

Introduction to Processes and Threads

Readings: Tanenbaum, 2.1-2.2.4.

Sample questions that this topic addresses:

What is a process and why is it a useful concept?

What is a thread and why is it useful?

What is the difference between a process and a thread? Why two
concepts?

Uniprogramming and multiprogramming

Process state versus thread state

Examples from OSes

Keeping track of processes and threads

Running multiple threads on a single CPU

Processes

We want to run multiple jobs at the same time on a system. Historically, it
was to make better use of the CPU.

 With many things happening at once in a system, need some way of
separating them all out cleanly so that they are protected from each
other and appear to be independent activities. That is a process.

 Important concept: decomposition. Given hard problem, chop
it up into several simpler problems that can be solved
separately.

What is a process?

An intuitive definition is just a running piece of code along
with all the things that the code can affect or be affected by.

Key aspect of a process: Processes protected from each other.
Each process is given the illusion that it has protected state.
What constitutes process state?

Is a process the same as a program?

Threads

� What happens if a process needs to do multiple things in parallel?

o Editor waiting for input, while doing some formatting or
backup in background.

o A web browser fetching a document from a server while
allowing user to interact with the displayed windows.

o A web server handling multiple user requests in parallel.

A thread can touch all the address space of its process no memory
protection between threads within a process. This is normally good: we
want threads to cooperate with each other.

� Why separate Threads and Processes?

� Creating threads: normally a create_thread() call that takes a
function pointer and a parameter as an argument.

� Thread status:

o Show a state diagram showing the state transitions between
different status of a thread.

• Created, Runnable, Running, Blocked, Done
(Zombie), Done

� Thread State kept in thread control block

o Some state shared by all threads in a process: global variables,
address space, open file handles.

o Some state "private" to each thread each thread has its own
copy: program counter, registers, execution stack (What is the
execution stack?).

o Note that there is no enforced protection between threads in the
same process. A poorly-coded thread can overwrite the stack of
another thread, for example, trashing it.

Example OSes

� MS/DOS, MacOS: 1 address space, one thread per address space

� Traditional Unix: multiple address spaces, one thread/address space

� Mach, Solaris, VMS, HPUX, NT: multiple address spaces, multiple
threads per address space

Inter-thread and Inter-process communication

Readings for this topic:

Tanenbaum: Section 2.3.

Questions:

Why do processes/threads need to communicate?

What are race conditions?

Why is atomicity important?

Independent Threads

Independent thread: one that can't affect or be affected by the rest of
the universe.

Its state isn't shared in any way by any other thread.

Deterministic: input state alone determines results.

Reproducible.

Can stop and restart with no bad effects (only time varies). Example: a
program that sums the integers from 1 to 100.

Cooperating threads/processes:

Machine must model the social structures of the people that use it. People
cooperate, so machine must support that cooperation. Cooperation means
shared state, e.g. a single file system shared among multiple user
processes.

Cooperating threads are those that communicate via share state.

Problem with cooperating threads:

• Results may be non-deterministic

• They may not be easy to reproduce. Debugging can be difficult

Example:

• one process writes ``ABC'' to the terminal,

• another process writes ``CBA'' to the same terminal.

What are the potential outputs on the terminal? Are these cooperating
processes? How?

When discussing concurrent threads, a single CPU vs. multiple CPU does
not matter. Both lead to equally unpredictable results in the above
example, assuming that, with a single CPU, the context-switch among
threads can occur at any time.

• A given thread runs on only one processor at a time.

• A thread may run on different processors at different times (move
state, assume processors are identical).

• Cannot distinguish multiprocessing from multiprogramming on a
very fine grain.

Basic assumption for multi-threaded programs is that the order of some
operations is irrelevant; certain operations are independent of certain other
operations. Only a few things matter:

Example: A = 1; B = 2; has same result as B = 2; A = 1;

Another example: A = B+1; B = 2*B. Results depend on the order of
operations.

Another example: suppose A = 1 and A = 2 are executed in parallel. What
can be the final value of A?

 If the results of execution depend on the order of execution of threads, we
have a race condition.

Don't know what will happen; depends on which one goes fastest. What if
they happen at EXACTLY the same time, with multiple CPUs? Can't tell
anything without more information. Could end up with A=3!

Atomic operations:

Before we can say ANYTHING about parallel threads, we must know that
some operation is atomic, i.e. that it either happens in its entirety without
interruption, or not at all. Cannot be interrupted in the middle.

Key point: If you don't have an atomic operation, you can't make one.
Fortunately, the hardware guys give us atomic ops.

References and assignments are atomic in almost all systems. A=B will
always get a good value for B, will always set a good value for A (but not
necessarily true if A and B are arrays or records).

Example 1:

Suppose, initially A = 2, B = 3;

Thread 1:

A = B;

if (A == B) cout << “they are equal”;

else “they are not equal”;

Thread 2;

B = A+1;

Can you predict what will be printed by Thread 1?

Can you state possible final values of A and B?

Which of the following (A, B) values are possible?

