
Divide and Conquer
Strategy for Problem
Solving - Recursive

Functions
Atul Prakash

References:
1. Ch. 4, Downey.
2. Introduction to Recursion Online Notes Ch. 70 by B. Kjell : http://chortle.ccsu.edu/java5/
Notes/chap70/ch70_1.html
3.

Divide and Conquer

• Basic Idea of Divide and Conquer:

• If the problem is easy, solve it directly

• If the problem cannot be solved as is,
decompose it into smaller parts,. Solve
the smaller parts

Some Examples

• Finding the exit from within a hotel

• Finding your car in a parking lot

• Looking up a name in a phone book

Mental Exercise

• You are at the end of a very long hotel
lobby with a long series of doors, with one
door next to you. You are looking for the
door that leads to the fire exit.

• What is your first step?

First Step

What do you do if the
first step does not

work?

FindExit Strategy

• Try the door next to you for the exit

• If it does not lead to an exit, advance to the
next door. And repeat the FindExit strategy

Elements of the
Solution

• Try a direct solution: check the nearby
door for the exit

• If it does not work, use the same strategy
on the smaller problem after advancing to
the next door

Recursion in Words of
Wisdom

• Philosopher Lao-tzu:

• The journey of a thousand miles begins
with a single step

Breaking a Stone into
Dust

• BreakStone: You want to ground a stone
into dust (very small stones)

• What is your first step?

First Step

• Use a hammer and strike the stone

Next Step

• If a stone pieces that result is small
enough, we are done with that part

• For pieces that are too large, repeat the
BreakStone process

Common Elements

• If the problem is small enough to be solved
directly, do it

• If not, find a smaller problem and use its
solution to create the solution to the larger
problem

Looking up a Phone
Number

• You have a phone book with names in
alphabetical order

• Given a name, what is your first step?

First Step

• Open the phone book in the middle (or on
a random page)

• If name within the range of names on that
page, find it, and we are done

Smaller Problem Step

• If name not in the page, you can exclude
either the left part or the right part

• Search in the remaining part

excluded

After another step

excludedexcluded

Other Problems

• Recursively-defined functions

• Factorial: n!

• Fibonacci numbers

• Ackermann Function

• Tower of Hanoi

• Fractals

• Tree and data searches

Glue in Divide and
Conquer

• Often, the parts must be “glued”into a
solution

Large
problem

Partition 1

Partition 2

Partition 3

Partition 4

Glue

Decompose

Solution

Factorial Problem
• Example: Finding

factorial of n >= 1

• n! = n(n-1)(n-2)…1

• Divide and Conquer
Strategy:

• if n = 1: n! = 1
(direct solution),

else: n! = n *
(n-1)!

factorial(n)

factorial(n-1)n *

Solve simpler
problem if n > 1

factorial(1) = 1

Divide and Conquer

factorial(n) factorial(n-1)

n

*

Glue

n!

Recursion in Functions
• When a function makes

use of itself, as in a
divide-and-conquer
strategy, it is called
recursion

• Recursion requires:

• Base case or direct
solution step. (e.g.,
factorial(1))

• Recursive step(s):

• A function calling
itself on a smaller
problem. E.g.,
n*factorial(n-1)

• Eventually, all
recursive steps must
reduce to the base
case

Java Code

Direct solution
for base case

Divide and
Conquer
for larger

case

	 public static int factorial(int n) {
	 	 if (n == 0) return 1;
	 	 else return n * factorial(n-1);
	 	 // post-condition: returns n!
	 }

• Definition: n! is defined as 1 if n = 0 (direct solution),

Otherwise, n! = n * (n-1)! (divide-and-conquer)

Stack Diagram
factorial(3)
(local n is 3)

factorial(n = 2)
(local n is 2)

factorial(1)
(local n is 1)

1

2

6

factorial(0)
(local n is 0)

1

Understanding
Recursive Programs

• Why does it work?

(1) Solution works for base case (n = 1)
(2) Assume it works for n-1. Does it work for n?

(3) Do all divide-and-conquer steps eventually reduce
to base case?

	 public static int factorial(int n) {
	 	 if (n == 0) return 1;
	 	 else return n * factorial(n-1);
	 	 // post-condition: returns n!
	 }

Proof by induction:
(1) Solution works for n = 0
(2) If it works for n-1, it works for n
(3) 1. and 2. imply, it works for n = 1
(4) 2. and 3. imply it works for n = 2 and in fact any
larger n

Handling Errors
• What if n is < 1 in the factorial program?

• factorial(-1) will call factorial (-2), which will call
factorial(-3), etc.

