
458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

Concurrency Control
and View Notification Algorithms

for Collaborative Replicated Objects
Robert Strom, Guruduth Banavar, Kevan Miller,

Atul Prakash, Member, IEEE Computer Society, and Michael Ward

Abstract—This paper describes algorithms for implementing a high-level programming model for synchronous distributed
groupware applications. In this model, several application data objects may be atomically updated, and these objects automatically
maintain consistency with their replicas using an optimistic algorithm. Changes to these objects may be optimistically or
pessimistically observed by view objects by taking consistent snapshots. The algorithms for both update propagation and view
notification are based upon optimistic guess propagation principles adapted for fast commit by using primary copy replication
techniques. The main contribution of the paper is the synthesis of these two algorithmic techniques—guess propagation and primary
copy replication—for implementing a framework that is easy to program to and is well suited for the needs of groupware
applications.

Index Terms—Groupware, model-view-controller programming paradigm, replicated objects, optimistic concurrency control,
optimistic views, pessimistic views.

—————————— ✦ ——————————

1 INTRODUCTION

YNCHRONOUS distributed groupware applications are
finding larger audiences and increased interest with the

popularity of the World Wide Web. Major browsers include
loosely integrated groupware applications like chat and
whiteboards. With browser functionality extensible through
programmability (Java applets, plug-ins, ActiveX), addi-
tional groupware applications can be easily introduced to a
large community of potential users. These applications may
vary from simple collaborative form filling to collaborative
visualization applications to group navigation tools.

Synchronous collaborative applications can be built us-
ing either a nonreplicated application architecture or a rep-
licated application architecture. In a nonreplicated archi-
tecture, only one instance of the application executes and
GUI events are multicast to all the clients, via systems such
as shared X servers [1]. In a replicated architecture, each
user runs an application; the applications are usually iden-
tical, and the state or the GUI is “shared” by synchronously
mirroring changes to the state of one copy to each of the
others [7], [14].

In this paper, we assume that replicated architectures are
used because they generally have the potential to provide
better interactive responsiveness and fault tolerance, as us-
ers join and leave collaborative sessions. However, the do-

main of synchronous collaborative applications is broader
than those supported by a fully replicated application ar-
chitecture. For example,

•� the applications may have different GUIs and even dif-
ferent functionality, sharing only the replicated state,

•� the shared state may not be the entire application
state, and

•� an application may engage in several independent col-
laborations, e.g., one with a financial planner, another
with an accountant, and each collaboration may involve
replication of a different subset of the application state.

In order to support the development of such a large va-
riety of applications, it is clearly beneficial to build a gen-
eral application development framework. We have identi-
fied the following requirements for such a framework:

•� From the end-user’s perspective, collaborative appli-
cations built using the framework must be highly re-
sponsive. That is, the GUI must be as responsive as a
single user GUI at sites that initiate updates, and the
response latency at remote sites must be minimal.
Second, collaborative applications must provide suffi-
cient awareness of ongoing collaborations.

•� From the perspective of the developer of collaborative
applications, the framework must be application-
independent and high-level. That is, it must be capa-
ble of expressing a wide variety of collaborative ap-
plications. Second, the developer should not be re-
quired to be proficient in distributed communica-
tion protocols, thread synchronization, contention,
and other complexities of concurrent distributed
programming.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� R. Strom, G. Banavar, K. Miller, and M. Ward are with the IBM T.J. Wat-
son Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532.
E-mail: {strom, banavar, klm, mjw}@watson.ibm.com.

•� A. Prakash is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109.
�E-mail: aprakash@umich.edu.

Manuscript received 1 April 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106309.

S

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 459

We have implemented a framework called DECAF (Dis-
tributed, Extensible Collaborative Application Framework)
that meets the above requirements. Our framework extends
the well-known Model-View-Controller paradigm of object-
based application development [11]. In the MVC paradigm,
used in GUI-oriented systems such as Smalltalk and Inter-
Views [13], view objects can be attached to model objects in
order to track changes to model objects. Views are typically
GUI components (e.g., a graph or a window) that display
the state of their attached model objects; model objects
contain the actual application data. Controllers, which are
typically event handlers, receive input events as a result of
user gestures and, in response, invoke operations to read
and write the state of model objects. Updated model objects
then notify their attached views of the change, so that each
attached view may recompute itself based on the new val-
ues. The MVC paradigm has several beneficial properties,
such as

1)�modular separation of application state components
from presentation components, and

2)� the ability to incrementally track dependencies be-
tween such components.

To support groupware applications, DECAF extends the
MVC paradigm as indicated in Fig. 1. First, the framework
supplies generic collaborative model objects, such as Inte-
gers, Strings, Vectors, etc., to application developers. These
model objects can have replica relations with model objects
across applications, so that replicated groupware applica-
tions can be easily built. Second, it provides atomicity guar-
antees to updates on model objects, even if multiple objects
are modified as part of an update. The framework auto-
matically and atomically propagates all updates to replicas
of model objects and their attached views. Third, writers
can choose whether views see updates to model objects as
they occur (optimistic) or only after commit (pessimistic).
Fourth, applications can dynamically establish collabora-
tions between selected model objects at the local site and
model objects in remote applications. Finally, users may
also code authorization monitors to restrict access to sensitive
objects.

In this paper, we first introduce the basic concepts of the
DECAF framework (Section 2). Next, we describe the dis-
tributed algorithms that implement consistent update
propagation (Section 3) and view notification (Section 4).
Then, we discuss performance of DECAF and experience
with using DECAF (Section 5). Next, we discuss related
work (Section 6). Finally, we present some concluding re-
marks (Section 7).

2 THE DECAF FRAMEWORK

As mentioned earlier, DECAF extends the Model-View-
Controller paradigm [11]. DECAF model object classes are
supplied by the framework; the application programmer
simply instantiates them. In Fig. 1, A and its replica A¢, B
and its replica B¢, and C are model objects. The application
programmer writes views and controllers, which initiate
transactions. In Fig. 1, a controller initiates transaction T
that reads or updates objects A¢ and B¢. A view V is notified

when either B¢ or C¢ changes and it can choose to read them
when it is notified. In the following subsections, we de-
scribe the key concepts in the framework and the atomicity
guarantees on access to model objects provided by the
DECAF infrastructure.

2.1 Model Objects
Model objects hold application state. All model objects al-
low reading, writing, and attaching views.

There are three kinds of model objects:

1)�Scalar model objects, which currently are of types in-
teger, real, and string;

2)�Composite model objects, which support operations to
embed and to remove other model objects, called chil-
dren; currently supported composite model objects in-
clude lists (linearly indexed sequences of children)
and tuples (collections of children indexed by a key);
and

3)�Association model objects, which are used to track
membership in collaborations.

Model objects can join and leave replica relationships with
other model objects. The value of an association object is a set
of replica relationships that are bundled together for some
application purpose. Each replica relationship in the associa-
tion object contains the set of model objects that have joined,
together with their sites and object descriptions.

The operations on association objects relevant to this pa-
per are join and leave, by which a model object joins or
leaves a particular replica relationship, as described in Sec-
tion 2.6.

2.2 Replica Relationships
A replica relationship is a collection of model objects, usu-
ally spanning multiple applications, which are required to
mirror one another’s value. Replica relationships are sym-
metric and transitive. Model objects in a replica relationship
are said to be joined in collaboration with each other. They
are also referred to as being replicas of each other.

2.3 Controllers
A controller is an object that responds to end-user initiated
actions, such as typing on the keyboard, clicking or drag-
ging the mouse, etc. A controller may initiate transactions to
update collaborative model objects. A controller may also
perform other external interactions with the end user.

Fig. 1. Typical structure of DECAF applications.

