Divide and Conquer

Strategy for Problem

Solving - Recursive
Functions

Atul Prakash

References :

|. Ch. 4, Downey.

2. Introduction to Recursion Online Notes Ch. 70 by B. Kjell : _http://chortle.ccsu.edu/javad/
Notes/chap70/ch70_|.html

3.

Divide and Conquer

® Basic Idea of Divide and Conquer:
® |f the problem is easy, solve it directly

® |f the problem cannot be solved as is,
decompose it into smaller parts,. Solve
the smaller parts

Some Examples

® Finding the exit from within a hotel
® Finding your car in a parking lot

® | ooking up a name in a phone book

Mental Exercise

® You are at the end of a very long hotel

lobby with a long series of doors, with one
door next to you.You are looking for the
door that leads to the fire exit.

® What is your first step!?

First Step

What do you do if the

first step does not
work!?

FindExit Strategy

® Try the door next to you for the exit

® [f it does not lead to an exit, advance to the
next door.And repeat the FindExit strategy

Elements of the
Solution

® Try a direct solution: check the nearby
door for the exit

® |f it does not work, use the same strategy
on the smaller problem after advancing to
the next door

Recursion in Words of
Wisdom

® Philosopher Lao-tzu:

® The journey of a thousand miles begins
with a single step

Breaking a Stone into
Dust

® BreakStone:You want to ground a stone
into dust (very small stones)

® What is your first step!?

First Step

® Use a hammer and strike the stone

Next Step

® |f a stone pieces that result is small
enough, we are done with that part

® For pieces that are too large, repeat the
BreakStone process

Common Elements

® |[f the problem is small enough to be solved
directly, do it

® |f not, find a smaller problem and use its
solution to create the solution to the larger
problem

Looking up a Phone
Number

® You have a phone book with names in
alphabetical order

® Given a name, what is your first step!?

First Step

® Open the phone book in the middle (or on
a random page)

® |f name within the range of names on that
page, find it,and we are done

Smaller Problem Step

® |f name not in the page, you can exclude
either the left part or the right part

® Search in the remaining part

excluded

After another step

excludedH excluded

Other Problems

® Recursively-defined functions
® Factorial: n!
® Fibonacci numbers
® Ackermann Function

® Tower of Hanoi

® Fractals

® [ree and data searches

Glue in Divide and
Conquer

® Often, the parts must be “glued”into a
solution

Partition |

Large % Partition 2 k‘
problem ?Partition 3 7
Decompose™ partition 4

Glue — Solution

Factorial Problem

Example: Finding
factorial of n >= |

n! = n(n-1)(n-2)...1 Solve simpler
problem if n > |
Divide and Conquer
Strategy: n
e ifn=1I:n=1|

(direct solution),

(n-1)!

Divide and Conquer

N
P —
o) | georiey|
Glue

Recursion in Functions

® When a function makes ® Recursive step(s):
use of itself,as ina
divide-and-conquer ® A function calling
strategy, it is called itself on a smaller
recursion problem. E.g.,

n*factorial(n-1)
® Recursion requires:
® Eventually, all
® Base case or direct recursive steps must

solution step. (e.g., reduce to the base
factorial(1)) case

Java Code

® Definition: n! is defined as | if n =0 (direct solution),

Otherwise,n! = n * (n-1)! (divide-and-conquer)

Direct solution

public static int factorial(int n) {

for base case "~ if (n == @) return 1;

else return n * factorial(n-1);
Divideand _—¥ // post-condition: returns n!
Conquer 1

for larger
case

e Stack Diagram

N2

NN

N\

Understanding
Recursive Programs

® Why does it work?

public static int factorial(int n) {
1f (n == @) return 1;
else return n * factorial(n-1);
// post-condition: returns n!

¥
Proof by induction:
(1) Solution works for n =0
(2) If it works for n-1, it works for n
(3) I. and 2. imply, it works for n = |

(4) 2.and 3.imply it works for n = 2 and in fact any

larger n

Handling Errors

® What if nis < | in the factorial program?

® factorial(-1) will call factorial (-2), which will call
factorial(-3), etc.

® Recursion will never reach the base case

® Document pre-conditions and post-conditions

Use assert or
error checks
to indicate
something that
is assumed or

public static int factorial(int n) {
assert(n >= 0Q); // pre-condition
1f (n == @) return 1;
else return n * factorial(n-1);

expected to // post-condition: returns n!
be True 1

A 4

Tower of Hanoi

® |[nitial state: n disks in ® Constraint: a disk can
decreasing order of size never be on top of a
on one peg smaller disk

® Goal: move all the disks
to the 2nd peg.

® Move one disk at a time

Source: wikipedia. Copied under Wikimedia Common Llcense

Divide-and-Conquer
Strategy

® |f nis I, the solution is trivial. Just move the
disk to the desired peg

® Forn> |, let's assume we know how to
solve the problem for n-1 disks.