(3, 4); (4, 4); (3, 3)?

That can really make debugging multi-threaded programs hard because, by
looking at just one thread, we cannot say anything about the values of
variables at any statement.

Of course, the above is not a very interesting example because the code
does not seem to be doing anything useful. Consider the following
examples where threads do need to cooperate more closely.

Example 2: bank transfer example. Two people use an ATM
card for the same account to initiate a withdrawal of $100,
almost simultaneously. A thread is created to execu te each
transaction. The account has $150 in it initially. What can
potentially happen if the two threads execute the f ollowing
code?

Thread 1:

if (savings > 100)

savings = savings - 100;

Thread 2:

if (savings > 100)

savings = savings - 100;

Is it possible that both people end up withdrawing $100? Is bank
guaranteed to detect the problem?

Example 3: Computerized milk buying: Too much milk problem

Anne Bob
// look in fridge
if (no milk)
 // go to Kroger
 Buy Milk
Put milk in fridge

// look in fridge
if (no milk)
 // go to Kroger
 Buy Milk
Put milk in fridge

The following execution is possible:

What is needed to address the above problems?

If you have any atomic operation, we need to be able generate higher-level
atomic operations and make parallel programs work correctly. This is the
approach we'll take in this class.

Example 2 revisited:

Thread 1:

--- begin atomic operation ---

if (savings > 100)

savings = savings - 100;

-- end atomic operation ---

Thread 2:

-- begin atomic operation ---

if (savings > 100)

savings = savings - 100;

-- end atomic operation ---

Now, no multiple withdrawals will be possible.

Some terminology

• critical section: A section of code that only 1 thread can
execute at once (e.g. the code). The code appears to execute
atomically even though other threads may execute in parallel.

Critical sections have the following required property:

• mutual exclusion: Only only 1 thread must be allowed to
execute in a critical section at a time (others must be prevented

from entering the critical section). Thus, only 1 thread accesses
and updates the savings variable at a time.

• vacation property: If a thread is outside the critical section
(i.e., on vacation), other threads should not be prevented from
going into the critical section.

• no speed assumption: No assumptions should be made about
relative speeds of threads or the number of CPUs.

• A thread should not have to have to wait forever to enter the
critical section.

In the banking example, we want the two lines of code in the threads to
form a critical section.

Solution to the critical section problem: Locks

A lock

• prevent someone from doing something,

 e.g., before shopping, leave a note on the fridge

Three elements of locking

0. must aqcuire lock before doing something (e.g. entering critical
section, accessing shared data

0. must release lock (unlock) when done

0. must wait to acquire if someone else has it locked

Example 3 revisited:

In general, wherever shared variables are manipulated, you need to worry
about using locks to make a set of statements atomic (i.e., turn them into a
critical section)

How to implement locks?:

Suppose that, for now, we restrict ourselves to only using atomic load and
store operations as the building block. Let’s discuss the computerized
milk-buying problem.

Too Much Milk: Solution Attempt #1

 basic idea:

 1. leave a note if you're going to buy milk (remov e
note when you

 return)

 2. don't buy if the other person left a note

Example 3 revisited:

Use a note. Wait until there is no note. Leave a no te
before entering the critical section.

Solution:

Does this work in the computerized world?

At this point, before reading on, you should try to improve the solution
and make it correct.

Some possible solutions that you may come up with:

Too-much-milk: Solution Attempt #2:

What if we use two notes and make Anne and Bob hang around to make
sure they enter the critical section?

A
r
e

C

ritical section requirements satisfied?

Anne Bob

NoteAnne = true;

while(NoteBob) loop;

if (no milk)

 Buy Milk;

NoteAnne = false;

NoteBob = true;

while (NoteAnne)loop;

if (no milk)

 Buy Milk;

NoteBob = false;

Too-much-milk: Solution Attempt #3: Strict alternat ion

What if Anne and Bob alternate? Then there will be no deadlock.

Anne Bob

while(!AnneTurn) loop;

if (no milk)

 Buy Milk;

AnneTurn = false;

while (AnneTurn)loop;

if (no milk)

 Buy Milk;

AnneTurn = true;

The above enforces the mutual exclusion condition. (Prove it!)

Any problem with the solution?

Too-much-milk: Solution Attempt #4: (Peterson’s Sol ution)

If we combine solution #2 and solution #3, we can come up with a correct
solution. The idea is to break ties using turns only if we run into a
deadlock-like situation.

Anne Bob

NoteAnne = true;

turn = Anne;

while(NoteBob && turn == Anne) loop;

if (no milk)

 Buy Milk;

NoteAnne = false;

NoteBob = true;

turn = Bob;

while(NoteAnne && turn== Bob)loop;

if (no milk)

 Buy Milk;

NoteBob = false;

 proof of correctness:

 Correct but the solution is ugly:

• complicated, hard to convince yourself that it's right

• while Bob or Anne are waiting, they consume CPU time in the
while loop.

 This is called busy-waiting. Busy waiting is bad.

• Hard to see how to generalize the solution to more than 2
threads.

