Lecture 5: Statistical models of images

• Review Fourier transforms Image statistics • Texture synthesis

Today

The Discrete Fourier transform

The Discrete Fourier Transform (DFT) transforms a signal *f[n]* into *F[u]* as:

Fourier coefficient for frequency *u*

Examples

	Transform		
x)	\Leftrightarrow	1	4.5960 0.5990 4.5960 0.5990
-u)	\Leftrightarrow	$e^{-j\omega u}$	
x/a)	\Leftrightarrow	$a sinc(a \omega)$	
x/a)	\Leftrightarrow	$a \mathrm{sinc}^2(a\omega)$	
$\sigma;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	
$)G(x;\sigma)$	\Leftrightarrow	$-rac{\sqrt{2\pi}}{\sigma}\omega^2 G(\omega;\sigma^{-1})$	
$G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega\pm\omega_0;\sigma^{-1})$	
$\delta(x) \delta(x) \delta(x;\sigma)$	\Leftrightarrow	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$	
$(aW)) \\ x/a)$	\Leftrightarrow	(see Figure 3.29)	45580 0.3990 4.5

From Szeliski 3.4

a = np.eye(8)[0]np.fft.fft(a)

Examples

array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])

a = np.ones(8)np.fft.fft(a)

Examples

array([8.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j])

2D Discrete Fourier Transform

2D Discrete Fourier Transform (DFT) transforms an image f [n,m] into F [u,v] as:

$$\exp\left(-2\pi j\left(\frac{un}{N}+\frac{vm}{M}\right)\right)$$

Examples

What is the 2D FFT of a line?

Fourier transform in x direction

Full 2D Fourier transform

What is a "natural" image?

"Natural" image

"Fake" image

To appear in: Handbook of Video and Image Processing, 2nd edition ed. Alan Bovik, ©Academic Press, 2005.

4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli

New York University

January 18, 2005

Statistical modeling of images

$p(\mathbf{I}) = \prod_{x,y} p(\mathbf{I}(x,y))$

Source: Torralba, Freeman, Isola

Statistical modeling of images

 $p(\mathbf{I}) = \prod p(\mathbf{I}(x, y))$ x,y

• Stationarity: The distribution of pixel intensities does not depend on image location.

Fitting the model

Sampling new images $p(\mathbf{I}) = \prod p(\mathbf{I}(x, y))$ x,y

Sample

Doesn't work very well!

Sampling new images $p(\mathbf{I}) = \prod p(\mathbf{I}(x, y))$ x,y

Sample

Statistical modeling of images

The pixel-

Statistical modeling of images

$C(\Delta x, \Delta y) = \rho \left[\mathbf{I}(x + \Delta x, y + \Delta y), \mathbf{I}(x, y) \right]$

 $C(\Delta x, \Delta y) = \rho \left[\mathbf{I}(x + \Delta x, y + \Delta y), \mathbf{I}(x, y) \right]$

Gaussian model

$$p(\mathbf{I}) = \exp\left(-\frac{1}{2}\mathbf{I}^T\mathbf{C}^{-1}\mathbf{I}\right)$$

- Diagonalization of circulant matrices: $C = EDE^{T}$
 - The eigenvectors are the Fourier basis The eigenvalues are the squared magnitude of the Fourier coefficients

We want a distribution that captures the correlation structure typical of natural images.

Stationarity assumption: Symmetrical circulant matrix

$$\mathbf{\hat{I}}(v)|^{2} \simeq \frac{1}{|v|^{\alpha}}$$

A remarkable property of natural images

D. J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987)

Fit the Gaussian image model to each of the images in the top row, then draw another random sample (with random phase), you get the bottom row.

Sampling new images

 $p(\mathbf{I}) = \exp\left(-\frac{1}{2}\mathbf{I}^T\mathbf{C}^{-1}\mathbf{I}\right)$

Sample

Sampling new images

Doesn't always work well!

Source: Torralba, Freeman, Isola

Decomposition of a noisy image

Denoising

Decomposition of a noisy image

White Gaussian noise: $N(0, \sigma_n^2)$ Natural image

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

 $\max_{\mathbf{T}} p(\mathbf{I}|\mathbf{I}_n)$ $= \max_{\mathbf{T}}$

Denoising

$$p(\mathbf{I}_n|\mathbf{I})$$
 x $p(\mathbf{I})$ Iikelihood

(Bayes' theorem)

Decomposition of a noisy image

White Gaussian noise: $N(0, \sigma_n^2)$ Natural image

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

$\max_{\mathbf{T}} p(\mathbf{I}|\mathbf{I}_n) = \max_{\mathbf{T}}$

 $= \max$

Denoising

This can also be written in the Fourier domain, for constant A:

$$\widetilde{\mathbf{I}}(v) = \frac{A/|v|^{2\alpha}}{A/|v|^{2\alpha} + \sigma_n^2} \widetilde{\mathbf{I}}_n(v)$$