® Can we use that to construct a solution for
n disks?

Solution Strategy

Base case:if nis I, the ® Move the left-over

solution is trivial. Just disk from page A to

move the disk peg B

Otherwise: ® Move (n-1) disks from
peg C to peg B using

® Move (n-1) disks from Hanoi for (n-1) disks

S

peg A to peg C using
Hanoi for n-1 disks

. |
A B C

Java Code

public static void move(Object pegA, Object pegB) {
System.out.println("move disk from " + pegA + " to " + pegB);
ks

public static void hanoi(int n, Object pegA, Object pegB, Object peg(C) {
//precondition: n >= 1. disks are on pegA
assert(n >= 1);
if (n == 1) {
move(pegA, pegB);
} else {
hanoi(n-1, pegA, pegC, pegB);
move(pegA, pegB);
hanoi(n-1, pegC, pegB, pegA);
}
// post-condition: top n disks moved from pegA to pegB

hanoi(3, "peg 1", "peg 2", "peg 3");

Show a run in Eclipse

Tower of Hanoi
Analysis

>»>» recursion.hanoi(2, 'peg 1', 'peg 2', 'peg 3')
move disk from peg 1 to peg 3

move disk from peg 1 to peg 2

move disk from peg 3 to peg 2

>

»>>»>» recursion.hanoi(2, 'peg 1', 'peg 3', 'peg 2')
move disk ftrom peg 1 to peqg £
move disk from peg 1 to peg 3
move disk from peg 2 to peg 3

recursion. hanoii3, 'peg 1', 'peg 2', 'peg 3')
move disk from peg 1 to peg 2
move disk from peg 1 to peg 3
move disk from peg 2 to peg 3
move disk from peg 1 to peqg 2
move disk from peg 3 to peg 1

disk £ 3 5 move disk from peg 3 to peg 2
move gis rom peg £8 peg disk from peg 1 to peg 2

e) ; move
move dis rom peq to peqg >>> N

>>> recursion.hanoi(2, 'peg 3', 'peg 2', 'peg 1'}
move disk from peg 3 to peg 1

Tower of Hanoi is pretty slow for larger values of n.
Q: How many disk moves (approximately) for a given n?

Note: The above is on Python version. Java is analogous

300

250

200

150

100

50

12

0.8
0.6
0.4

0.2

OPTIONAL
Performance

Tower of Hanoi. Time vs. n

Tower of Hanoi
really slows down for
large n

16 17 18 19 20 21 22 23

Factorial's time is roughly
linear with n.
We say that the time for
factorial is O(n), called Big-
o e e e w Oh(n), or linear in n

Factorial (time vs. n)

Big-Oh

® A way to measure how execution time or
memory use will grow with input size

® Formally, f(n)

is O(g(n)) iff for sufficiently

large values of n, f(n) is within constant
times of g(n). That is,

® f(n) < c.g(n) for all n > N and some

constant c.

Big-Oh examples

3n + 2 is O(n) because 3n+| < 4n for large
n

1000n + 100000 is also O(n)
10n2 + 3 is O(n?)
2" + n3is O(2")

Basic Points

® |gnore the small stuff
® n+ |0:ignore the 10
® n? + n:ignore the n
® Simplify
® Replace |0 by |.Both are O(I)
® 2n can be replaced by n. Both are O(n)

Factorial Time Analysis

® Factorial of 0: constant time.
e T(0)=1 (treat constants as |)

® Time required to compute factorial of n:

® T(n) =T(n-1) + I (treat constants as |)
T4)=T@3) + |
=T2)+ | + |
=T(H+1+1+1

=TO)+1+1+1+1 =5

In general, T(n) is n+1 or O(n)

Hanoi: Number of
Moves

® LetT(n) = number of disk ® T(nN)=2"-10r O(2")
moves for n disks
® Hanoi for 64 disks would
o T(I)=1 take a very, very long
time!
e TQ)=2*T(I)+1=3
® This is an example of an
e TR)=2*TR)+ 1 =7 exponential-time
program.
o T4 =2*T3)+ 1 =15

® See a pattern?

Advantage of Big-Oh
Analysis

® Big-Oh gives you trends versus problem
size

® Big-Oh analysis holds even if computers
become |0 times faster

Common Growth
Rates

O(1): constant time. For example, array
lookup, given an index

O(n): linear time. For example, scan an array
of length n for a value

O(log n): Between constant and linear time.
O(2"): Exponential time.Very bad

We will see lots of examples later

Fractals

® Fractals are recursive
drawings. They occur a
lot in nature and there is
a field called fractal
geometry. Can use
recursion to draw them

But, how to do drawings in Java?