Fortunately, there is a better way:

• have hardware provide better (higher-level) primitives than
atomic load and store (we'll cover this next)

• the OS provides higher-level abstractions for implementing
critical sections based on this new hardware support

 e.g. lock/unlock

 lock: atomically wait 'til lock is free, then grab it

 unlock: release lock, let anyone who's waiting for it try

Lock acquire/release must be atomic. If two threads are waiting for the
lock and both see it's free, only one grabs the lock.

 locks make "Too Much Milk" really easy to solve

 Anne or Bob

Lock mutex; // global, shared lock to both Anne and Bob

 mutex.lock();

 if (noMilk) {

 buy milk

 }

 mutex.unlock()

Semaphores

Questions:

What are the requirements for a locking mechanism?

Waiting for conditions: why we need another kind of synchronization
besides locks?

Semaphores: a single mechanism to implement both locks and conditional
waiting

 How to solve the Producer & Consumer (Bounded Buffer)
problem using semaphores?

Briefly look at another example: Readers and Writers Problem

Motivation

The too-much-milk solution is much too complicated. The problem is that
the mutual exclusion mechanism was too simple-minded: it used only
atomic reads and writes. This is sufficient, but unpleasant. It would be
unbearable to extend that mechanism to many processes.

Let's look at more powerful, higher-level mechanisms and what they need
to do.

Implementing Critical Sections:

We need to be able to implement critical sections.

Some requirements for critical section mechanism:

• Mutual Exclusion: Only one process should be executing in a
critical section at a time.

• Progress: If several requests at once, must allow one process to
proceed.

• Vacation Property: Processes must be able to go on vacation
outside critical section.

Desirable properties for a mutual exclusion mechanism:

• Bounded waiting (no starvation): there must exist a bound on the
number of times that other processes are allowed to enter their

critical sections after a process has made a request to enter its
critical section and before that request is granted.

• Efficient: don't use up substantial amounts of resources when
waiting. E.g. no busy waiting.

• Simple: should be easy to use (e.g. just bracket the critical
sections).

Rules for processes using the mechanism:

• Always lock before manipulating shared data.

• Always unlock after manipulating shared data.

• Do not lock again if already locked.

• Do not unlock if not locked by you

• Do not spend large amounts of time in critical section.

Having a lock primitive provided by the OS would address the problem.

Lock mutex; // global, shared lock to both Anne a nd
Bob

 mutex.lock();

 // start of critical section

 if (noMilk) {

 buy milk

 }

 // end of critical section

 mutex.unlock()

We will see later how to implement locks efficiently. (In fact, you will be
doing that in Project 1!)

Another need for a mechanism: Scheduling

Unfortunately, locks alone are not adequate for threads to work together.
Consider the following problem. This problem is important:

Producer & Consumer Problem (also called Bounded
Buffer problem)

Often one thread creates information that needs to be used by another
thread, as shown in the following picture:

Producer thread Consumer thread

data 1
(empty)

Data 2 Data 3 Data 4 Data 5 empty empty empty empty

Add next data
to the buffer

Read next data
from the buffer

Producer thread repeatedly adds items to the buffer. Consumer threads
empties the buffer by reading items from it.

Examples of bounded buffer problem:

•Unix pipes:

tar cf - foo | gzip > foo.tar.gz

The tar process writes its output to a shared buffer. The gzip
buffer reads from the buffer. There is one producer thread (tar)
and one consumer thread (gzip)

• Servers:

One thread receives requests from clients and puts them in a buffer
queue. One or more service threads grab requests from the queue
and process them. There is one producer thread (one receiving the
requests) and multiple consumer threads (the service threads that
execute the requests).

• Printer spooler:

Multiple processes send files to a printer. The files are queued in a
spooler directory. A printer process grabs files from the queue and
prints them. In this case, there are multiple producers (processes
sending files to the printer queue) and one consumer (printer
process).

In general, there could be multiple producer threads writing to the shared
buffer and multiple consumer threads reading from the shared buffer, as
illustrated in the above examples.

Also, in some cases, the shared buffer may be an unbounded queue, rather
than a bounded queue.

Producer and consumer threads shouldn't have to operate in perfect lock-
step: producer should be able to get ahead of consumer.

Correctness constraints:

• Mutual exclusion:

• Scheduling:

We can implement mutual exclusion using locks. How do we implement
the scheduling constraints?

One possibility to address a scheduling constraint:

• If buffer is full, producers periodically check for a buffer to
empty. This involves busy waiting – not very good.

A more efficient mechanism that has been proposed is semaphores. This
was invented by Edsger Dijkstra, a Dutch computer scientist, in the mid
60's. Semaphores can be used to implement both locks and enforce
scheduling constraints. A semaphore s is an OS-provided object that has a
value >= 0 and provides two operations to threads:

• s.down() or s.P(): The thread waits for semaphore to become
positive, and then atomically decrements it by 1. (Proberen in
dutch means down).

• s.up() or s.V(): The thread atomically increments semaphore by 1
(verhogen in Dutch means up).

