resource options for performing these steps:

1. C o m m o n - L i n e : Each worker can perform both
steps for each individual customer. Customers wait
in a single line for the next worker to become free.

2. T w i c e - A s - F a s t (T A F) : The two workers work
together on each step. The steps are performed
twice as fast. The customers wait in a single line
for both steps to be completed.

3. S e q u e n t i a l : For every customer, one worker per-
forms one step, and the other worker performs the
other step. There are two customer lines: one for
each step.

4. R a n d o m - L i n e : Each worker can perform both
steps for each individual customer. Customers wait
in a line for a worker to become available. The
choice of line is made randomly.

5. S h o r t e s t - L i n e : Each worker can perform both
steps for each individual customer. Customers wait
in a line for a worker to become available. Each
customer chooses the shortest of the two lines.

Input data for the example are:

• Exponential distribution of arrival and service times
is assumed.

• Average t ime for one worker to perform either job
is 1 minute.

34

1 person L_~lpezson L_~cust
get cash [-~make meal ~ l e a v e s]

Figure 2: Buy -a -bu rger workflow

Figure 3: Common-line workflow

Figure 4: Choose-line workflow

• Average t ime for one worker to perform both jobs
is 2 minutes.

• Average t ime for both workers to perform both jobs
for one customer is 2 minutes.

• Customers enter the store with an average arrival
rate of one customer every 2 minutes.

• If there are 3 customers in line when a new cus-
tomer enters the store, then the new customer leaves
the store.

Figure 5: Make-burger workflow

[] OpUo./Step
Line 1/TO
Line 1/FO
Line 2/TO
Line 2/FO
Common/TO

Avg Service Time I Skills
1 mm. Cash 1
1 mm. Cook 1
1 mm. Cash 2
1 mm. Cook 2

TAF/TO

1 mlIh Cash
Common/FO 1 mm. Cook

0.5 mm. Cash i/Cash 2
TAF/FO
Sequential/TO
Sequential/FO

0.5 mm. Cook 1/Cook 2
1 mm. Cash 1
1 mm. Cook 2

Table 1: Step Definitions for t a k e o r d e r (T 0) and f i l l
order(FO)

are varied, t a k e o r d e r and f i l l o r d e r , are shown in
Table 1. The service t ime for the TAF workflow steps is
half of that of the other steps because the two employees
work together.

The two JiffyBurger employees are the resources in the
example. Resources are defined by the skills that they
can perform. Each employee has ca sh and cook skills,
and skills which determine which employee services which
line. j i f f y - 1 services line 1 (i.e. has the ca sh -1 and
cook-1 skills) and j i f f y - 2 services line 2 (i.e. hasVthe
c a s h - 2 and cook-2 skills).

Business System Specification
The five business flow options in the 3iffyBurger exam-
ple are implemented in our framework using three types
of workflows: 1) store entry; 2) line entry; and 3) order
processing. A customer enters the store and chooses a
line according to the store and line entry workflows,
respectively. The JiffyBurger employees execute the
order processing workflow. The buy-a-burger workflow
(Figure 2) represents the entry of a customer into the
store. The TAF, Common-Line, and Sequential options
all use a single line, so they share the common-l ine
workflow (Figure 3) for line entry. The S h o r t e s t - L i n e
and Remdom-Line options each uses a variation of the
c h o o s e - l i n e workflow (Figure 4) to choose the appro-
priate line. Order processing is represented by several
variations of the m a k e - b u r g e r workflow (Figure 5).

Differences between the JiffyBurger options are repre-
sented by changes in average service t ime and skill re-
quirements in the workflow steps of the m a k e - b u r g e r
workflows. The two steps for which these parameters

ORIGINAL FRAMEWORK RESULTS
We show tha t the original f ramework settles on a solu-
tion that is a local op t imum in all cases for this problem.
We at t r ibute this behavior to a lack of knowledge about
large granulari ty changes, operator pruning, and, to a
lesser extent, the search mechanism.

The performance results for the five options are shown
in Table 2 (where X is throughput in customers per
minute, R is response t ime in minutes, and W is wait-
ing t ime in minutes). The autonomous, common-line
system has the shortest waiting time, while the twice-
as-fast system has the best throughput and response
time. We choose the performance of the TAF option
as the goal for our business. Therefore, we expect the
framework to convert each of the five system options
into the TAF option or some other option that performs
better than the TAF option.