460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

2.4 Transactions
Transactions on model objects are executed by invoking an
execute method on a transaction object. Application pro-
grammers may define transaction objects, with their associ-
ated execute method, for actions that need to execute
atomically with respect to updates from other users. The
execute method may contain arbitrary code to read and
write model objects within the application. Any changes to
model objects will be automatically propagated to their
replicas.

An example based on Fig. 1 illustrates a simple transac-
tion object. In the figure, consider objects A¢ and B¢ in col-
laborative application A2 to hold the balances of two ac-
counts. A transaction object XferTrans that transfers an
amount xferAmt from the model object A¢ (coded as Ap) to
B¢ (coded as Bp) can be written in Java, as shown in Fig. 2.

The execution of a transaction is an atomic action. That
is, it behaves as if all its operations—those of the execute
method and those that propagate changed values to repli-
cas—take place at a single instant of time with respect to
operations of other transactions, i.e., the transaction is to-
tally ordered with respect to the times of all the other trans-
actions in the system.

Atomicity is implemented optimistically in DECAF.
Transactions may abort due to a concurrency control con-
flict, e.g., if two transactions originated at different sites and
each transaction guessed that it read and updated a certain
value of a replicated object before the other transaction did,
then one of the transactions will abort.

Transactions aborted due to concurrency control conflicts
are automatically reexecuted at the originating site. For
most groupware applications, implicit reexecution is the
desired behavior by users because transactions usually re-
sult from some user action; otherwise, users will have to
explicitly redo events that generated the transaction.

A transaction may also be explicitly programmed to be
aborted without retry by throwing an exception within the
transaction. Any exceptions that arise during the execution
of a transaction are guaranteed to be caught, since DECAF’s
transaction thread will catch them if the application does
not. Any uncaught exceptions are turned into transaction
aborts, so faulty applications will not be able to create in-
consistent states or crash the entire application. In case of
an abort due to uncaught exception, the transaction is not
retried and a standard method, called handleAbort(), is
called on the transaction object so that user can be notified
if desired by the application.

2.5 View Objects
A view object is a user-defined object that can be dynami-
cally attached to one or more model objects. When a view is
attached to a model object, that view object will be able to
track changes to the model object by receiving update notifi-
cations as calls to its update method. If a view object is at-
tached to a composite model object, it will receive notifica-
tions for changes to the composite as well as to any of its
children. The purpose of a view object is to compute some
function, e.g., a graphical rendering, of some or all of the
model objects it is attached to.

When the view object receives an update notification, its

update method may take a state snapshot by reading any of
the model objects that it is attached to. State snapshots are
guaranteed by the infrastructure to be atomic actions—be-
having as if they are instantaneous with respect to update
transactions from controllers. Besides taking a state snap-
shot, the update method may initiate new transactions and
perform arbitrary external interactions, such as rendering
on the display, printing, and playing audio data.

Each update notification contains a list of all objects, and
only such objects that have changed value since the last
notification. Objects not on this list may be assumed not to
have changed value. This information allows a view object
to recompute its function more efficiently, for example,
when only a part of a composite object has changed.

2.5.1 Optimistic and Pessimistic Views
View objects can be either optimistic or pessimistic. Optimis-
tic and pessimistic views differ in the protocols for delivery
of update notifications. Optimistic views are designed for
responsiveness to updates, whereas pessimistic views are
designed for observing only committed updates.

Pessimistic views receive update notifications only when
a transaction updating an attached model object commits.
The system makes two guarantees to a pessimistic view:

1)� to never show any uncommitted or inconsistent val-
ues and

2)� to show all committed values in monotonic order of
applied updates.

An optimistic view will receive an update notification as
soon as possible after a transaction that changes any of its
attached model objects executes locally, but perhaps before
its changes have propagated globally and before it com-
mits. The state snapshot taken by an optimistic view after
an update notification, therefore, may read uncommitted
state, which could eventually prove to be inconsistent if the
transaction aborts. If an optimistic view ever takes an in-
consistent snapshot, the infrastructure will eventually exe-
cute a superseding update notification. Therefore, so long
as the system eventually reaches a quiescent state, the final
snapshot taken before the system quiesces will be correct.

class XferTrans implements Transaction {
XferTrans (DecafFloat Ap,

 DecafFloat Bp,
 float xferAmt)

{
/* initialize object’s private data */

}
public void execute () {

if (Ap - xferAmt >= 0) {
Ap.setValueTo(Ap.floatValue() - xferAmt);
Bp.setValueTo(Bp.floatValue() + xferAmt);

} else {
throw new RuntimeException

(“Can’t transfer more than balance”);
}

}
public void handleAbort (Exception e)
{/* take appropriate action */}

/* private data */
}

Fig. 2. Code for a transaction object to transfer balances.

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 461

An optimistic view will receive a commit notification (as a
call to its commit method) whenever its most recent update
notification is known to have been from a committed state.
Committed state snapshots are always consistent and al-
ways occur in monotonic order. An optimistic view there-
fore trades off accuracy and the risk of wasted work in ex-
change for responsiveness.

To illustrate, an optimistic view object BalanceView that
displays the value of the account balance model object Bp of
the previous example can be written in Java, as shown in
Fig. 3. The update method displays the value of the model
object in a different color than the commit method, so that
the end-user can be aware of the optimistic nature of the
update notification.

2.6 Collaboration Establishment
Consider a user that is running a DECAF application A and
wishes to have another application B, usually belonging to
another user, establish replica relationships with objects in
A. For establishment of such relationships, the following
steps must occur:

•� Application A must create replica relationships, if
they do not already exist, that are joined by objects
that it wishes to share with B.

•� Application A must create an association object Aassoc
containing those replica relationships.

•� Application A must then publicize the right to make
replicas of its objects by creating an external token,
called an invitation, containing a reference to Aassoc
somewhere where application B can access it (e.g., on
a bulletin board).

•� Application B, usually at the request of its owner,
must then import this invitation and use it to instanti-
ate its own association object Bassoc. Object Bassoc
must then be authorized to reveal Aassoc’s replica
relationships.

•� B can then read the value of Bassoc, discover the ex-
istence of replica relationships, and issue join com-
mands to establish relationships with its objects.

Since association objects are also model objects, and can
have views attached to them, changes in membership in
associations are signaled as update notifications in exactly
the same way as changes in values of data objects.

3 CONCURRENCY CONTROL

This section describes the optimistic concurrency control
algorithms for propagating updates among model objects
in replica relationships.

Each transaction is started at some originating site, where
it is assigned a unique virtual time (VT) prior to execution.
The VT is computed as a Lamport time [12], including a site
identifier to guarantee uniqueness.

When a transaction is initiated, a transaction implementation
object is created at the originating site. When updates are
propagated to remote replicas, transaction implementation
objects are created at those sites. Each transaction implemen-
tation object at a site contains: the VT of the transaction, refer-
ences to all model objects updated by the transaction at that
site, and state update information to carry out the update.

Each model object holds:

•� Value History: The value history is a set of pairs of
values and VT’s, sorted by VT. The value with the lat-
est VT is called the current value.

•� Replication Graph History: This is a similarly indexed
set of replication graphs. A replication graph is a con-
nected multigraph whose nodes are references to
model objects, and whose multi-edges are the replica-
tion relations built by the users. It includes the current
model object and all other model objects that are di-
rectly or indirectly required to be replicas of the cur-
rent model object as a result of replication relations. In
practice, replication graphs change infrequently.

Histories are garbage-collected as transactions commit.
Committal makes old values no longer needed for view
snapshots or for rollback after abort, thus, they are dis-
carded. Since replication graphs in practice change infre-
quently, usually replication graph history will contain only
a single graph after garbage collection.