• Recursion will never reach the base case

• Document pre-conditions and post-conditions

Use assert or
error checks
to indicate

something that
is assumed or
expected to

be True

	 public static int factorial(int n) {
	 	 assert(n >= 0); // pre-condition
	 	 if (n == 0) return 1;
	 	 else return n * factorial(n-1);
	 	 // post-condition: returns n!
	 }
	

Tower of Hanoi

Source: wikipedia. Copied under Wikimedia Common LIcense

• Initial state: n disks in
decreasing order of size
on one peg

• Goal: move all the disks
to the 2nd peg.

• Move one disk at a time

• Constraint: a disk can
never be on top of a
smaller disk

Divide-and-Conquer
Strategy

• If n is 1, the solution is trivial. Just move the
disk to the desired peg

• For n > 1, let's assume we know how to
solve the problem for n-1 disks.

• Can we use that to construct a solution for
n disks?

Solution Strategy
• Base case: if n is 1, the

solution is trivial. Just
move the disk

• Otherwise:

• Move (n-1) disks from
peg A to peg C using
Hanoi for n-1 disks

• Move the left-over
disk from page A to
peg B

• Move (n-1) disks from
peg C to peg B using
Hanoi for (n-1) disks

A B C

Java Code
	 public static void move(Object pegA, Object pegB) {
	 	 System.out.println("move disk from " + pegA + " to " + pegB);
	 }
	
	 public static void hanoi(int n, Object pegA, Object pegB, Object pegC) {
	 	 //precondition: n >= 1. disks are on pegA
	 	 assert(n >= 1);
	 	 if (n == 1) {
	 	 	 move(pegA, pegB);
	 	 } else {
	 	 	 hanoi(n-1, pegA, pegC, pegB);
	 	 	 move(pegA, pegB);
	 	 	 hanoi(n-1, pegC, pegB, pegA);
	 	 }
	 	 // post-condition: top n disks moved from pegA to pegB
	 }
	

Show a run in Eclipse

hanoi(3, "peg 1", "peg 2", "peg 3");ext

Tower of Hanoi
Analysis

Tower of Hanoi is pretty slow for larger values of n.
Q: How many disk moves (approximately) for a given n?

Note: The above is on Python version. Java is analogous

Performance

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

'" $(" $)" $*" $+" %!" %$" %%" %&"

!"#$%&"'&()*"+,&!+-$&./,&*&

Tower of Hanoi
really slows down for

large n

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!" $!" %!" &!" '!" (!!" ($!"

!"#$%&'"()*+,-)./0)12)

)*+,-./*0"

Factorial's time is roughly
linear with n.

We say that the time for
factorial is O(n), called Big-

Oh(n), or linear in n

OPTIONAL

Big-Oh

• A way to measure how execution time or
memory use will grow with input size

• Formally, f(n) is O(g(n)) iff for sufficiently
large values of n, f(n) is within constant
times of g(n). That is,

• f(n) < c.g(n) for all n > N and some
constant c.

Big-Oh examples

• 3n + 2 is O(n) because 3n+1 < 4n for large
n

• 1000n + 100000 is also O(n)

• 10n2 + 3 is O(n2)

• 2n + n3 is O(2n)

Basic Points

• Ignore the small stuff

• n + 10: ignore the 10

• n2 + n: ignore the n

• Simplify

• Replace 10 by 1. Both are O(1)

• 2n can be replaced by n. Both are O(n)

Factorial Time Analysis
• Factorial of 0: constant time.

• T(0) = 1 (treat constants as 1)

• Time required to compute factorial of n:

• T(n) = T(n-1) + 1 (treat constants as 1)

T(4) = T(3) + 1

 = T(2) + 1 + 1

 = T(1) + 1 + 1 + 1

 = T(0) + 1 + 1 + 1 + 1 = 5

In general, T(n) is n+1 or O(n)

Hanoi: Number of
Moves

• Let T(n) = number of disk
moves for n disks

• T(1) = 1

• T(2) = 2*T(1) + 1 = 3

• T(3) = 2*T(2) + 1 = 7

• T(4) = 2*T(3) + 1 = 15

• See a pattern?

• T(n) = 2n - 1 or O(2n)

• Hanoi for 64 disks would
take a very, very long
time!

• This is an example of an
exponential-time
program.

Advantage of Big-Oh
Analysis

• Big-Oh gives you trends versus problem
size

• Big-Oh analysis holds even if computers
become 10 times faster

Common Growth
Rates

• O(1): constant time. For example, array
lookup, given an index

• O(n): linear time. For example, scan an array
of length n for a value

• O(log n): Between constant and linear time.

• O(2n): Exponential time. Very bad

We will see lots of examples later

Fractals
• Fractals are recursive

drawings. They occur a
lot in nature and there is
a field called fractal
geometry. Can use
recursion to draw them

But, how to do drawings in Java?