The original framework uses a best-first search algo-

35

II Option x R I w
TAF 0.466 1 .571 0.571

I Sequential 0.423 2.909 0.909
Random-Line 0.423 2.909 0.909
Shortest-Line 0.450 2.333 0.333
Common-Line 0.454 2.202 0.202

Table 2: Queuing Theory Results for the 5 JiffyBurger Options

Initial Option I Best Option
TAF TAF
Sequential Common-Line
Random-Line Random-Line,
Shortest-Line Shortest-Line
Common-Line Common-Line

Table 3: Initial and Best Options Found by the Original
Framework

r i thm to guide the search. The only operators that are
available to the original framework are operators that
modify the atomic entities in the business information
system: the steps, resources, and triggers. These oper-
ators include replace step, delegate step, expand trigger
domain, contract trigger domain, remove trigger, re-
move resource, train resource focus resource(definitions
of these operators are provided in [9]). We are not
permit ted by the constraints of the example to add
resources or remove steps.

Table 3 shows the best option which is generated within
25 iterations of the automatic improvement mechanism
from each of the 5 initial options. We choose 25 itera-
tions because the search space is small, so the framework
should be able to find the solution within 25 iterations.

In each instance, the search mechanism selects a solu-
tion that is a local opt imum. We identified three causes
for this problem:

1. large granularity operators that may move the search
to a significantly different area of the search space
are not available;

2. too many operators that make minute changes are
not pruned; and

3. the best-first search mechanism always chooses the
highest evaluated choice.

Consider the transition from the s e q u e n t i a l option to
the TAF option. This transition requires a sequence of
two operators: (1) convert the t ake o r d e r step from

@

tc

Figure 6: Automatic improvement mechanism

a 1-employee step to a 2-employee step and (2) convert
the :f:i.ll o r d e r step from a 1-employee to a 2-employee
step. The problem is that the workflow specification
that has one 1-employee step and one 2-employee step
performs badly; there is a long waiting t ime for the
employee that performs both steps. Since the frame-
work also generates several other operators that do not
significantly change the performance of the system, the
best-first search mechanism always chooses one of these
other operators instead.

REVISED AUTOMATIC IMPROVEMENT FRAMEWORK
There are two potential sources for the type of knowl-
edge that will improve the framework's performance:
(1) knowledge about improvements to more abstract
concepts and (2) the reengineers' domain knowledge
about system-specific improvements. Knowledge about
how to improve more abstract business system concepts,
such as workflows and departments, enables the frame-
work to make the substantial modifications to the busi-
ness information system that are necessary to escape
a local opt imum. For example, the original framework
knows how to modify the resource requirements of a
single step, but it does not know how generate a work-
flow where the resources are optimized in a specific way
(such as a pipeline). However, this type of knowledge
tends to identify the extremes of the modification pos-
sibilities. To perform more subtle improvements, the
domain knowledge available to the reengineer must be
added to the framework. For example, the reengineer
may know that a specific step in the business can be
implemented faster by a resource with a different skill,
but it is unlikely that a generic framework would have
this knowledge.

Thus, the goal of the revised framework is to enable the
reengineer to develop the knowledge necessary to find
a business information system that satisfies the perfor-
mance goal. The framework can then implement the
search for the satisficing business information system

36

automatically. The framework achieves this goal by: (1)
managing a knowledge representation of improvement
knowledge and (2) utilizing this knowledge to find solu-
tions and to acquire new knowledge from the reengineer.
Our experience indicates that reengineers will extend
the knowledge base in an incremental fashion, so the re-
vised framework is designed to acquire knowledge from
the reengineer as the solution progresses.

Automatic Improvement Knowledge Model
We first define the revised knowledge model. The knowl-
edge model consists of: (1) operator type definitions;
(2) the rules that generate operator instances; and (3)
the metrics that evaluate the effectiveness of operator
instances. Below, we define the concepts in the knowl-
edge model. Note that these definitions supersede the
previous definition of an operator (Definition 8).

• D e f i n i t i o n 9: An simple operator, op, is a quadru-
ple, op = (S i ,a , s ,m) , where: (1) S, is the i th
version of a business information system; (2) a is
an action that op implements (one of add, remove,
or modify s); (3) s (a member of either v 6 V,
r 6 R, t 6 T, w 6 W, bf 6 BF , or Si) is an object
in Si that is modified by op; and (4) m contains
additional arguments for implementing op. When
op is applied to Si, a new business information
system, Sj, results.