There is a function which maps replication graphs to a
selected node in that graph. The node is called the primary
copy and the site of that node is called the primary site,
adapting a replication technique used by Chu and Heller-
stein [5] and others. The correctness of the concurrency
control algorithm is based upon the fact that the order of
updates of replicas is guaranteed to match the order of the
corresponding updates at the primary copy, and the VT of
each value read at a replica matches the VT of the corre-
sponding value read at the primary copy. Whenever the
originating site of a transaction is not the primary site of
some of the objects read or written by a transaction, the
transaction executes optimistically, guessing that the reads
and updates performed at the originating site will execute
the same way when reexecuted at the primary sites. If these
guesses are eventually confirmed, the transaction is said to
commit. If not, the effects of the transaction are undone at all
sites, and the transaction is retried at the originating site.
This strategy is derived from the optimistic guess propaga-
tion principles defined in Strom and Yemini [16], and ap-
plied to a number of distributed systems (e.g., optimistic
call streaming [2] and Hope [6]). However, our algorithm
makes certain specializations to reduce message traffic.

class BalanceView extends TextField
implements OptView

{
BalanceView (DecafFloat Bp, /*...*/) {

/* initialize view’s private data */
Bp.attach(this);

}
public void update (/*... */) {

textField.setForeground(Color.red);
textField.setText(acctBal.toString());

}
public void commit () {

textField.setForeground(Color.black);
}

/* private data */
}

Fig. 3. Code for an optimistic view object to show balance.

462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

3.1 Concurrency Control for Scalar Model Objects
When a transaction T is first executed, it is assigned a vir-

tual time, which we call tT. As it executes, the transaction
reads and/or modifies one or more model objects at the
originating site. Each model object records each operation
in the transaction implementation object. For each model
object M read, the transaction implementation object rec-
ords the read time tR

M , where tR
M is defined as the VT when

the current value was written. For “blind writes” (writes
into objects not read by the transaction), tR

M is defined as

equal to tT. The transaction object additionally records the

graph time tG
M , defined as the VT that M’s replication graph

was last changed.
Consider a transaction T given in Fig. 4 that originated at

some site. T is assigned a VT tT = 100. The current values of
W, X, Y, and Z at tT are:

•� W = 4, last written at VT 80;
•� X = 2, written at VT 60;
•� Y = 3, written at VT 70; and
•� Z = 6, written at VT 40.

Assuming all replication graphs were initialized at VT 10
(not shown in the figure), after transaction execution, the
transaction implementation object will record the following:

•� Read object W, tR
W = 80 , tG

W = 10 ;

•� Read object X, tR
X = 60 , tG

X = 10 ;

•� Update object Y, tR
Y = 100 , value 2, tG

Y = 10 ;

•� Update object Z, tR
Z = 40 , value 9, tG

Z = 10 .

Observe that the update to Y is a “blind write,” since Y
was not read in this transaction; hence, t tR

Y
T= = 100 .

The transaction implementation object next distributes
the modifications to all replicas of the above model object.1

The transaction requests each primary copy to “reserve” a

region of time between tR
M and tT as write-free. Since replica

graphs can also change (albeit slowly), the transaction must

also reserve a region of time between tG
M and tT as free of

graph updates.
As mentioned earlier, the originating site of the transac-

tion executes optimistically, guessing that its reads and up-
dates will be conflict-free at each primary copy. Specifically,
the validity of the transaction depends upon the following
types of guesses:

•� “Read committed” (RC) guesses: That each model
object value (or graph) read by the transaction was
written by a committed transaction.

•� “Read latest” (RL) guesses: That, for each value (or
graph) of model object M read by transaction T, no
write of M by another transaction occurred (or will
occur) at the primary copy between tR

M (or tG
M) and

the transaction’s tT. This guess implies that the primary

1. For scalar objects, such as integers, it suffices to distribute the final
value; for composite objects, it is usually efficient to distribute the change as
an increment change. These differences are important for reducing the
communications bandwidth, but they do not affect the concurrency control
algorithm.

site would have read the same version of the object
had the transaction executed pessimistically. For blind
writes, the RL guess check is trivially satisfied.

•� “No conflict” (NC) guesses: That, for each model ob-
ject value (or graph) written by the transaction, no
other transaction reserved at the primary copy a
write-free region of time containing the transaction’s
VT. This guess implies that the primary site would
not invalidate previously confirmed reads by con-
firming this write.

For RC guesses, the originating site simply records the
VT of the transaction that wrote the uncommitted value
that was read. The originating site will not commit its
transaction until the transaction at the recorded VT com-
mits. For each uncommitted transaction T at a site, a list of
other transactions at the site which have guessed that T will
commit is maintained.

The RL and NC guesses are all checked at the site of the
primary copy of an object M. The RL guess checks that no
value (or graph) update has occurred between tR

M (or tG
M)

and tT, and if this check succeeds, creates a write-free reserva-
tion for this interval so that no conflicting write will be
made in the future; the NC guess checks that no write-free

reservation has been made for an interval including tT.
For each object M read but not written, a message is sent

to the primary copy (if it is at a remote site). This message

contains tR
M , tG

M , and tT. Each primary copy object then veri-
fies the RL guesses for values and graphs. A confirmation
message is then issued, confirming or denying the guess. In
the general Strom-Yemini approach [16], this confirmation
message would be broadcast to all sites. But, in the DECAF

implementation, this confirmation is sent only to the origi-
nating site. It is a property of our DECAF implementation

Fig. 4. Example of transaction execution.

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 463

that the originating site always knows the totality of sites
affected by its transaction by commit/abort time. Therefore,
the originating site is in a position to wait for all confirma-
tions to arrive and then to forward a summary commit or
abort of the transaction as a whole to all other sites. This
avoids the need for each primary copy to communicate
with all nonprimary sites, and it avoids the needs for non-
primary remote sites to be aware of guesses other than the

summary guess that “the transaction at virtual time tT

commits”.
For each object M modified by T we send a message to

all relevant sites, containing tR
M , tG

M , tT, and the new value.
However, while all sites, other than the primary site, simply
apply the update at the appropriate VT, the primary site
additionally performs the RL and NC guess checks and
then sends a confirmation message to the originating site.

The originating site waits for confirmations of guesses
from remote primary sites. If all guesses for a transaction
are confirmed, the originating site commits the transaction
and sends a commit message to all remote sites that re-
ceived update messages. If any guess is denied, the origi-
nating site aborts the transaction and sends an abort mes-
sage to all remote sites. The originating site then reexecutes
the transaction.

If a site detects that a transaction at VT has committed, the
modified model objects at that site are informed. This notifi-
cation can be used to schedule view notifications and even-
tually to garbage-collect histories. The site retains the fact
that the transaction has committed so that if any future up-
date messages arrive, the updates are considered committed.

If a transaction is aborted, the modified model objects
are informed so that the value at VT can be purged from the
history. The site retains the fact that the transaction has
aborted so that if any future update messages arrive, the
updates are ignored.

A further optimization is performed in the case where a
transaction has only one remote primary site, a common
case in two-party and even multiparty collaborations. As-
sume there is only one remote primary site and that there

are no RC guesses (all the objects read by the transaction
were already committed). In that case, rather than wait-
ing for the single primary site to send a confirmation
back to the originating site (which would then send a
summary commit), the originating site “delegates” the
responsibility for committing the whole transaction to
the single remote primary site. In that case, the message
would contain the site identifiers of all the remote sites
affected by the transaction.

Besides two-party collaborations, the above optimization
is applicable to many other DECAF applications. In many
applications, all the objects affected by a transaction are
replicated at all the sites, resulting in isomorphic replica
graphs for all the objects. Our primary site selection algo-
rithm, which simply computes a function of the replication
graph, thus selects the same primary site for all objects in
such a case. Therefore, transactions in such applications
either have no remote primary site or have a single remote
primary site.