Note that if one or more threads is waiting for the semaphore value to
become positive in s.down(), doing a s.up() operation will cause one of the
threads executing the down operation to complete the down operation.

Implementing mututal exclusion using semaphores:

Mutual exclusion can be easily implemented using semaphores. All we
need is a semphore s that is initialized to the value 1.

• To acquire a lock: do a s.down()

• To release a lock: do a s.up()

Too much milk problem with semaphores:

Show why there can never be more than one process buying milk at once.

Bounded-buffer problem using semaphores:

You can find solution to the bounded-buffer problem in Tanenbaum. I will
present a different solution here that may be conceptually simpler and
easier to see how to apply it to other problems.

As mentioned earlier, there are three constraints to enforce: one mutual
exclusion constraint and two scheduling constraints. Mutual exclusion
constraint can be enforced using a binary semaphore mutex as in the too-
much-milk problem.

To enforce the two scheduling constraints, we need to create one
additional semaphore for each constraint:

• OkToProduce: This semaphore is initialized to number of empty
locations in the buffer.

• OkToConsume: This semaphore is initialized to 0, i.e., number of
full locations in the buffer initially.

The solution is as follows:

Producer Threads Consumer Threads

produceItem()

{

 --- get an item to add ---

 OkToProduce.down();

 mutex.down();

 buffer.add(item);

 mutex.up();

 OkToConsume.up();

}

consumeItem()

{

 OkToConsume.down();

 mutex.down();

 item = buffer.deleteItem();

 mutex.up();

 OkToProduce.up();

 --- consume the item ---

}

Important questions (discussed in the lecture):

• Why does producer do OkToProduce.down() but
OkToConsume.up()?

• Is the order of down's important?

• Is order of up's important?

• How would this be extended to have multiple consumers and
multiple producers?

Semaphores aren't provided by hardware. (I'll describe implementation
later) But they have several attractive properties:

• Machine independent.

• Simple.

• Work with many processes.

• Can have many different critical sections with different
semaphores.

• Can acquire many resources simultaneously (multiple P's).

• Can permit multiple processes into the critical section at once,
if that is desirable.

Key Idea is layering: pick some powerful and flexible intermediate
primitive to implement in the OS and apply to a large number of problems.
The primitives in this case are the operations are:

• create a semaphore with an initial non-negative integer value.

• up operation on the semaphore

• down operation on the semaphore

Note that we do not need an operation to read or write the value of the
semaphore. In fact, we do not want such an operation. Only up and down
operations are sufficient for all thread synchronization needs.

Another Classical Problem: Readers and Writers
Problem

(this is optional for the lecture, but you should go through it and ask TAs
to discuss it if needed)

Another example of semaphore usage: a shared database with readers and
writers. It is safe for any number of readers to access the database
simultaneously, but each writer must have exclusive access. Must use
semaphores to enforce these policies. Example: checking account.

Note that writers are actually readers too.

Scheduling constraints that need to be enforced among threads:

• Writers can only proceed if there are no active readers or
writers (use semaphore OKToWrite).

• Readers can only proceed if there are no active or waiting
writers (use semaphore OKToRead).

Note that we don’t want to make the access to the entire database as a
critical section because then only one reader will be able to read at a time.
We want multiple readers to be able read the database simultaneously –
results in better response time for readers since a short read does not have
to wait for a long read to complete.

To enforce scheduling constraints, we need to keep track of who's reading
and writing. We thus introduce some shared variables to track that
information:

• AR = number of active readers = 0 initially.

• WR = number of waiting readers = 0 initially.

• AW = number of active writers = 0 initially.

• WW = number of waiting writers = 0 initially.

Variables introduced to enforce scheduling constraints are sometimes
called state variables. These variables will be read and written by multiple
threads. We thus must introduce a mutual exclusion constraint to make
sure that only one thread manipulates state variables at once (we will use a
semaphore Mutex for this).

Initialization of semaphores:

• OKToRead = 0;

• OKToWrite = 0;

• Mutex = 1;

Our strategy in implementing readers and writers will be to always check
the state variables before deciding to access the database. If it is not OK to
access the database, then a reader will do a down operation on OkToRead
and a write will do an up operation on OkToWrite.

When the read is completed by the last reader, the reader will be
responsible for waking up one waiting writer, if there is one.

When the write is completed by a writer, it will wake up all waiting
readers, allowing them to read the database.

The readers and writers execute the following code:

N
o

te that access control on the database is enforced in the two procedures
get_read_access() and get_write_access(). The other two methods are
called by the threads to inform the enforcement mechanism that the
operation is completed.