• D e f i n i t i o n 10: An compound operator, opt, is a
double, op, = S i ,OP, where: (1) Si is the i th
version of a business information system and (2)
OP is a sequence of operators (either compound or
simple operators) that are used to implement the
compound operator.

• D e f i n i t i o n 11: An operator effects function, is a
function, fne(pj , gej, op), that estimates the effect
that operator op has on the value of the perfor-
mance parameter pj in goal element gej. For a
compound operator, fne combines the effects of its
constituent operators. See [9] for more information
and the definition of specific operator effects func-
tions.

• D e f i n i t i o n 12: An operator type, ty, is a double,
ty = (C, Fne), where C is a set of constructor func-
tions for creating operator instances (called op's,
see below) of operator type ty. Fne is a set of op-
erator effects functions for the parameters changed
by operators of that type (see Definition 13, below).

• D e f i n i t i o n 13: A operator generation rule, roa,
is a double, tog = (cond, act), where cond is an
antecedent condition that must be satisfied before
a new operator is instantiated and act is an action
statement that instantiates an operator of a specific
type using one of its C functions.

The simple operators are the operators applied to a
single step or resource. Compound operators represent
an aggregation of operators, either simple operators or
other compound operators. Thus, an operator of arbi-
trary complexity can be created.

An operator type definition defines a specific type of
change to the business information system. An operator
type is associated with a set of constructor methods that
define how an operator of that type is generated and a
set of operator effects functions for estimating the effect
the operator has on the system's performance. The ef-
fect an operator has on the system determines its evalu-
ation. Operator effects functions are fairly complex and
domain-independent, so we do not expect reengineers to
add operator effects functions.

An operator generation rule is used to specify when
to generate an operator of a specific type. When the
condition of the operator generation rule is true, then an
operator instance of the associated type is created using
the constructor specified in the corresponding action
statement.

A goal of the knowledge model is to assist the reengi-
neers in entering operator generation rules into the knowl-
edge base. Historically, users have had trouble entering
formally correct rules into a knowledge base, so we only
require that the reengineers add modification options to
the system. The framework has performance metrics to
identify performance bottlenecks and knowledge about
the types of operators that can eliminate a bottleneck.

A modification attribute is an at tr ibute of an object that
specifies options for the values of one of the object 's
attributes. Three types of modification attributes can
be specified for an object at tr ibute X: (1) add-X contain
values that can be added to the object 's at tr ibute X; (2)
modi:fy-X contain a set of values that can be used to re-
place the value of X; and (3) remove-X contains the val-
ues that can be removed from X. For example, a resource
has certain skills it uses to perform a task. The mod-
ification at tr ibute a d d - s k i l l s specifies the other skills
that can added to the resource and the effect of this
change on the values of other resource attributes, such
as cost. Whenever an object is identified as a bottleneck
and the modification of at tr ibute add-X, modify-X, or
remove-X may positively affect that bottleneck, then
operators are created using those values. For example,
when a skill is in high demand, resources that can add
that skill using add-X or modify-X are generated. Op-
erator types for each of the modification attributes are
defined to ensure that the reengineer enters the correct
information and to provide operator effects functions for
the attribute.

37

®
From the Reenglneer

BIS Specs Operators
Operator Knowledge
Override Select ons

R~n~n~r

From the Framework
Performance Data
Performance Problems
Generated Operators
Operator Evaluations

Framework

Measure ~ _
Performance

Gather]
Knowledge

Generate I
Operators

Select]
Operator

I
Figure 7: Interaction between reengineer and framework

Automatic Improvement Mechanism
The automatic improvement framework uses an auto-
matic improvement mechanism guide the development
of solutions to the automatic improvement problem. The
automalic improvement mechanism implements a search
as follows (corresponding to stages indicated in Fig-
ure 6):

1. Define an ini t ia l business sys t em that is rep-
resented by the initial vertex in the search space.

2. Measure t he pe r fo rmance of the initial business
information system.

3. G a t h e r knowledge about how the initial business
information system can be improved. Set the per-
formance goal.

4. Unless the performance goal is met, ope ra to r s a r e

gene ra t ed to continue the search. The generation
step includes operator evaluation.