Let us examine how these algorithms would apply in
our example, shown in Fig. 5. Suppose there are four sites,
and that W and X are replicated at sites 1, 2, and 3, while Y
and Z are replicated at sites 2, 3, and 4. Suppose that T is
initiated at site 2. Suppose further that the primary site of W
and X is 1, and of Y and Z is 4. Ignoring graph times and
graph updates for now, and assuming that the three current
values read by the transaction were committed (hence,
there are no RC guesses), the following messages are sent
from site 2 after the transaction is applied locally (we per-
form the obvious optimization of sending messages only to
relevant sites):

1)�To site 1: CONFIRM-READ t t tT R
W

R
X= = =100 80 60, ,

2)�To sites 3 and 4: WRITE t t YT R
Y= = =100 100 2, , ,

tR
Z = 40 , Z = 9

Site 1 checks that W is write-free for the VT range from
80 to 100 (RL guess check) and that X is write-free for the
VT range from 60 to 100 (RL guess check). If so, it reserves
those times as write-free and sends a CONFIRM to site 2.

Fig. 5. Example of update propagation.

t ZR
Z = =40 9,Z = 9

464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

Site 3 simply applies the updates to its Y and Z replica
objects.

Site 4 checks that Z is write-free for the VT range from 40
to 100 (RL guess check). If so, it reserves those times as
write-free. It also checks that writing Y or Z at VT 100 does
not conflict with any previously made read reservations
(NC guess checks). If all the above checks succeed, it ap-
plies the updates and sends a CONFIRM to site 2.

Site 2 awaits both responses. If both are confirmations, it
sends COMMIT 100 to all other sites involved.

If, instead of sites 1 and 4, site 3 were the primary site for
all the model objects involved, then the delegate commit
optimization would apply. Site 2 would send site 3 the pa-
rameter “delegate commit” and the list of replica sites on
the message containing the WRITE and CONFIRM-READ
requests. Site 3 would then directly send COMMIT 100 to
all other sites rather than returning a response to site 2.

3.2 Concurrency Control for Composite Model
Objects

Although the concurrency control algorithm is the same for
composite objects as for scalar objects, it is desirable to save
space by not keeping a separate replication graph for each
object inside a composite. That is, if composite A is a replica
of composite A¢ and A¢¢ (see Fig. 6), we wish to avoid en-
coding inside object A[103] the information that it is a rep-
lica of objects A¢[103] and A¢¢[103].

Our approach is that, by default, an object embedded
within a composite inherits the replication graph of its root;
e.g., A[103]’s replicas would be at the same sites as A’s rep-
licas, at the corresponding index (103). Similarly, if A[103] is
itself a composite object, its embedded objects, e.g.,
A[103][John][12] would be replicated at the same sites.

The set of indices between the root and a given object is
called its path; when an object such as A[103][John][12] is
modified, the change and the path to A are then sent by A to
its replicas A¢ and A¢¢, which then use the same path name,
[103][John][12], to propagate the update to their correspond-
ing components A¢[103][John][12] and A¢¢[103][John][12]. We
call this technique indirect propagation of updates, in contrast
to the direct propagation technique discussed earlier, in
which each object holds its own replication graph and
communicates directly to its replicas.

In addition to saving space, indirect replication avoids
the problem in direct replication that small changes to the
embedding structure could end up changing a large num-

ber of objects. For example, if indirect replication were not
used, adding a new replica A¢¢¢ to the set {A, A¢, A¢¢} would
entail updating the replication graph for every object em-
bedded within A and its replicas. Similarly, removing
A[103] from A would entail updating the replication graph
for every object embedded within A[103].

3.2.1 Adjustments to Support Indirect Propagation
There are two adjustments that have to be made to ensure
the correctness of the concurrency control algorithm in the
presence of indirect propagation.

The first has to do with the relative order of list items. A
transaction at VT 100 may modify A[103][John][12] without
having seen that an earlier transaction at VT 80 that deleted
A[5] so that what the originating site thinks of as A[103]
may appear to some other sites to be A[102]. This is not a
concurrency control conflict, because the two transactions
read/update different objects. It is simply a consequence of
the fact that path names like [103][John][12] are fragile. To
overcome this, in addition to using the actual list index in a
path name, the propagation algorithm includes the VT at
which the object was updated as a tag to the index—e.g., if
A[103] was embedded in A by a transaction at VT 40, then
40 is used as a tag to the index 103.

A composite object receiving such an indirect propaga-
tion message can always propagate it down the tree re-
gardless of the order in which it has received other struc-
ture-changing operations. During such a propagation, if it
is determined (using the VT tag) that an earlier path
changing update has not yet been received, the propagation
will block until the earlier update is received.

The second adjustment has to do with guesses associated
with the paths for indirect object propagation. The updated
model objects must make RC guesses to ensure that trans-
actions that created their paths have committed and RL
guesses that no straggling transactions have removed any
component of their paths.

3.2.2 When Indirect Propagation Is Not Possible
Indirect propagation is the default mode of propagating
value updates to objects within composites. However, indi-
rect propagation is not always possible. Consider the con-
figuration in Fig. 7. In this case, node C can indirectly
propagate changes to C¢, but node B cannot because it has a
different set of replicas than the rest of the tree. We there-
fore use direct replication for objects B, B¢, and B¢¢.

If indirect propagation were used, then a transaction that
originates at Site 1 and updates B could propagate the up-
date to B¢ at Site 2, but the originating site would not know
about Site 3 and object B¢¢. We could require Site 2 to propa-
gate the update from B¢ to B¢¢ independently (transitive
propagation), but that introduces problems in committing
the transaction. So far, it has always been the case that the
originating site (or a site delegated by the originating site)
is in a position to know all the guesses on which a transac-
tion depends, and is able to send summary commit mes-
sages to all sites when those guesses are all confirmed. If
Site 2 were to propagate the update to B¢¢, it would require
the use of a nested transaction protocol, complicating the
concurrency control algorithm.

Fig. 6. Replicas of composite model objects.

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 465

Fig. 7. Indirect propagation not possible for this case.

Rather than introducing a nested transaction protocol, we
avoid the problem by using direct rather than indirect propa-
gation for node B. That is, the replication graph of object B at
all sites, including Site 1, includes both B¢ and B¢¢. Note that the
case shown in Fig. 7 occurs only when there is replication
among both roots and nonroots of composites or when there is
aliasing and, thus, non-tree-structured composites result.

In our implementation, indirect propagation is the de-
fault. Once a collaborating node is embedded within an-
other collaborating node (either because it was previously
collaborating and is now embedded, or because it was pre-
viously embedded and is now collaborating, or because the
parent node was previously noncollaborating and is now
collaborating), that node switches to direct propagation,
and a propagation graph is sent to all replicas. The parent
node notifies the collaborating embedded node of all
changes to its replica graph.

3.3 Dynamic Collaboration Establishment
The set of replica relations between objects remains relatively
static. Most transactions change the values of objects rather
than the replication graphs. But, replication graphs do change,
as users join and leave collaborations. Direct propagation
graphs for embedded objects inside composites can also
change as a result of deleting objects from composites and em-
bedding them elsewhere. Dynamic collaboration establish-
ment transactions need not be especially fast, but they must
work correctly in conjunction with all the other transactions.

We have already seen some of the effects of dynamic
collaboration establishment in the algorithms described
above. Replication multigraphs are timestamped with the
transaction’s VT that changed them. There is no “negotia-
tion” for primary copy; recall that each node is able to map
a given multigraph to the identity of the primary site for
that configuration. A primary copy always confirms the RL
guess that the graph hasn’t changed, as well as confirming
whatever else it is being asked to check; this guards against
the possibility that the originating site is propagating to the
wrong set of sites or that it is asking the wrong primary
copy because of a graph change that it hasn’t seen yet. A
primary copy always reserves the graph against changes
during a region of time that a previously confirmed trans-
action has assumed to be change-free.