The code for the procedures is as follows:

get_read_access()
{
 Mutex.down(); // mutual exclusion constraint on state
variables
 if ((AW+WW) == 0) {

 AR = AR+1; // a new reader being activated
 OkToRead.up(); // give advanced read permission (t o self)

 else WR = WR+1;
 Mutex.up(); // end mutual exclusion co nstraint

 OkToRead.down(); // wait until permission g ranted
}

Reader threads Writer threads

get_read_access();

--- read data ---

release_read_access();

get_write_access;

--- write data –

release_write_access();

release_read_access()
{
 Mutex.down(); // enforce mutual exclusi on constraint
 AR = AR1; // one less active reader
 if (AR==0 && WW>0) { // wake up a writer, if a ppropriate

 OKToWrite.up();
 AW = AW+1; // important to remember that we woke
 WW = WW1; // up a writer, before releasi ng mutex lock.
 }
 Mutex.up(); // finished updating stat e variables
 }

get_write_access()
{
 Mutex.down(); // mutual exclusion enforceme nt
 if ((AW+AR) == 0) { // wait until no one els e active
 AW = AW+1;
 OkToWrite.up(); // give advance permissio n to self
 }

else WW = WW+1; // tell others that we are waiti ng
Mutex.down(); // done accessing state variables

 OkToWrite.down(); // wait until permission t o write
}

release_write_acess()
{
 Mutex.down();
 AW = AW1;
 if (WW > 0) {

 OKToWrite.up();
 AW = AW+1;
 WW = WW1;

 }
 else { // no writer activated. wake up waitin g readers
 while (WR > 0) {

 OKToRead.up(); // wake up one waiting reade r
 WR = WR1;

 }
 }
 Mutex.up();
}

Try going through several examples and figure out what happens:

• Reader enters and leaves system.

• Writer enters and leaves system.

• Two readers enter system.

• Writer enters system and waits.

• Reader enters system and waits.

• Readers leave system, writer continues.

• Writer leaves system, last reader continues and leaves.

Questions to think about (work it out yourself:

• In case of conflict between readers and writers, who gets
priority?

• How would you change the solution so that the priority is
switched?

• Can readers or writers get locked out if other threads keep
coming in?

• Can you change the solution so that lockout does not occur?
(hint: have new readers give priority to any waiting writers and
have writers give priority to any waiting readers).

• Can the lines incrementing AR and decrementing WR in
release_write_access() be moved to getreadaccess(), just after
the OktoRead.down()?

• Can OKToRead ever get greater than 1? What about
OKToWrite? Is the first writer to execute Mutex.down() in
getwriteaccess() guaranteed to be the first writer to access the
data?

Thread Synchronization with Monitors

Let's revisit the producer-consumer example. The original problem that we
were trying to solve was to address two concerns:

• Provide a locking mechanism for implementing critical sections

• Provide a way for enforcing scheduling constraints, such as a
consumer having to wait until there is full slot in the buffer.

With semaphores, we can solve the problem but the solution is not as
intuitive as it can be. The use of a counting semaphore works but it is not
straightforward to see how to apply it to solve more general scheduling
constraints. For example, if we wanted a consumer to proceed only if there
was M items in the buffer, it is not easy to see how to use a semaphore to
model that situation.

Monitors provide a simpler solution for enforcing locking and scheduling
constraints. The key idea is to provide separate mechanisms for the two
different types of constraints: locking and scheduling.

Locking Mechanism:

To implement critical sections, monitors provide methods to create lock
objects and to acquire and release locks. For example,

Lock mutex;

mutex.lock();

// critical section code

mutex.unlock();

Usually, only one lock is used to enforce mutual exclusion on related
operations.

Condition variables (Queues to wait on):

To enforce scheduling constraints, monitors provide methods for threads
to wait in a queue when the shared state does not permit progress and for
other threads to wake them up when the shared state is appropriate for
progress of the waiting threads. Queues on which threads wait are
identified by names, called condition variables. Note that condition
variables are not really variables that can be assigned values, but objects
to wait on. The only methods allowed on a condition variable c are:

• c.wait(Lock mutex): release monitor lock, put thread to sleep on a
queue c. When the thread is woken up, via c.signal() or
c.broadcast(), it re-acquires monitor lock and then continues in the
critical section code.

• c.signal(): wake up one thread waiting on the queue c (typically,
FIFO). If no threads are waiting, c.signal has no effect (no
history) – this is very different from semaphore up operation,
which has history.

• c.broadcast(): wake up all threads waiting on the condition
variable queue c. If no threads are waiting, do nothing (no
history).

As a general principle, all these three operations must be called in the
critical section protected by the mutex lock.

A typical pattern for a thread that needs to wait for some condition to
become true is:

Lock mutex;
ConditionVariable cv, othercv;
mutex.lock(); // always the 1st step

// 2nd step below is optional. Only there if there is a scheduling
// constraint that forces a wait
while (shared state does not satisfy the scheduling constraint)
 cv.wait(mutex);

// assertion: synchronized constraint is satisfied.
// 3rd step: update shared state and state variables if necessary
... code for with the shared state ...

// 4th step: wake up another thread if shared state may permit
// another thread to progress
if (scheduling constraints of others potentially sa tisfied)
 othercv.signal(); // othercv identifies the constraint queue

mutex.unlock(); // always the last step

In the above code,

• cv and othercv are two queues on which threads can potentially wait.