5. Select the nex t ope ra to r in the search space to
simulate.

6. Measure the pe r fo rmance of the initial business
information system.

7. G a t h e r more knowledge about how to improve
the business information system's performance us-
ing the new current vertex as the focal point. This
step is essentially the same as step 3.

8. Repeat starting at step 4.

The framework provides several operator types (many
associated with modification attributes) and operator
generation rules in the initial knowledge base provided
to the reengineer. After the reengineer enters the initial

business information system definition, the mechanism
implements an interaction between the reengineer and
the system shown in Figure 7. The framework interface
provides information to the reengineer at the following
points in the automatic improvement mechanism:

• Measure per formance : Simulate the business
information system and collect performance data.

• G a t h e r (more) knowledge: The framework iden-
tifies performance problem areas in the business
information system.

• Select opera tors : The framework identifies the
current best operator and other operators that ap-
ply, but are not generated due to a lack of values
for modification attributes.

Given this information, a reengineer can provide the
additional knowledge to the framework:

• G a t h e r (more) knowledge: Specify additional
values for modification attributes to specify addi-
tional operators that can be generated.

• G e n e r a t e opera tors : The reengineer can request
that a specific operator be generated by the frame-
work. This operator is added to the current set
of operators for the current business information
system. Also, the reengineer can remove generated
operators.

• Select opera tors : Select another operator as the
next operator that the framework should try.

FRAMEWORK DETAILS
In this section, we detail the way that the reengineer
uses the revised framework to solve the automatic im-
provement problem for the JiffyBurger example.

Initial Knowledge Base
The initial knowledge base contains the definition of
several operator types and operator generation rules.
Primitive operators for steps, resources, and workflow
triggers are defined in [9]. In this section, we define
the new operator types that are available to modify the
more abstract framework concepts. In this example, we
are only permitted to modify the workflows and business
flows, so only operators that apply to these concepts are
defined. The operator generation rule and construction
function of one of these operators are then detailed.

• Pipel ine: Convert the workflow to a pipeline. This
is done by using several modify s tep operators to
assign each step skill to a specific resource (e.g.

38

Collaborate Rule
If response_time(b f) < respo.se_time(ge)
Then collaborate(b f)
/* Increase collaboration in business flow */

Figure 8: Operator Generation Rule for collaborate

cash to c a s h - 1 for the resource assigned to c a s h - l) .
This operator applies when the average response
t ime is greater than the arrival rate.

• G u i d e : Again use modi fy s t e p to assign a skill
to each step in the workflow to serve as a 'guide'
for the business flow (e.g. include the cash skill in
every step). Choose the skill that is required the
longest amount of t ime in the business flow. Use
this operator when the waiting t ime is greater than
the goal value.

• C o l l a b o r a t e : Increase the number of resources
part icipating in each step of the workflow to reduce
step duration. The reengineer must specify the ef-
fect of adding a resource. No change is made if this
effect is not specified. The modify step operator
can be used to redefine the specifications of skills
and effort for the step. This operator should be
run when the response time is greater than the goal
value.

• S i m p l i f y : Add a simplified version of the business
flow to handle the 'easy' cases. Simplification is
done by removing optional steps, such as authoriza-
tion steps. The initial domain for easy cases should
be specified by the reengineer. Several add s t e p
operators compose this operator. This operator
should be run when the response t ime is greater
than the goal value.

We now define an example of a operator generation rule
and constructor function for one of our new operators,
c o l l a b o r a t e (shown in Figure 8). This operator applies
when the response t ime of a business flow is below its
goal value.

The constructor function for collaborate is shown in
Figure 9. This constructor generates a compound op-
erator that consists of a set of simple operators tha t
minimize the t ime it takes to execute each step in the
business flow. The at t r ibute modify-skills contains
the skill (i.e., resource) options for a step. For each
step, the skill set that is est imated to perform the step
in the min imum t ime is found by f i n d _ c o l l a b . I f this is
not the current skill set, then an operator is created to
modify the step's skill set. The c o l l a b o r a t e operator is
composed of these modi fy s t e p operators. If no steps
can increase the collaboration in the business flow, the
operator is deleted.