Drawing in Java

• Java has several graphics packages: awt, swing, etc.

• We will use ACM Graphics package for Java, as it
is designed for educational use

• Download acm.jar and*.java from CTools in 11-
lecture-code folder

• Documentation:

• http://jtf.acm.org/tutorial/Introduction.html

Using acm.jar

• In Eclipse, go to
Project ->
Properties ->
Java Build Path

• Add acm.jar to
the build path

Command line (use semi-colons on Windows):
javac -cp .:/path/to/acm.jar *.java

java -cp .:/path/to/acm.jar MainClass

ACM Graphics Package

• Create shapes, e.g., GLabel, GLine, GTurtle,
etc. in a GraphicsProgram

• Add them to the canvas using the add()
routine

• getWidth() and getHeight() return the
height of a canvas.

• Coordinate system: Top-left corner is (0,0).

Mini-exercise

• Compile and run one of the Hello
programs that use the ACM jar file. Submit
a screen snapshot

• Generate the stack of squares and submit a
screen snapshot

Turtle Programming:
Drawing a Square

	 public static void drawSquare(GTurtle t, double len) {
	 	 t.penDown();
	 	 for (int i = 0; i < 4; i++) {
	 	 	 t.forward(len);
	 	 	 t.left(90);
	 	 }
	 }

 public void run() {
 // Place turtle in the center of the canvas
	 	 GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
	 	 add(turtle);
	 	 drawSquare(turtle, 100.0);
 }

Hello World Program
public class HelloGraphics extends GraphicsProgram {

	 public void run() {
	 	 GLabel label = new GLabel("hello, world");
	 	 label.setFont("SansSerif-100");
	 	 double x = (getWidth() - label.getWidth()) / 2;
	 	 double y = (getHeight() + label.getAscent()) / 2;
	 	 add(label, x, y);
	 }

/* Standard Java entry point. Call MainClass.start(args)
 to get graphics program going */

	 public static void main(String[] args) {
	 	 new HelloGraphics().start(args);
	 }
}

Stack of Squares using
Recursion

	 public void drawStack(GTurtle t, double len, int squarecount) {
	 	 // precondition: turtle at "origin"
	 	 if (squarecount == 0) return;
	 	 drawSquare(t, len); // draw big square, ending at the start location.
	 	 t.left(90); t.forward(len); t.right(90); // go to the top-left
	 	 drawStack(t, len/2.0, squarecount-1);
	 	 t.right(90); t.forward(len); t.left(90); // return to origin
	 	 // post-condition: draw the stack and return to origin
	 }

	 public void run() {
	 	 GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
	 	 add(turtle);		
	 	 drawStack(turtle, 100.0, 3);
 }

Another Way

• Use shape drawing functions rather than
turtles. Basic primitive

• draw a shape of a given size at (x, y)

• Shapes include lines, squares, circles,
rectangles, etc.

• Shapes can have attributes, such as line
thickness, color, fill, etc.

Drawing a square

	 // File: SquareStackWithShapes.java

	 // draws a square at (x, y) of length len. Origin top-left corner.
	 public void drawSquare(double x, double y, double len) {
	 	 GRect r = new GRect(x, y, len, len);
	 	 add(r);
	 }

	 public void run() {
	 	 drawSquare(getWidth()/2, getHeight()/2, 100.0);
	 }
	

Drawing a Stack

	 // draw a stack squarecount deep at (x, y), with squares becoming
	 // half the size as you go up the stack.
	 public void drawStack(double x, double y, double len, int squarecount) {
	 	 if (squarecount == 0) return;
	 	 drawSquare(x, y, len); // draw big square, ending at the start location.
	 	 drawStack(x, y-len/2.0, len/2.0, squarecount-1);
	 }

Draw the big square. Note: origin top-left corner.
Draw the remaining stack with origin 1/2 length up.

	 public void drawTreeOfSquares(double x, double y, double len, int squarecount) {
	 	 if (squarecount == 0) return;
	 	 drawSquare(x, y, len);
	 	 drawTreeOfSquares(x-len*0.25, y-len*0.5, len*0.5, squarecount-1);
	 	 drawTreeOfSquares(x+len*0.75, y-len*0.5, len*0.5, squarecount-1);
	 }

Hierarchical Data (trees)

Example: child-dad/mom relationship

Michael

John

Ann Bob

Mary

CarolHarry

Count nodes in a Tree

If tree empty, return 0

Else, return

one

+ count of left subtree

+ count of right subtree

Summary

• Divide and Conquer is a common problem
solving strategy

• It often maps to recursive algorithms

• Big-Oh notation a way to estimate how
time required to solve a problem will grow
as the problem size increases