• Each thread first acquires a lock before going into the critical section.

• Then, it waits until any scheduling constraints are satisfied by calling
the wait primitive on the condition variable.

• The semantics of wait is that the waiting thread releases the mutex
lock while it is waiting and reacquires it sometime after it is woken up
and before it continues in the critical section.

• After the thread wakes up from the wait, just to be sure that nothing
has gone wrong between the time it wakes up and the time it reenters
the critical section, it re-verifies that the scheduling constraint is
satisfied before continuing. Otherwise, it goes back to waiting.

• Why reverify?

After the scheduling constraint is satisfied, the thread continues in the
critical section. First, it makes any updates to the shared state. Then it
wakes up any other threads for which the scheduling constraints can be
satisfied. Finally, it release the critical section lock.

The above pattern largely works for almost all thread synchronization
problems. We illustrate it on two classical problems below:

Producer-consumer Problem:

Using locks and condition variables, we get a fairly intuitive solution to
the producer-consumer problem.

Lock mutex; // cri tical section lock
ConditionVariable OkToProduce, OkToConsume; // queues for waiting
Queue buffer; // shared buffer
// state variables to enforce scheduling constraints
int numEmpty = N; // number of empty slots in the buffer
int numFull = 0; // Number of full slots in the b uffer

produceItem(ItemType *item) Item *consumeItem()
mutex.lock();

while (numEmpty == 0)
 OkToProduce.wait(mutex);

buffer.add(item);
numEmpty--;
numFull++;

OkToConsume.signal();
mutex.unlock();

Go through several scenarios to show that the above solution works.

•Important Question: Is while loop to reverify the scheduling
constraint necessary?

(NOTE: There is a difference from the book here!)

There two basic variations of the wait/signal mechanism: Hoare semantics
and Mesa semantics. Tanenbaum, like many OS texts, describes only
Hoare’s semantics in its code, simply because it was proposed first
historically. Key difference between the two is:

• In Hoare’s semantics: signalled thread continues.

o Signaling thread releases the mutex lock immediately and
the signaled thread continues.

o The signaled thread is guaranteed to be the next thread in
the monitor. Thus, provided it was woken up when its
scheduling constraint was satisfied, the signaled thread
does not need to recheck the scheduling constraint.

o Because of the guarantee, we can often use an “if
statement” to check the scheduling constraint rather than
the “while” loop.

• In Mesa semantics: signaller continues.

o Signaling thread does not release the mutex lock. It
continues in the critical section.

o At some later point, possibly much later, the signaled
thread enters the critical section when the lock becomes
available. However, other threads could sneak in into the

critical section before the signaled thread (e.g., someone
else buying the JC Penney shirt before you get there). The
scheduling constraint could thus become false by the time
the signaled thread runs. Thus, while loop is essential to
recheck scheduling constraint before continuing.

Almost all real implementations use Mesa semantics because it is the
most practical to use and implement.

In this course, we will always use Mesa semantics, unless otherwise
specified. This is different from the textbook.

• Convince yourself that the code works when consumers block due
to scheduling constraints.

• Does the code work when there are multiple producers and
consumers?

• Can signals be replaced by broadcasts?

• Would it be OK to check the scheduling constraint first and then
acquire the lock? In other words, switch step 2 and step 1?\

Question: How do c.wait() and c.signal() compare to semaphore up() and
down()?

Reader and writers problem with monitors:

Procedures which require synchronization between them are declared

as monitor procedures. The entry procedures are:

• get_read_access()

• get_write_access()

• release_read_access()

• and release_write_access()

Writer threads do the following in sequence:

• call get_write_access(): this must block until
safe to write

• update the database when get_write_access returns

• call release_write_access()

Reader threads do the following in sequence:

• call get_read_access(): this must block until safe
to read

• read the database when get_read_access returns

• call release_read_access()

Scheduling Constraints:

• Need a way for reader to block in get_read_access() if a writer is
currently active or waiting (we give priority to writers in this
solution). To enforce:

o Use the condition variable OKToRead

o state variables: AW and WW for # of active and waiting
writers

• Need a way for writer to block in get_write_access() if a reader or
writer is currently active.

o Use the condition variable OKToWrite

o state variables: AR for active readers.

Question: Is the database access itself in a critical section?

Answer:

As a rule,

• all monitor procedures need to use a mutex lock

• wait, signal, and broadcast need to be called in the critical
section

• state variables are shared. Thus, they should only be
manipulated in the critical section

See the solution below.