Additionally, our algorithm does not include a distrib-
uted “election” procedure for primary copies. The election
procedure is implicit in the constant function mapping
graphs to primary copies. As a result, there is no phase
during which updates are not possible because a primary
site is being chosen.

It remains to show the protocol for joining (or leaving)
collaborations. Let us assume that a model object A is al-

ready collaborating with one or more model objects. It is
going to join a collaboration with a number of other model
objects including B.

When A’s owner initiates a transaction including the op-
eration of A joining B’s replica relationship via Aassoc (see
Section 2.6), the following happens:

•� The value of Aassoc is read. It contains a reference to
one of the objects in the replica relationship A is try-
ing to join, in this case, B. The value is then optimisti-
cally updated to reflect that A has joined the relation-
ship. This is treated for concurrency control purposes
like the read and update of any other value—that is,
the current value is used optimistically, and the new
value is broadcast, but a request for confirmation is
sent to Aassoc’s primary copy.

•� A remote call is made to B, sending it A’s replication
graph gA.

•� B computes as the return value: B’s replication graph
gB, B’s value, and, if objects embedded in B are using
direct propagation, their replication graphs as well.
The return value is sent back to A.

•� In parallel, B merges gA and gB, passing this merged
value to all B’s replicas. This update must be con-
firmed by gB’s primary site, and the confirmation re-
turned to A via a separate message (unless gB’s pri-
mary site is itself the site of B).

•� If the current value of gB is uncommitted, then this
fact is remembered at B, and A is additionally notified
in the reply that it must wait for the transaction that
wrote this value to commit.

•� When A receives the value of B and the graph(s) gB, A
merges gB with gA and passes this merged graph (to-
gether with the value of B) to all A’s replicas. This
update must be confirmed by gA’s primary site, and
the confirmation returned to A via a separate message
(unless gA’s primary site is itself the site of A).

•� A’s site can commit when it has heard:

a)� that gA’s primary site confirmed the update of the
replication graph,

b)� that gB’s primary site confirmed the update of the
replication graph,

c)� if necessary, that the transactions that wrote the
value of gA and gB have committed, and

d)�that Aassoc’s primary copy has confirmed.

Although this protocol is more complex because of the
need for A to make a remote call to B, it remains the case
that the originating site always knows the totality of sites to
which it must send a commit or abort. Therefore, it remains
true that sites other than the originating site need only re-
member their dependency on a transaction identified by a
particular virtual time.

3.4 Dealing with Client Failures
A client in a collaborative environment may abruptly quit
or kill their session, e.g., by quitting the Web browser that
launched the collaborative applet. Connectivity to a client
may also be lost, for instance, if the client is connected over
a modem and the modem drops the connection. Since such
situations can occur during a collaboration, we describe our

466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

solution to making the concurrency control protocol resil-
ient to such client failures.

For the above failures, we assume that the underlying
communication infrastructure provides notification of such
failures and, as common in systems such as ISIS [4], presents
them to the application as fail-stop failures—further com-
munication with failed or disconnected clients is prevented
by the communication layer until these clients rejoin the col-
laboration by going through a join protocol as new members.

For transactions that are in progress during a site failure,
the protocol needs to be resilient to the following types of
failures:

1)� failure of an originating site of a transaction and
2)� failure of a primary site for a transaction.

If the originating site fails, the remaining sites, upon failure
notification, simply determine if any of them received a
commit message, which are logged and garbage collected,
regarding the transaction. If so, the transaction is commit-
ted at all the sites; else, it is aborted. If the primary site fails
before the transaction commits, the transaction is aborted; it
is retried later after the graph update has committed and a
new primary site is identified to coordinate the transaction.

When the sites are notified of a site failure, the replica-
tion graphs of various objects that were at the failed site
need to be updated using timestamped transactions. This is
not a problem as long as the primary site for a replication
graph is not the failed site; the primary site can coordinate
the transaction for that replication graph. If the primary site
for coordinating updates to a replication graph is the one
that failed, then there is a circularity problem—a primary to
coordinate the update to the replication graph cannot be
determined until the graph update has committed because
the primary site is a function of the replication graph, but a
primary site is needed to commit the transaction. To break
the circularity, we simply use an alternative protocol to
commit the graph update as an atomic action. The remain-
ing sites use a distributed consensus protocol to first com-
mit any conflicting transactions that are known by any of
them to have committed, abort any other transactions that
conflict with the replication graph update transaction, and,
then, apply the graph update at a common virtual time. If
the underlying communication layer reports failures during
this protocol, the protocol is repeated until all the fail notifi-
cations are successfully applied to the graphs. This consen-
sus-based protocol is slower than our primary-site based
commit protocol for other transactions, but, in practice, is
satisfactory because ungraceful site crashes are rare com-
pared to other transactions.

4 VIEW NOTIFICATION

This section describes the algorithms for implementing the
view notification semantics given in Section 2.5.

When a transaction implementation object completes
executing at a site (that originated the transaction or not),
the DECAF infrastructure initiates view notifications to be sent
to all the view objects attached to the model objects up-
dated in the transaction. View object attachments are al-
ways local, i.e., views are always attached to model objects

at the same site. Thus, a view notification is simply a
method call to the update method implemented by the
view object. The update method can contain arbitrary code
that takes a state snapshot by reading the view’s attached
model objects and recomputes its display. The infrastruc-
ture guarantees that such a state snapshot is implicitly a
consistent atomic action.

For every view notification initiated, a snapshot object is cre-
ated internal to the DECAF infrastructure. All the snapshots
associated with a particular user level view object are man-
aged internally by a view proxy object. Each model object
contains the set of view proxies corresponding to its views,
which it notifies upon receiving an update or a commit.

Since a snapshot is an atomic action, it is assigned a vir-
tual time tS. Each snapshot is assumed to read all the model
objects attached to the view at VT tS. These reads may be
optimistic; hence, as described in Section 3.1, their validity
depends upon the read values being the latest (RL guess)
and the read values being committed (RC guess). An RC
guess, but not an RL guess, is needed for values updated at
tS. Confirming RL guesses involves remote communication
with the primary copies of the objects read in the snapshot.
If the RL and RC guesses are confirmed for each attached
object, the snapshot is said to commit.

Optimistic and pessimistic views differ in two respects.
First, they differ in the time at which view notifications are
scheduled. Optimistic notifications are scheduled as early as
possible, i.e., as soon as a transaction executes locally and
updates an attached model object. Pessimistic notifications
are scheduled after it is known that the snapshot will be
valid, i.e., that the view will read consistent committed val-
ues. Second, they differ in the lossiness of notifications. Pes-
simistic views are notified losslessly of every committed up-
date in monotonic order of updates, whereas optimistic
views are only notified of the latest update. That is, if a
straggling update occurred at a VT earlier than that of the
latest snapshot, that update is not notified to an optimistic
view. Subsections 4.1 and 4.2 describe these behaviors in
more detail.

As described in Section 2.5, view notifications are incre-
mental, i.e., each notification provides only that part of the
attached model object state that has changed since the last
notification. However, for the sake of simplicity, the algo-
rithms presented in this section do not incorporate incre-
mentality; each snapshot is assumed to read the set of at-
tached model objects in its entirety. Furthermore, notifica-
tions may be bundled to enhance performance, i.e., a single
view notification may be delivered for multiple model ob-
jects that were updated in a single transaction.

4.1 Optimistic Views
Fig. 8 shows an optimistic view V attached to model objects
A and B. The view proxy object VP manages delivery of
view notifications to V. A and B have committed current
values (i.e., values with the latest VT) at VT’s 100 and 80,
respectively. A transaction T runs at VT 110 and updates A,
which notifies its view proxy VP.