co l l abo ra t e (b f)

fast_skills a skill s e t / , step's min duration skill set , /
step_op an operator /* op to modify skill set of step */
this an opera tor /* the collaborate operator */
sub_ops a set of ope ra to r s / , the set of step_op in this , /

for step in bf
/ . Find skill set in step's modify-skills that performs
• the step in the minimum duration . /
fast_skills =find_collab(step)
/* If fast_skills is not the step's current skill set
• Modify step's skills attribute to fast_skills . /
if (fast_skills != step->current_skills())

step_op = step->modify("skills ", fast_skills)
/* sub_ops stores step_op's that compose this */
add step_op to sub_ops attribute of this

/ , If no sub_ops, prune this op */
if (!sub_ops)

mark this for deletion

Figure 9: Constructor Function for collaborate

Business System Definition
The specification of the business information system
objects and performance da ta for our example is shown
in the An Example Section. In addition, the reengi-
neer may enter operator generation knowledge using the
modification attributes. Modification at tr ibutes specify
how an object 's definition can be changed. Each system
object has a set of modification attr ibutes, including the
general modification at t r ibute modify-specs. Below,
we list some examples of modification attributes.

• S t e p s

- M o d i f y - E f f o r t : Change the t ime it takes to
execute a step.

- M o d i f y - S k i l l s : Replace the skills required
to execute a step with a new set of skills. A
change in a step's skills also affects the effort
to execute a step.

• W o r k f l o w s

- Add-Steps: Add a step, include its dependen-
cies.

- Mod i fy -S t eps : Replace one or more steps with
these steps.

- Remove-Steps: Steps that can be removed
from the workflow.

• B u s i n e s s F l o w s

- Modify-Workflows: Modify the definitions of
one or more workflows in the business flow.

• R e s o u r c e s

39

- A d d - S k i l l s : A set of skills that this resource
can learn. Any modification to skills may af-
fect the cost of the resource.

- M o d i f y - S k i l l s : Replace the resource's cur-
rent set of skills.

- R e m o v e - S k i l l s : Skills that can be removed
from the resource.

- Modi fy-Cos t : Replace the cost of the resource.

• D e p a r t m e n t s

- Add-Resources : Definition of a resource tha t
can be added.

- Modi fy -Resou rces : Modify the set of resources
available to the depar tment .

- R e m o v e - R e s o u r c e s : Resources tha t can be re-
moved.

- Add-=Workflows: Add a workflow to the de-
pa r tment (note that workflows are associated
with a single department) .

- Remove-Workflows: Workflows that can be
removed from the depar tment .

• B u s i n e s s I n f o r m a t i o n S y s t e m

- Mod i fy -Depa r tmen t s : Modify the specifica-
tions of depar tments in the business.

Measure Performance
The framework measures the performance of the current
business information system and presents the major per-
formance issues to the reengineer. The goal is to focus
the reengineer on the impor tan t performance problems
in the business information system, so the reengineer
may be mot ivated to supply additional knowledge for
the framework to use. The framework presents sum-
mary information about the performance of each busi-
ness flow, so the reengineer can see the performance of
each step and skill in a business flow. The following
are a list of some of the performance problems that are
identified by the framework:

• The step in each business flow tha t accounts for the
most t ime on the critical pa th [11].

• The step in each business flow tha t accounts for the
most slack on the critical pa th [11].

• The skill with the highest average queue waiting
t ime [15].

• The skill in the business flow with the highest av-
erage queue waiting time.

• The step tha t accounts for the highest cost in the
business flow.

[] co~mo~-usE

STEP-NAME
I EFFORT
I VALUE-ADDED
STATE

i RESOURCES
SHORT-NAME

] SKILLS :
J
I
l

CREATE 'i~RDE~
1. 000 MIN
2 . 0 0 0
GET-CASH
CASH-I
"I person get cash"
CASH-1

Figure 10: Operator Specification Interface

Gather Knowledge
Once the reengineer reviews the measurement results,
the reengineer may be able to provide additional domain
knowledge to the framework. This domain knowledge
is provided in the form of modification a t t r ibute val-
ues (see Business Information System Section, above).
However, for some complex modification attr ibutes, we
would like to provide some interface support , so tha t it
becomes relatively straightforward to enter the a t t r ibute
values.

Observing tha t the framework does not t ry the sequence
of operators tha t would generate the TAF option from
any of the other four options, we would like to enter a
rule to generate a compound operator tha t implements
this change. The modify-workflows modification at-
t r ibute of business flows stores modification options for
changing multiple workflows in a business flow. How-
ever, we do not want to burden the reengineer with
too much knowledge about the modification attr ibutes.
Wha t we would like to do is to present the reengineer
with an interface where the reengineer can demonstra te
a modification to a business flow. This modification
is then stored in the modi : fy-workf lows modification
at tr ibute.