Lock mutex;
ConditionVariable OkToRead, OkToWrite;
int AW = 0, WW = 0, AR = 0, WR = 0;

void get_read_access()
{
 mutex.lock(); // step 1: acquire lock

// step 2:scheduling constraint
 while ((AW+WW) > 0)OKToRead.wait(mutex);
 // step 3: update state variables
 AR++;
 // no step 4: no one to wake up
 // step 5: release lock

mutex.unlock();

void release_read_access()
{
 mutex.lock(); // step 1
 // step 2: no scheduling constraint

 // step 3: update state variables
 AR--;

 // step 4: wake up anyone necessary
 if (AR==0 && WW>0) OKToWrite.signal();

 mutex.unlock(); // step 5
}

void get_write_access()
{
 mutex.lock(); // step 1: acquire lock
 // step 2: enforce scheduling constraint
 while ((AW+AR) > 0) {
 WW++;
 OKToWrite.wait(mutex);
 WW--;
 }
 // step 3: update state variables.
 AW++;
 // step 4: no one needs to be woken up
 // step 5: release mutex lock
 mutex.unlock();
}

void release_write_access()
{
 mutex.lock(); // step 1: acquire lock
 // step 2: no scheduling constraint for this method
 // step 3: update state variables. One less active writer
 AW--;
 // step 4: wake up anyone that can potentially progress
 if (WW > 0)
 OKToWrite.signal();
 else
 OKToRead.broadcast(); // multiple readers can progress

 mutex.unlock(); // step 5: release lock
}

• Can the while loops be replaced by if conditionals? Note that we
are using Mesa semantics.

• Could all of the signals be broadcasts?

• Is WW++ and WW— necessary in get_write_access?

• Exercise for you: how would you modify the
release_write_access() code so that waiting readers are given
priority over waiting writers? Hint: do you need an additional state
variable? Where would that state variable be updated?

Thread Implementation

We've been talking about

• using threads (concurrency)

• getting them to cooperate

• using sempahores or monitors to enforce mutual exclusion
constraints and scheduling constraints

Today, we'll talk about how one actually builds them. This material is very
relevant to Project 1!

First, note how a process is laid out:

 Process:

• body of code

• global data

• one or more stacks (one per thread)

 Implementing threads:

Each thread has illusion of its own CPU. Yet on a uniprocessor, all
threads share the same physical CPU.

How does this work? We need to be able to do the following operations on
threads:

Thread state

Need to save the state of the thread somewhere when it is not running.
That structure is called the Thread control block. It consists of everything
that could be potentially overwritten by another thread:

Queues:

With a single CPU, only one thread can run at a time. When a thread is not
running, put it (actually its TCB) on a queue:

• Ready queue: contains threads that are runnable.

• Condition variable queue (one per condition variable):
contains threads that are waiting on a condition variable

• Lock queues (one per lock): contains threads that are waiting to
acquire a lock

• I/O or timer wait queues: contains threads that are waiting for
events such as I/O completion or timers to expire. (You do not
have to implement these in Project 1)

When a thread is created, it is put on the ready queue. The OS would run
threads from the queue, one by one, according to some scheduling policy.
One possible policy is to simply run threads in order from the queue.

A thread essentially either runs or get moved to a queue after its state is
saved in its TCB. Example:

Thread creation (thread forking)

Let’s say that a thread needs to be created that will call foo(arg). We need
to allocate a stack and TCB for the thread and make it call foo. When it is
has completed foo, we need the thread to destroy itself. The sequence of
operations are:

• allocate a stack for the thread

• create and initialize a TCB for the thread with SP pointing to the
new stack

• Put the name of the function to be called and its argument on the
stack

• set its PC in the TCB to point to a special function, startThread so
that the thread will call startThread(foo, arg). startThread is
responsible for calling foo(arg) and cleaning up thread’s state
when the call to foo(arg) returns. startThread never returns.

o Why shouldn’t the PC be initialized to the code for
foo(arg)?

o Similar thing happens with the main thread inside a
process. The main thread would start with a special

procedure, startProcess(), which calls main(argc, argv), and
then marks the thread as DONE so that it can be later
deleted by the OS.

• Add the the TCB to the Ready Queue atomically. The new thread
will run sometime in the future.

Question: Does the last operation need to be atomic?

Switching Threads

We switch threads when:

• interrupts, such as timer events, occur:

• thread needing to block on locks or condition variables:

• traps (e.g., divide by 0):

• voluntary yield (thread_yield():

• I/O requests:

Below, we will just look at how switching on voluntary yields can be
implemented. On yields, we need the current thread do something like the
following:

scheduleAnotherThread() {

 Turn off interrupts

 t = next thread from the ready queue;

 Current thread puts its TCB at the end of the rea dy
queue;

 // SWITCH the current thread with thread t so that t
starts running

SWITCH(t);

 // the new thread now is running. Old thread will
continue from here

 // later when it is switched back.

 Turn on interrupts

 }

 SWITCH(t) does the following:

• pack up the current thread’s state in its TCB

• unpack the state of the new thread t from its TCB.
Thus, t automatically continues from where it was
saved.

• Packing a thread’s state into its TCB:

• We need to save all the thread’s registers (tricky,
since you need registers to do the saving). Must be
done in assembly very carefully without overwriting
the registers that you are trying to save.

Question: Why does the scheduleAnotherThread() operation need to
be made atomic by turning off interrupts? Think about what would happen
if there was a context switch to another thread in the middle because of an
interrupt?

Question: Can interrupts be enabled just before doing the SWITCH?