Drawing in Java

® Java has several graphics packages: awt, swing, etc.

® We will use ACM Graphics package for Java, as it
is designed for educational use

® Download acm.jar and*.java from CTools in | |-
lecture-code folder

® Documentation:

® http://jtf.acm.org/tutorial/Introduction.html

Using acm.jar

Command line (use semi-colons on Windows):
javac -cp .://path/to/acm.jar *.java
java -cp .:/path/to/acm.jar MainClass

® |n Eclipse,go to o

Project ->

® 0 Properties for Fractals
type filter text Java Build Path
Builders (## Source [=% Projects m “%4y Order and Export !
) EAlidiEat JARs and class folders on the build path:
J Code Styl -
b Java Compiler b (oo acm.jar - Fractals/src [Add JARs...

> = i 2 1
> Java Editor B, JRE System Library [JVM 1.6)

M > Javadoc Location L Add External | JARs...)
ro P e rtl e S - Project References

Refactoring History L Add Variable...

o Run/Debug Settings
ava U I at > Task Repository (Add Library...

Task Tags

Validation { Add Class Folder...

. Ad d ac m .j a r to (* Add External Class Folder... :

the build path —

Migrate JAR File...

(Cance) (oK

ACM Graphics Package

® Create shapes, e.g., GLabel, GLine, GTurtle,
etc. in a GraphicsProgram

® Add them to the canvas using the add()
routine

® getWidth() and getHeight() return the
height of a canvas.

® Coordinate system: Top-left corner is (0,0).

Mini-exercise

® Compile and run one of the Hello
programs that use the ACM jar file. Submit
a screen snapshot

® Generate the stack of squares and submit a
screen snapshot

Turtle Programming:
Drawing a Square

public static void drawSquare(GTurtle t, double len) {
t.penDown();
for (int 1 =0; 1 < 4; 1++) {
t.forward(len);
t.left(90);

public void run() {

// Place turtle in the center of the canvas

GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
add(turtle);

drawSquare(turtle, 100.0);

}

Hello World Program

public class HelloGraphics extends GraphicsProgram {

public void run() {
GLabel label = new GLabel("hello, world");
label.setFont("SansSerif-100");

double x = (getWidth() - label.getWidth()) / 2; s _—
double y = (getHeight() + label.getAscent()) / 2; '
add(label, x, y);

¥ hello, world

/* Standard Java entry point. Call MainClass.start(args)
to get graphics program going */

public static void main(String[] args) {
new HelloGraphics().start(args);

}

Stack of Squares using
Recursion

public void drawStack(GTurtle t, double len, int squarecount) {
// precondition: turtle at "origin"
1f (squarecount == @) return;
drawSquare(t, len); // draw big square, ending at the start location.
t.left(90); t.forward(len); t.right(90); // go to the top-left
drawStack(t, len/2.0, squarecount-1);
t.right(90); t.forward(len); t.left(90); // return to origin
// post-condition: draw the stack and return to origin

h

public void run() {

GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
add(turtle);

drawStack(turtle, 100.0, 3);
ks

Another Way

® Use shape drawing functions rather than
turtles. Basic primitive

® draw a shape of a given size at (X, Yy)

® Shapes include lines, squares, circles,
rectangles, etc.

® Shapes can have attributes, such as line
thickness, color; fill, etc.

Drawing a square

// File: SquareStackWithShapes. java

// draws a square at (x, y) of length len. Origin top-left corner.
public void drawSquare(double x, double y, double len) {
GRect r = new GRect(x, y, len, len);
add(r);
¥

public void run() {
drawSquare(getWidth()/2, getHeight()/2, 100.0);
¥

Drawing a Stack

// draw a stack squarecount deep at (x, y), with squares becoming
// half the size as you go up the stack.
public void drawStack(double x, double y, double len, int squarecount) {

1f (squarecount == @) return;
drawSquare(x, y, len); // draw big square, ending at the start location.
drawStack(x, y-len/2.0, len/2.0, squarecount-1);

}

Draw the big square. Note: origin top-left corner.
Draw the remaining stack with origin /2 length up.

public void drawTreeOfSquares(double x, double y, double len, int squarecount) {
1f (squarecount == 0) return;
drawSquare(x, y, len);
drawTreeOfSquares(x-1en*@.25, y-len*@.5, len*@.5, squarecount-1);
drawTreeOfSquares(x+len*@.75, y-len*@.5, 1en*@.5, squarecount-1);

Hierarchical Data (trees)

S [G

Example: child-dad/mom relationship

Count nodes in a Tree

If tree empty, return O
Else, return

one

+ count of left subtree

+ count of right subtree

Summary

Divide and Conquer is a common problem
solving strategy

It often maps to recursive algorithms

Big-Oh notation a way to estimate how
time required to solve a problem will grow
as the problem size increases