The new modification option, called c r e a t e TAF by the
reengineer, is added using the business flow specification
interface (see Figure 10). The reengineer first chooses
the add o p e r a t o r command in the f i l e menu selec-
tion. The reengineer then demonstrates the modifica-
tions tha t would be made to implement the change by
editing each of the business flow's workflows until the re-
sultant definition is created. The modification at t r ibute
stores a specification for changes to a set of workflows
(in the same form as the m o d i f y - s t e p s modification
a t t r ibute of workflows). The specification can be used
to create a compound operator consisting of a set of
modi fy operators on the business flow's steps. The
following modifications are implemented by the c r e a t e
TAF operator:

40

• Modify the choose line step in the buy-a-burger
workflow to choose the common-l ine workflow.

• Modify the g e t cash step in the m a k e - b u r g e r work-
flow to use two skills (ca sh -1 and cash -2) and
reduce the effort to 0.5 minutes.

• Modify the complete meal step in the make-burger
workflow to use two skills (cook-I and cook-2) and
reduce the effort to 0.5 minutes.

The operator effects functions for modify-work: f lows
can be applied to est imate the effect of this operator
on the current business flow. The reengineer can then
see the predicted performance of this operator, so the
reengineer can determine whether to remove or modify
this operator or add other operators.

Generate Operators
Operator generation is implemented in four sequential
steps by four different types of operator generation rules.
The operator generation rule types are listed below in
the sequence that they are used:

• I n d e x i n g : An indexing rule generates an operator
that applies in the current situation. For example,
the operator generation rule for the c o l l a b o r a t e
operator is an indexing rule. A c o l l a b o r a t e oper-
ator can be generated when the response t ime needs
to be reduced.

• I m p l i c a t i o n : An implication rule generates a set
of operators to support the implementat ion of an
operator. For example, if the framework creates
a pipeline operator, additional resources may be
needed to perform the steps in the pipeline. New
operators that add these resources are created and
aggregated with the pipeline operator.

• A g g r e g a t i o n : An aggregation rule creates a com-
pound operator tha t includes a set of operators
that are identified to be compatible by the rule.
For example, if an operator increases the usage of
one skill such that this skill now has the m a x i m u m
queue waiting time, then an operator that reduces
the demand on this skill can be aggregated with it.
Note that the original operators remain in the set
of operators for the current business information
system.

• E l i m i n a t i o n : An elimination rule prunes opera-
tors that are not expected to provide any help. For
example, if we can prove that an operator cannot
perform better than another, we can eliminate it.
Also, we want to eliminate operators tha t have been
applied several t imes in different circumstances, but
do not change the sys tem's performance significantly.

The implementa t ion of implication and aggregation rules
requires tha t the actions of any operators tha t are to
be aggregated do not conflict. For example, we cannot
aggregate two operators tha t change the skill require-
ments for the same step to different values because one
operator will undo the change of the other. We define
two operators as conflicting if they modify overlapping
specification at t r ibutes in different ways. Tha t is, two
operators can modify the specifications of the same ob-
ject as long as they do not modify the value of the same
attr ibute. Also, two operators can modify the same
at t r ibute in the same object as long as they set it to
the same value.

The reengineer may provide input for generating oper-
ators directly by requesting tha t an operator be gener-
ated or removing an operator tha t the system generated.
A reengineer may also request that an operator always
be or never be generated in a run of the automat ic
improvement mechanism. This is essentially the spec-
ification of a condition for an action in an operator
generation rule. We do not provide support to add
conditions, at present, but we think we will need to
permit the reengineers to add simple conditions in the
future.

Select Operators
The search mechanism in the revised framework is mod-
ified to help it avoid local op t ima by: (1) preferring
operators that make greater change and (2) allowing
the mechanism to move to a worse state. Operators
that make a large change can move the search into
a significantly different area of the search space. By
allowing the search algori thm to move to a worse state,
the mechanism may be able to move toward a new, more
global opt ima.