Thus we do a SWITCH while interrupts are still off. The rule is that all
threads always call SWITCH while interrupts are off and turn on the
interrupts after the SWITCH. Thus the other thread will turn on interrupts:

 Thread A Thread B

 disable interrupts

 SWITCH

 \ schedule B
 \
 ----------> back from SWITCH
 enable interrupts

 .
 .

 disable interrupts

 -------- SWITCH
 /
 /
 <-----
 back from SWITCH
 enable interrupts

 If you just look at Thread A’s column, you will notice that SWITCH
appears like a normal procedure call to A, except that between the time it
is called and the time it returns, many other threads can run.

Also notice that interrupts appear to be turned off and turned on correctly
in Thread A, despite the fact that thread B ran during the SWITCH. Also,
notice that interrupts were turned on correctly while B was running.

Basic Rule again: Interrupts must be turned off sometime before the
switch is called. They must be turned on sometime after the switch.

Thread Termination

The key difference with thread yielding is that the current thread should
not put itself on the ready queue before the SWITCH. Also, it should mark
itself as ToBeDestroyed prior to the SWITCH. The thread that runs next
should clean up any ToBeDestroyed threads.

• The current thread marks itself as "ToBeDestroyed"

• if another thread is waiting for you to terminate, put it on the ready
queue (useful for implementing thread_join() operation).

• Thread puts itself to sleep by calling sleep():

o mark your status BLOCKED

o find another thread to run from the ready queue.

o Switch to the other thread

Note: a thread can't destroy itself (e.g., its own stack). Why not?

Locks

Attempt #1: One bad but correct solution: Atomic loads/stores as in
Peterson’s solution. Has busy wait and thus inefficient. Works, but not
good and no reason to use it.

Attempt #2: run user code with interrupts disabled:

 lock() {

 disable interrupts;

 }

 unlock() {

 enable interrupts;

 }

 then user program can call lock, unlock around
critical section

Many problems:

Attempt #3:

main idea: waiting thread gives up processor, goes on the lock queue, until
woken up by someone releasing the lock.

class Lock {
 ThreadQueue q;
 int value; // BUSY or FREE
}

Lock::lock() {

}

Lock::unlock() {

}

Note that sleep() has similar code to thread_yield(), except that the current
thread is not put on the ready queue. sleep() also switches threads by using
SWITCH.

Q: why does lock() check value in a while loop? Won't it only get woken
up by the unlocker, so it knows lock is free?

Q: Can lock() re-enable interrupts before going to sleep? Why would the
solution

break?

 1. before putting thread on wait queue?

 scenario that breaks this:

 2. after putting thread on wait queue, but before going to sleep?

 scenario that breaks this:

Thus, we must leave interrupts disabled when a thread calls sleep(). The
next thread to run has the responsibility of re-enabling interrupts. See
picture earlier for SWITCH.

Question: With the above solution, are threads guaranteed to get locks
in the order that they request the locks?

Question: Modify the solution so that threads are guaranteed to get locks
in the order that they request them.

Condition variables:

This is something for you to figure out and implement. In implementing
the wait(mutex) operation, think very carefully about where interrupts
should be disabled and enabled. And recall from the monitor lecture that
the wait operation should first cause (1) the mutex lock to be released and
(2) the thread to be added to the condition variable queue. Then the thread
should sleep (i.e. switch execution to another thread). When the thread is
woken up by a signal, it should always reacquire the mutex lock.

Locks on Multiprocessors:

On a multiprocessor system, usually disabling interrupts on one CPU does
not disable interrupts on other CPUs. Thus, disabling interrupts to ensure
atomicity does not work. Threads on other processors will continue to run.

Fortunately, every modern processor architecture provides some kind of
atomic

read-modify-write instruction. Atomically:

• read value from memory into register

• write new value

Examples of atomic read-modify-write instruction:

• test&set (most architectures):

o writes "1" to a memory location ("set"), returns the value
that used

o to be there ("test")

o note that only 1 thread can get transition from 0->1. Other
threads will simply go from 1->1.

• exchange (x86): swap value between register and memory

Here is a solution using atomic test&set instruction:

 initially, value = 0

 lock() {
 while (test&set(value) == 1) {
 }
 }

 unlock() {
 value = 0
 }

 .

A more efficient solution? Don’t busy wait for the a thread’s entire critical
section. Instead, use waiting queues. Replace disabling of interrupts by
test&set locks. Look at the the attempt #3 for locks earlier and compare
with solution below:

 lock() {
 while (test&set(guard)); /* this is like "interrupt disable" */

 while (value == BUSY) {
 put on queue of threads waiting for lock
 go to sleep
 }
 value = BUSY;

 guard = 0; /* this is like "interrupt enable" */
 }

 unlock() {
 while (test&set(guard)); /* like interrupt disable operation earlier */

 value = FREE

if anyone on queue of threads waiting for lock {
 take waiting thread off queue
 put on ready queue
 }

 guard = 0; /* this is like "interrupt enable" */
 }