The primary requirement of optimistic views is fast re-
sponse. Consequently, as soon as VP is notified, it performs
the following:

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 467

1)�It creates a snapshot object and assigns it a VT tS equal
to the greatest of the VT’s of the current values of all
attached model objects. In this case, tS = 110.

2)�It schedules a view notification, i.e., calls the view V’s
update method.

At the end of the snapshot, the snapshot object records
that all attached model objects were read at tS. In order for
the snapshot in this example to commit, two guesses must be
confirmed (as before, we ignore guesses related to the graph):

1)�An RC guess that the update to A by transaction T at
VT 110 has committed. This requires receiving a
COMMIT message from the site that originated trans-
action T. (No RL guess is required for A.)

1)�An RL guess that the VT interval from 80 to 110 is up-
date free for B. This requires sending a CONFIRM-
READ message to B’s primary copy and waiting for
the response.

Eventually, if these guesses are confirmed, then the snap-
shot commits, and a commit notification is sent to V, i.e., its
commit method is called.

If, on the other hand, an RC guess turns out to be false,
the view proxy reruns the snapshot with a new tS. In the
example of Fig. 8, if the RC guess was denied as a result of
transaction T at VT 110 aborting, a new snapshot is run.
This snapshot will have tS = 100, since that is now the
greatest VT of the current values of all attached model ob-
jects. Notice from this example that optimistic view notifi-
cations are not necessarily in monotonic VT order.

In the case that an RL guess is denied by the primary
copy, that means that the requested interval is not update
free and, thus, a straggler update is yet to arrive at the
guessing site. In this case, the straggler itself will eventually
arrive and cause a rerun of the view notification. In the ex-
ample in Fig. 8, if the RL guess was denied as a result of a
straggler update to B at VT 105, the update at VT 105 will
trigger a new view notification at tS = 110.

This algorithm implements the liveness rule for optimis-
tic views that an update notification is followed either by a
commit notification or, in the case of an invalid optimistic
guess or a subsequent update, a new update notification.

An optimistic view proxy maintains at most one un-
committed snapshot—the one with the latest tS—at any
given time. If a new update arrives before the current snap-
shot has committed, then we’re obliged to notify the new
update to the view due to the responsiveness requirement.
The system may as well discard the old snapshot since
there is no way to notify the view of its commit (as we don’t
expose VT’s to views). As a result, an optimistic view gets a
commit notification only when the system quiesces, that is,
when no new updates are initiated in the system before
existing updates are committed.

4.2 Pessimistic Views
Recall that the system makes two guarantees to a pessimis-
tic view:

1)�never to show any uncommitted values, and
2)� to show all committed values in monotonic order of

applied updates.

A pessimistic view proxy initiates a snapshot at every VT
for which one or more of its attached model objects receive
a committed update. However, it doesn’t schedule a view
notification for the snapshot until the snapshot commits.
Snapshot committal depends on

1)� the validity of model object reads at the snapshot’s tS,
and

2)�whether its preceding snapshots have already com-
mitted (this is due to the monotonicity requirement).

When one or more snapshots commit, the view is notified,
once for each committed snapshot, in VT sequence. Thus,
unlike an optimistic proxy, a pessimistic proxy manages
several uncommitted snapshots.

A pessimistic view proxy thus contains a list of snapshot
objects sorted by VT. It also contains a field lastNotifiedVT,
which is the VT of the last update notification.

To illustrate pessimistic view notification, let us say that
the view V in the example of Fig. 8 is a pessimistic view.
Suppose that lastNotifiedVT = 80. Suppose, further, that the
snapshot at VT 100 is as yet uncommitted and, thus, A’s
committed update at VT 100 is not yet notified. When the
transaction at VT 110 commits, it informs the model object
A, which, in turn, informs the pessimistic view proxy VP.
VP creates a snapshot object, assigns it a tS = 110, and rec-
ords the following guesses:

1)�An RL guess that the VT interval from 100 to 110 is
free of committed updates for A. This stems from the
monotonicity requirement. This requires sending a
CONFIRM-READ message to A’s primary copy and
waiting for a response.

2)�An RL guess that the VT interval from 100 to 110 is
free of committed updates for B. This requires a CON-
FIRM-READ message as above.

Eventually, if all the guesses made by a particular snap-
shot object are confirmed and, if it is the earliest snapshot
since lastNotifiedVT, it commits. A view notification is
scheduled, and lastNotifiedVT is updated. This may result in
other contiguous committed snapshots after lastNotifiedVT
to be scheduled as well.

Fig. 8. View notification.

468 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

A straggling committed update, say at VT 105 for B in
the example, may cause an RL guess to be negated. In this
case, when the straggling committed update is notified to
the proxy, a new snapshot is created at VT 105 as given
above. Additionally, the RL guess made by the succeeding
snapshot at VT 110 (guess 2 above) is revised to be for the
VT interval from 105 to 110 for B.

This algorithm implements the consistency and
monotonicity requirements for pessimistic views.

5 DISCUSSION

5.1 Performance Analysis
DECAF provides fast response and fast commit to views,
assuming a low conflict rate (i.e., transaction retry rate) in
typical collaborative use.

5.1.1 Commit Latency
Let the average network latency of a single point-to-point
message be t ms. Assume that processing of a message is
negligible compared to the average latency. Say a transac-
tion updates m model objects, each of which has its own
replicas. The site originating the transaction applies the
updates immediately, giving interactive response time for
notifications to optimistic views at the originating site. Each
of the replica sites receives the update with one message, in
t ms, resulting in low latency for notifications to optimistic
views at the replica sites.

The transaction commits when all of the m primary copies
confirm back to the originating site (after 2t ms), and each of
the replica sites receives a commit message. Thus, a transaction
commits in 2t ms at the originating site and in 3t ms at other
sites. If a transaction’s read/write set includes only objects
from a single primary site, then the protocol is even faster. If
the single primary site happens to be the same as the origi-
nating site, then the transaction commits immediately at the
originating site and in t ms at all other sites; if the single pri-
mary site is anywhere else, then the transaction commits in t
ms at that site and in 2t ms elsewhere. A commit notification to
an optimistic view is as fast as an update notification to a pes-
simistic view, which is described below.

5.1.2 View Notification Latency
Say a pessimistic view has n objects attached to it. A par-
ticular transaction may update some or all of these n ob-
jects. An update notification is scheduled to the view after
the updating transaction commits (which takes 3t ms) and
all of the n primary copies confirm that there are no con-
flicts (see Section 4.2). However, these latter confirmations
proceed concurrently with the confirmations required for
the transaction’s commit. Thus, it takes only 2t ms to notify
an update to a pessimistic view at the originating site. Fur-
thermore, it takes no more than 3t ms to notify an update to
a pessimistic view at a nonoriginating site. This is because,
for objects that are updated in the transaction, confirma-
tions are eagerly distributed by the primary copy when the
originating site requests confirmation; thus, it takes 2t ms
from the start of the transaction. For objects that are being
viewed but were not updated by the transaction, the view
proxy explicitly requests confirmation as soon as the update

is received, after t ms. Thus, confirmation responses will
have arrived in 3t ms.

In general, an optimistic view notification will occur 2t
ms before the corresponding pessimistic view notification.
On the other hand, an optimistic view may experience one
of the following three types of deviations from the “ideal”
notification sequence of one notification per committed
transaction:

1)� lost updates, which occur when an update message for
a model object M arrives with a virtual time earlier
than that of a previously processed update message
for M, in which case the message with the earlier vir-
tual time does not yield a notification;

2)�update inconsistencies, which occur when an update is
delivered to an object M, but the transaction is later
rolled back;

3)� read inconsistencies, which occur when a view is ob-
serving model objects M1 and M2, and receives an
update notification for M1, and, subsequently, an up-
date message for M2 arrives with an earlier virtual
time.