To achieve our goals, we add a simulated annealing
capabili ty to the best-first search mechanism used in
the original framework [16]. Simulated annealing per-
mits the mechanism to choose a worse state with a
probabil i ty that decreases as the search progresses. We
make the simulated annelaing capabili ty sensitive to the
complexity of the operator, so an operator that reduces
the performance of the system when a major change
is made is preferred over an operator that reduces the
performance of the system with a minor change. The
simulated annealing, best-first search mechanism con-
sists of the following components:

• The search algorithm that mainta ins the set of un-
tried operators and their evaluation values and the
best s tate found so far.

• A probability function tha t computes the likelihood
that it is appropriate to select a part icular operator.

41

• An annealing schedule that evolves the probability
that a worse state will be chosen.

The algorithm works as follows. At each iteration in the
search, the untried operators from each search vertex are
collected. These operators include the operator with the
best evaluation value so far. The best evaluation value is
set to the variable B. For each operator, we compute a
probability that the operator is applicable at the present
time using the formula

p ---- e-(B-E)/kT

where: (1) E is that operator 's evaluation; k is the
number of changes necessary to implement the operator;
and, (3) T is the current annealing temperature based
on the annealing schedule, k is the operator complexity
measured by the number of simple operators needed to
implement the operator. The next operator is randomly
chosen from the set of operators whose value for p is
greater than a random number generated between [0,1].
The value for T is computed as follows, T = 1/3n where
n is the number of states examined so far. Exponential
and geometric functions reduce the probability of choos-
ing a worse state too quickly in this example.

REVISED FRAMEWORK RESULTS
The TAF option is found within a few search nodes by
any one of three operators: create TAF, collaborate,
or operator generation rule added by the reengineer in
the Generate Operators Section. It is not guaranteed
that one of these operators will be chosen first due to the
simulated annealing property of the search algorithm.
Sometimes an operator that is not expected to perform
as well is chosen first.

Of course, we have no guarantee of performance im-
provement based on the solution of one simple example,
but we have several reasons to expect more robust per-
formance from the framework. We are pleased that the
framework has multiple ways to find the TAF option. In
the original framework, there is only one way to find
the TAF option, and the original framework continually
rejects this option. Also, we expect better performance
due to the addition of more domain-specific knowledge.
Finally, other types of generation knowledge, such as im-
plication, aggregation, and elimination knowledge will
give the framework more power to make effective deci-
sions.

There still appears to be room for further response t ime
improvement in the TAF options. We see that in the
TAF option both the collecting payment and producing
a burger steps are on the critical path. Our goal is to
remove one of those steps from the critical path. Thus,
we devise the following new option.

Figure 11: Prepare-meal workflow

Figure 12: Fill-order workflow

6. B u r g e r s - R e a d y : The two workers service cus-
tomers together, but when there is t ime they make
burgers. We never allow the surplus of burgers to
exceed 6. The initial number of burgers is set to 6.

The b u r g e r s - r e a d y option involves two separate, par-
allel business flows. In one business flow, a customer
pays for and receives a burger. When there are no cus-
tomers, the second business flow is run to make burgers
for future customers. If a burger has already been made,
the service rate of the workflow is reduced, otherwise
the service rate is the same as the TAF option. The
b u r g e r s - r e a d y operator consists of the following mod-
ifications:

• Create the p r e p a r e - m e a l workflow (shown in Fig-
ure 11).

• Create the : f i l l - o r d e r workflow (shown in Fig-
ure 12).

• In the b u y - a - b u r g e r workflow, replace the c h o o s e
l i n e step with a step that sends a message to trig-
ger the contraon-line workflow.

• Replace the c o m p l e t e meal step in each of the
make-burger , workflow with a step that sends a
message to the : f i l l - o r d e r workflow.

• Add an arrival specification for the p r e p a r e - m e a l
business flow with an arrival rate of 1 every 1.5
minutes and the b u y - a - b u r g e r business flow with
an arrival rate of one every 2 minutes.

The two new workflows define how burgers are made
and how to pick up an already-made or soon-to-be-made
burger. The addition of the new steps specify which
workflows are to be used.

The b u r g e r s - r e a d y option does indeed provide a shorter
response t ime to the customer, but the waiting t ime

42

exceeds tha t of the TAF option. The customer some-
times has to wait for the employees to finish a burger in
progress because the p r e p a r e - b u r g e r workflow is not
preempted when a new customer arrives. Because of
the high waiting t ime, this option does not meet the
performance goal for this business information system.