Denoising

The estimated decomposition:

Statistical modeling of images

A small neighborhood

g[m,n]

[-1, 1] h[m,n]

[-1 1]

f[m,n]

Source: Torralba, Freeman, Isola

g[m,n]

[-1 1]⊤

f[m,n]

Source: Torralba, Freeman, Isola

Observation: Sparse filter response

[1 -1] filter output [1 -1] output histogram

A model based on filter outputs

Sampling images Gaussian model Wavelet marginal model

Fig. 3. Example image randomly drawn from the Gaussian spectral model, with $\gamma = 2.0$.

Gaus- Fig. 6. A sample image drawn from the wavelet marginal model, with subband density parameters cho-sen to fit the image of Fig. 7.

Taking a picture...

What the camera give us... How do we correct this?

Deblurring

Deblurring

Deblurring

Image formation process

Input to algorithm

Model is approximation

Sharp image

Desired output

Convolution operator

Multiple possible solutions

Blurry image

Sharp image

 \bigotimes

Blur kernel

Natural image statistics

Characteristic distribution with heavy tails Histogram of image gradients

Blury images have different statistics

Histogram of image gradients

Parametric distribution

Use parametric model of sharp image statistics Slides R. Fergus

Histogram of image gradients

Nonparametric image models

Texture Synthesis

Efros & Leung Algorithm

Synthesizing a pixel

- Assuming Markov property, compute P(p|N(p)) – Building explicit probability tables infeasible
- - Instead, we search the input image for all similar neighborhoods — that's our pdf for p
 - To sample from this pdf, just pick one match at random

Input image

Some Details

- Growing is in "onion skin" order – Within each "layer", pixels with most neighbors are synthesized first
 - If no close match can be found, the pixel is not synthesized until the end
- Using Gaussian-weighted SSD is very important - to make sure the new pixel agrees with its closest
 - neighbors
 - Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window

Increasing window size

Varying Window Size

french canvas

Synthesis Results

rafia weave

More Results

white bread

brick wall

Homage to Shannon

onng m me unsensauor r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh · story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger

Magras "P elor a_JS? tirtfooear/ hting Jy is that is opm e fitseu hrist^ydh þnr id tif Pule 1018 ont a prenona irlenr obor hi d tif Pule 10 day of the solo of utonu ϵ fui hes, ",ithenly n Anf er Eloaeunoh," dthf ptdi Uni in e oun ba hvoegahmti failit ւր եղեր f hsk as vs.m, d ut, "gdt^{iff}afec⁺d, peil. tin^hClt^{nit}. $s_{h_1}^{c_1}$ ry_{er} Joenn'n P (Du) n, Dirweiurb mtime1?trt sy npsaunayn or

thaimn. them ."Whephartfe lartifelintomimen el ck Clirtioout omaim thartfelins.f out 's anestc the ry onst wartfe lck Gepmtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Wieontongal s k Cirtioouirtfepe.ong pme abegal fartfenstemem tiensteneltorydt telemephinsverdt was agemen ff ons artientont Cling peme asırtfe atiıh, "Boui s nal s fartfelt sig pedr‡l•dt ske abounutie aboutioo tfeonewwas your aboronthardt thatins fain, ped, ains. them, pabout wasy arfuut countly d, In A h ole emthrängboomme agas fa bontinsyst Clinüt [.] ory about continst Clipeoµinst Cloke agatiff out 0 stome minemen tly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbaut cout congagal comininga: mifmst Clity abon 'al coountha.emungairt tf oun Vhe looorystan loontieph. Intly on, theoplegatick 🕻 ul fatiezontly atie Diontiomt wal s f tbegàe ener mthahgat's enenhinbas fan, "intchthory abons y

Hole Filling

Extrapolation

- The Efros & Leung algorithm Very simple
 - Surprisingly good results
 - Synthesis is easier than analysis!
 - …but very slow

Image Quilting [Efros & Freeman]

Synthesizing a block

<u>Idea:</u> unit of synthesis = block

- Exactly the same but now we want P(B|N(B))
- Much faster: synthesize all pixels in a block at once • Not the same as multi-scale!

Input image

• <u>Observation</u>: neighbor pixels are highly correlated

Random placement of blocks

B1

block

Neighboring blocks constrained by overlap

B2

Minimal error boundary cut

Minimal error boundary

overlapping blocks

overlap error

vertical boundary

min. error boundary

Our Philosophy

- The "Corrupt Professor's Algorithm": – Plagiarize as much of the source image as you can – Then try to cover up the evidence

- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together

Failures (Chernobyl Harvest)

Texture Transfer

Constraint

Texture sample