In an application in which all operations are “blind
writes” (e.g., a whiteboard or a collaborative form), there
are no update inconsistencies, because concurrency control
tests never fail. However, lost updates and read inconsis-
tencies may still occur.

5.1.3 Scalability
In DECAF’s environment, there are two different dimensions
of scalability: size of collaboration group and size of net-
work. Although we believe our concurrency control algo-
rithm scales well to large groups, in our opinion, in such
environments, issues of fault tolerance dominate and, there-
fore, we consider the question of scalability to very large
groups to be beyond the scope of this paper.

With respect to size of networks, the main advantage of
the DECAF algorithms derives from its use of a different
primary site for each collaboration set, rather than the use of
a network-wide global sweep. Previous systems for group-
ware (e.g., COAST [15], ORESTE [10]) have employed algo-
rithms based on a global sweep, such as Jefferson’s Global
Virtual Time algorithm [9]. In such systems, commit speed
depends upon the frequency of global sweeps. In Jefferson’s
original applications of Global Virtual Time, there was no
hurry to commit, since commit messages were primarily
used to garbage-collect message queues. But, in a collabora-
tive application, commit messages are needed to enable the
notification of pessimistic views, and, therefore, they directly
affect responsiveness. In a hypothetical example of a very
large network with large numbers of relatively small replica
sets (e.g., replicas at sites A, B, and C, at sites C, D, and E, at
E, F, and G, etc.) the sweep to compute a GVT can be very
time-consuming, since it is proportional to the size of the
network. But, in our algorithm, each replica set will have its
own primary site, and each transaction will require confir-
mations from a very small number of such primary sites.

5.2 Status and Experience
A prototype implementation of the DECAF framework has
been completed in the Java programming language. The

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 469

framework currently supports scalar model objects, trans-
actions, and optimistic and pessimistic views. The imple-
mentations of these objects use the algorithms described in
this paper.

DECAF has been evaluated so far in two types of scenar-
ios: realistic groupware applications and performance
benchmarks. The realistic applications were useful for
evaluating subjective factors, such as ease of programming,
learning curve, etc., but were not suitable for performance
analysis. The benchmarks were simpler applications de-
signed to ascertain the working limits of the algorithms and
the differential properties of optimistic and pessimistic
views.

5.2.1 Groupware Applications
Several collaborative applications have been successfully
built using the current prototype implementation. These
include several groupware applications that allow an in-
surance agent to help clients understand insurance prod-
ucts via data visualization and to fill out insurance forms, a
multi-user chat program, and simple games. Our prelimi-
nary experience is that it is easy to write new applications
or to modify existing programs to use our MVC program-
ming paradigm. Optimistic views have been very useful
due to their fast response, and also due to the low conflict
rate in typical use. Pessimistic views have also been useful
for views that want to track all committed changes to the
values of model object.

5.2.2 Benchmarks
Benchmarks were built to evaluate

1)�how quickly optimistic and pessimistic views re-
sponded under light load conditions;

2)�how conflict rate affected lost messages and rollbacks.

A fuller discussion appears in our research report [3].
Latency of optimistic and pessimistic views was meas-

ured under a range of artificially induced network delays,
and the observed latencies closely matched the analytical
expectations.

Under loaded conditions, transactions involving only
blind-writes were measured to determine the impact on
optimistic views due to lost updates. Even at rates of one
update per second from both parties of a two-party collabo-
ration, the lost update rate was below 20.1 percent.

Many collaborative applications do not care about lost
updates, since the end user is only interested in knowing
the latest value of a shared object: a lost update will usually
be indistinguishable from two updates in rapid succession.
However, “glitches” due to temporary inconsistencies
might be more troublesome in some applications.

Measurements show that, for transactions involving both
reads and writes and one party updating once per second
on the average, an update rate by a second party of once
per three seconds or more produced rollback rates below
2 percent; at higher update rates, rollbacks were frequent
enough to produce significant rates of update inconsisten-
cies. This suggests that it may be desirable to suppress op-
timism when conflict rates exceed a certain threshold.

5.3 Future Work
DECAF is currently being integrated into a complete envi-
ronment for programming collaborative applications. This
environment includes facilities for collaboration session
management, audio and video streaming, and a variety of
pluggable components with which application program-
mers can build entire collaborative solutions. In addition,
several optimizations described in this paper are forth-
coming, including commit delegation, faster commit of
snapshots, and incremental propagation. We are also incor-
porating a persistence store and recovery from a variety of
failures into the algorithms of DECAF.

6 RELATED WORK

The DECAF framework is designed for collaborative work
among a small and, possibly, widely distributed collection
of users. Consistency, responsiveness, and ease of pro-
gramming are important objectives.

ISIS [4] provides programming primitives for consis-
tent replication, although its implementation strategies are
pessimistic.

Interactive groupware systems have different perform-
ance requirements and usage characteristics from data-
bases, leading to different choices for concurrency control
algorithms. First, almost all databases use pessimistic
concurrency control because it gives much better through-
put, a major goal of databases. In interactive groupware
systems, on the other hand, pessimistic concurrency control
strategies are not always suitable because of impact on re-
sponse times to user actions—ensuring interactive response
time is often more important than throughput. Second, pos-
sibilities of conflicts among transactions is lower in group-
ware systems because people typically use social protocols
to avoid most of the conflicts in parallel work.

Optimistic protocols based on Jefferson’s Time Warp [9]
were originally designed for distributed simulation envi-
ronments. They have been successfully applied in other
application areas as well [8]. However, one important char-
acteristic of distributed simulation is that there is usually an
urgency to compute the final result, but not necessarily to
commit the intermediate steps. In these protocols, the pri-
mary purpose of “committing” is to free up space in the
logs, not to make the system state accessible to view. But, in
a cooperative work environment such as ours, fast commit
is essential. The delay associated with waiting for, at most,
a single primary site per model object in DECAF is typically
considerably less than a Time Warp style global sweep of
the system would be.

The ORESTE [10] implementation provides a useful model
in which programmers define high-level operations and spec-
ify their commutativity and masking relations. One drawback
is that there are no high-level operations on multiple objects
nor are there ways of combining multiple high-level opera-
tions into transactions. To get the effect of transactions, one
must combine what are normally thought of as multiple ob-
jects into single objects and, then, define new single-operand
operations whose effects are equivalent to the effects of the
transaction. One must then explicitly specify the interactions
between the new operations and all the other operations.

470 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

There is also a subtle difference between the correctness
requirements in DECAF and in ORESTE. This difference re-
sults from the fact that ORESTE only considers quiescent
state—the analysis does not consider “read transactions”
(e.g., snapshots) that can coexist with “update transac-
tions”. For instance, in the ORESTE model, a transaction
that changes an object’s color can reasonably be said to
commute with a transaction that moves an object from
container A to container B, since for example, starting with
a red object at A and applying both “change to blue” and
“move to B” yields a blue object at B, regardless of the order
in which the operations are applied. But, once views or
read-only transactions or system state in nonquiescent con-
ditions is taken into account, some sites might see a transi-
tion in which a blue object was at A and others a transition
in which a red object was at B.

Finally, in ORESTE a state cannot be committed to an
external view until it is known that there is no straggler;
this involves a global sweep analogous to Jefferson’s Global
Virtual Time algorithm. As described in Section 5.1, this
could be problem when there is a widely distributed net-
work of independent collaborations.

A recent system, COAST [15], also attempts to use opti-
mistic execution of transactions with the MVC paradigm
for supporting groupware applications. Key differences
with our system are the following. First, COAST only sup-
ports optimistic views. Second, concurrency algorithms
used in COAST assume that all model objects in the appli-
cation are shared among all participants. Furthermore, the
optimistic algorithm implemented in COAST is based on a
variation of the ORESTE algorithm discussed above.
COAST cannot, therefore, be used in applications that re-
quire pessimistic views or require one application to share
one set of model objects with one application and another
set of model objects with another set of applications.