• R e s p o n s e T i m e : 1.398 min

• T h r o u g h p u t : 0.494 cus tomers /min

• W a i t i n g T i m e : 0.854 min

CONCLUSIONS AND FUTURE WORK
In this paper, we define a knowledge base for the au-
tomat ic improvement of workflow performance. The
knowledge base provides operator generation and selec-
tion knowledge tha t guides the au tomat ic improvement
framework to find a business information system spec-
ification tha t satisfies a performance goal. The reengi-
neers generally have access to valuable domain-specific
knowledge tha t enables further improvement to the busi-
ness information system. Therefore, a knowledge acqui-
sition tool tha t poses performance problems and collects
candidate solution has also been constructed.

The addition of the improvement knowledge base en-
ables us to easily solve our example problem. In fact,
we are even able to specify a new modification option
tha t further reduces the response time. The waiting
t ime is higher than the goal value, however. Of course,
we cannot guarantee performance based on the solution
of one simple example, but many of the issues of a large
problem are represented here. We believe that we have
made progress in the areas of: (1) collection of domain
knowledge; (2) reducing susceptibility to local opt ima;
and, (3) defining the types of knowledge required in the
framework. We expect tha t additional interface tools
will be necessary to enter domain-specific knowledge,
such as operator generation rules, however.

The main improvement to the current framework is to
improve the access techniques available to the reengi-
neer. A reengineer may want to request a specific piece
of information from the framework. We need a declar-
ative query language for the performance da ta and im-
provement knowledge base, so the reengineer can ex-
press these requests. Scalability remains an unresolved
issue, al though we are confident tha t we can control the
problem size using techniques such as PrM's models [14]
and further l imits to the amount of calculation per ob-
ject.

References

[1] T. E. Anderson and E. D. Lazowska. Quartz: A
Tool for Tuning Parallel Program Performance. In
SIGMETRICS 1990, pages 115-125, 1990.

[2] A. Badiru. A Simulation Approach to PERT Network
Analysis. Simulation, pages 245-255, October 1991.

[3] R. Bhaskar et al. Analyzing and re-engineering business
processes using simulation. In Proceedings of the 1994
Winter Simulation Conference, pages 1206-1213, 1994.

[4] E. W. Brehm, R. T. Goettge, and F. W. McCaleb.
START/ES - An Expert System Tool for Performance
and Reliability Analysis. In Computer Performance
Evaluation '9~: Modeling Techniques and Tools, pages
107-119, 1993.

[5] T. Davenport. Process Innovation: Reengineering Work
through Information Technology. Harvard Busines
School Press, 1993.

[6] L. Dowdy and C. Lowery. P.S. to Operating Systems.
Prentice-Hall, 1993.

[7] M. Hammer and J. Champy. Reengineering the
Corporation: A Manifesto for Business Revolution.
Harper Business, 1993.

[8] H. J. Harrington. Business Process Improvement: The
Breakthrough Strategy for Total Quality, Productivity,
and Comptetiveness. McGraw-Hill, 1991.

[9] T. Jaeger, A. Prakash, and M. Ishikawa. A Framework
for the Automatic Improvement of Workitows to
Meet Performance Goals. In Proceedings of the 6th
Conference on Tools with Artificial Intelligence, pages
640-646, 1994.

[10] R.K. Keller et al. The Macrotec toolset for CASE-based
business modelling. In 1EEE Sixth Int'l Workshop on
CASE, pages 114-118, 1993.

[11] K. P. Lockyer and J. H. Gordon. An Introduction to
Critical Path Analysis. Pitman, 1991.

[12] It. Medina-Mora, T. Winograd, R. Flores, and
F. Flores. The Action Workflow Approach to Workflow
Management Technology. In CSCW 9P Proceedings,
pages 281-288, November 1992.

[13] B. P. Miller et al. IPS-2: The Second Generation of a
Parallel Program Measurement System. 1EEE Trans.
on PDS, 1(2):206-217, 1990.

[14] A. Opdahl and A. Solvberg. A Framework for
Performance Engineering during Information System
Development. In Advanced Information System
Engineering, pages 65-87. Springer-Verlag, 1992.

[15] A. Ravindran, D. T. Phillips, and Solberg J. J.
Operations Research. John Wiley and Sons, 1987.

[16] E. Rich and K. Knight. Artificial Intelligence. McGraw-
Hill, 1991.

ACKNOWLEDGEMENTS
We thank the anonymous referees for their many helpful
comments .

43

