CS162, Spring 2004 Discussion #8 Amir Kamil
UC Berkeley 3/11/04

Topics: Paging, Multilevel Paging

1 Announcements

e Group evaluations should be done a day after project turned in. Since the webpage said two days, we
will give you the extra day for phase 1.

Midterm Thursday, March 18th, 2004, 5:30-7:30pm, 155 Dwinelle

Project 2 initial design doc due FRIDAY, March 12, 2004 @ 11:59pm

Midterm review 3/17 in class

projl-code grades have been entered, stats online

2 Paging

Recall that in segmentation, external fragmentation, or holes between segments in memory, is a large problem.
Complex memory allocation algorithms are required to reduce this problem, and in some cases whole segments
must be copied to obtain a large enough chunk of free contiguous memory.

The problems of segmentation arise mostly from the fact that segments can be variable size. So in order
to solve these problems, we can force segments to be of a fixed size. Such a scheme is called paging, and the
segments are now called pages. Pages are usually about 4KB in size.

In paging, a virtual address is now divided into two pieces, a virtual page number and the offset in the
page. Since pages are 4KB each, the offset uses 12 bits (2!2 = 4096), and the page number uses 20 bits.
In order to translate this into a physical address, each process has a page table that maps virtual pages
to physical pages. The memory management unit looks up the page table entry for the virtual page and
replaces the virtual page number with the corresponding physical page while keeping the offset in order to
obtain a physical address, as shown in figure 1. A page table entry also has some extra information, such as
protection, used, and valid bits. A reference to an invalid page is called a page fault, and we will see later
what can cause this. Table 1 gives some examples of address translation in a 16-bit virtual, 20-bit physical
address space with 4KB pages.

Paging has multiple advantages over segmentation. We no longer need a complex memory allocation
algorithm, since any free physical page can be used when space is allocated. Program sections no longer
need to be contiguous, and there is no external fragmentation. Sharing is easy, since whole pages can be
shared, and we will see later that pages can actually be moved to disk when they are not in use.

However, paging also introduces new problems. A process can only allocate memory in multiples of the
page size, so it can own a page of which it only uses a small amount. This is called internal fragmentation.
In order to reduce this problem, small page sizes are used, but then the page table size is large. Consider a
32-bit address space with 4KB pages. There are 20 bits of page numbers, or 22° = 1M total entries in the
page table. Each page table entry must hold 20 bits for the corresponding physical page number, and a few
more bits for protection and accounting information, so about 32 bits total. Thus the page table size is 1M
-32 bits = 4MB, all of which must be in physical memory. Since each process has its own page table, 4MB of
memory per process is required in paging. With many processes in a system, the page tables can potentially
take up a large chunk of physical memory.

3 Multilevel Paging

One solution to the large memory requirements of page tables is to use multilevel paging. In this scheme,
a virtual address is divided into three or more sections, with all but the last section being page numbers
in different page tables, and the last one being the offset. In two-level paging, the first section is the page

vpn offset

=~
(ox1) 0x123

physical
page

0xAFO013 r/'w

info

0x18F1B r 0x18F1B 0x123
— ppn offset

0x0A921 | r/w/s

Figure 1: Translation procedure in paging for a 32-bit address space with 4KB pages.

Virtual page number | Physical page number | Valid
0x14
0x50
0x52
0xFE
0xA4
0x26
0x88
0x68
0xD4
0x18

©|oo| ~1| | 1| kx| wo| ro| =] o
R 2| K< =<2 =

Virtual address | Physical address
0x156D 0x5056D
0x6400 0x88400
0x8888 Page fault.
0x7888 0x68888
0x23F4 0x523F4
0x3A6B Page fault.

Table 1: Examples of address translation, using 4KB pages in a 16-bit virtual, 20-bit physical address space.

vpnl vpn2 offset
P

P
T 0x0) ox1) offset

~

| peinterto second physical | . o
(page table page
0xB1284000 0xAFG13 | r/w
0x94A1C000 0x18F1B r
0x0831A000 0x0A921 | r/w/s
0x18F1B 0x123
ppn offset

Figure 2: Translation procedure in multilevel paging for a 32-bit address space with 4KB pages

number in a top-level page table, and is used to lookup a second-level page table. The second section is the
page number in the second-level table, and is used to lookup the physical page number. Figure 2 shows the
translation scheme for two-level paging in a 32-bit address space, with 10 bits for each virtual page number.
Note that the top-level table holds a pointer to the corresponding second-level table, but the second-level
table holds a 20-bit physical page number.

How much space is required for the page tables in this scheme? We now have a top-level table with
210 — 1024 entries, so it takes 4KB of space. There are 1024 second-level tables, each with 1024 entries,
so they take 4MB total. So this scheme takes 4KB more than single-level paging. However, not all the
second-level tables need to be resident in memory, and page tables are not needed for unmapped virtual
memory. Thus the total usage is actually lower, and only the top-level table must be in memory at all times,
requiring only 4KB (exactly one page!) of physical memory per process.

A minor complication arises in multilevel translation: should the address of the second-level page table in
the top-level table be a virtual or a physical address? A virtual address adds an extra translation that needs
to be done, while a physical address has problems dealing with page tables that are not in memory. Generally,
the top-level table contains physical addresses, but the least significant bit of each entry indicates whether
the page table is present in memory or not. If not present, then the entry would contain an OS-specific
pointer (such as a disk block address) used to record where the page table is stored on disk.

Multilevel translation schemes can use segmentation as well, and a mixture of segmentation and paging.
For example, the top-level table could be a segment table, and the second-level a page table. The translation
scheme then mimics the segmentation scheme for the first level and the paging scheme for the second.

While the memory requirements are lower for multilevel tables, the extra levels require more memory
accesses to translate an address. This problem is alleviated by caching translations, in a translation lookaside
buffer (TLB).