7 CONCLUSIONS

The DECAF framework’s major objectives are ease of pro-
gramming, and responsiveness in the context of systems of
collaborating applications.

The ease of programming is achieved primarily through
hiding all concerns about distribution, multi-threading, and
concurrency from users. Programmers write at a high level,
using the Model-View-Controller paradigm, and our im-
plementation transparently converts operations on model
objects to operations on distributed replicated model ob-
jects. The View Notification algorithm automatically sched-
ules view snapshots at appropriate times and also allows
views to respond efficiently to small changes to large ob-
jects. Model objects for standard data types (Integers,
Strings, etc.) and collections (e.g., Vectors) are provided as
part of the DECAF infrastructure.

The responsiveness results from the use of optimism
combined with the fast commit protocol of the primary
copy algorithm. If a transaction updates objects A and B,
then a view of B¢, a replica of B, sees the commit as soon as
A’s primary site and B’s primary site have each notified the
originating site that the updates are nonconflicting, and the
originating site has notified B¢’s site that the transaction has

committed. This is a small delay, even for a pessimistic
view. Users can get even more rapid response time using
optimistic views, and most of the time their optimistic view
will later be committed with the same speed as the pessi-
mistic view.

Our experience with using DECAF has shown the archi-
tecture and algorithms to be well suited for a variety of
groupware applications.

ACKNOWLEDGMENTS

We gratefully acknowledge Gary Anderson’s input to the de-
sign of our framework. He has also built several collaborative
applications and components on top of our framework.

REFERENCES

[1]� H.M. Adbel-Wahab and M.A. Feit, “XTV: A Framework for Shar-
ing X Window Clients in Remote Synchronous Collaboration,”
Proc. IEEE Tricomm ‘91: Comm. for Distributed Applications and Sys-
tems, Apr. 1991.

[2]� D.F. Bacon and R.E. Strom, “Optimistic Parallelization of Com-
municating Sequential Processes,” Proc. Third ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming, Apr. 1991.

[3]� G. Banavar, S. Bhola, K. Miller, B. Mukherjee, and M. Ward, “The
Tradeoff of Responsiveness versus Regularity in Optimistic
Groupware,” Forthcoming IBM T.J. Watson Research Center tech-
nical report, 1997.

[4]� K. Birman, A. Schiper, and P. Stephenson, “LightWeight Causal
and Atomic Group Multicast,” ACM Trans. Computer Systems, vol. 9,
no. 3, pp. 272-314, Aug. 1991.

[5]� W. Chu and J. Hellerstein, “The Exclusive-Writer Approach to
Updating Replicated Files in Distributed Processing Systems,”
IEEE Trans. Computers, vol. 34, no. 6, pp. 489-500, June 1985.

[6]� C. Cowan and H.L. Lutfiyya, “A Wait-Free Algorithm for Opti-
mistic Programming: Hope Realized,” Proc. Int’l Conf. Distributed
Computing Systems, pp. 484-493, Piscataway, N.J., 1996.

[7]� C. Ellis, S.J. Gibbs, and G. Rein, “Concurrency Control in Group-
ware Systems,” Proc. ACM SIGMOD ‘89 Conf. Management of Data,
pp. 399-407, 1989.

[8]� D. Jefferson and A. Motro, “The Time Warp Mechanism for Data-
base Concurrency Control,” Proc. Int’l Conf. Data Eng., pp. 474-
481, Los Angeles, Feb. 1986.

[9]� D.R. Jefferson, “Virtual Time,” ACM Trans. Programming Languages
and Systems, vol. 7, no. 3, pp. 404-425, July 1985.

[10]� A. Karsenty and M. Beaudouin-Lafon, “An Algorithm for Dis-
tributed Groupware Applications,” Proc. Int’l Conf. Distributed
Computing Systems, 1993.

[11]� G.E. Krasner and S.T. Pope, “A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80,” J. Ob-
ject Oriented Programming (JOOP), vol. 1, no. 3, pp. 26-49, Aug. 1988.

[12]� L. Lamport, “Time, Clocks, and the Ordering of Events in a Distrib-
uted System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[13]� M.A. Linton, P.R. Calder, and J.M. Vlissides, “InterViews: A C++
Graphical Interface Toolkit,” Proc. USENIX C++ Workshop, p. 11,
Santa Fe, N.M., Nov. 1987.

[14]� A. Prakash and H.S. Shim, “DistView: Support for Building Effi-
cient Collaborative Applications Using Replicated Objects,” Proc.
Fifth ACM Conf. Computer-Supported Cooperative Work, pp. 153-164,
Oct. 1994.

[15]� C. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake, “De-
signing Object-Oriented Synchronous Groupware with COAST,”
Proc. Computer Supported Collaborative Work CSCW, Boston, Nov.
1996.

[16]� R.E. Strom and S.A Yemini, “Synthesizing Distributed and Parallel
Programs Through Optimistic Transformations,” Current Advances
in Distributed Computing and Communications, Y. Yemini, ed., pp. 234-
256. Rockville, Md.: Computer Science Press, 1987.

STROM ET AL.: CONCURRENCY CONTROL AND VIEW NOTIFICATION ALGORITHMS FOR COLLABORATIVE REPLICATED OJBECTS 471

Robert Strom graduated from Harvard Univer-
sity in 1966, and completed his postgraduate
studies at Washington University in 1971. Since
1977, he has been a research staff member at
the IBM T.J. Watson Research Center. His main
interests are in programming languages, distrib-
uted systems, and environments for distributed
computing. His major research contributions
include the Hermes distributed programming
language, a secure, high-level, object-based
distributed language; and Optimistic Recovery, a

protocol for asynchronous recovery in distributed systems. His current
area of research is enhancing and broadening the publish/subscribe
paradigm.

Guruduth Banavar was awarded a PhD in
computer science by the University of Utah in
1995 for his work in developing a new object-
oriented class component technology and ap-
plying it in innovative ways to flexibly compose a
variety of new and legacy components. He is a
research staff member at the IBM T.J. Watson
Research Center. His current research interests
are in middleware and application frameworks
for developing distributed applications.

Kevan Miller received a BS degree in computer
science from Furman University in 1982 and an
MS degree in computer science from Columbia
University in 1995. He is an advisory software
engineer at the IBM T.J. Watson Research Cen-
ter. He joined IBM in 1982 in IBM’s Networking
Division. He has worked at the T.J. Watson Re-
search Center since 1990. His research interests
include distributed computing, application
frameworks, and software engineering.

Atul Prakash received his BTech degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, and his MS and PhD
degrees in computer science from the University
of California at Berkeley. He is an associate
professor in the Department of Electrical Engi-
neering and Computer Science at the University
of Michigan. His research interests include com-
puter-supported cooperative work (CSCW), dis-
tributed systems, security, multimedia, and soft-
ware engineering. He has served on several

program committees, including the ACM CSCW Conferences, the
European CSCW conferences, and the IEEE ICDCS conference. His
work has been supported by both government and industry, including
the U.S. National Science Foundation, the U.S. National Security
Agency, NASA, Hitachi Software Engineering Ltd, IBM, and Bellcore.
The work described in this paper was done while Dr. Prakash was on
sabbatical leave to the IBM Watson Research Center and during sub-
sequent consulting with IBM.

Michael Ward received a BS in mathematics in
1973 from the University of Illinois. He is a senior
software engineer at the IBM T.J. Watson Re-
search Center, where he manages the Collabo-
rative Frameworks group. His current research
interests are in middleware to support distributed
applications on wide-area networks.

