Lecture 27: Ethics in computer vision (part 2)



Announcements

® | ast class :(

® xtra office hours:

® [oday: end of class until 2pm

® [hurs: 12:00 - 1:00pm.
® PS8 grades out (regrade requests due Friday)

o PSS9, PS10 due tonight. No late days allowed.
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Garbage in, garbage out

A machine learning algorithm will do whatever the training data
tells it to do.

f the data Is bad or biased, the learned algorithm will be too.

3 Source: Isola, Torralba, Freeman



Microsoft's Tay chatbot

Chatbot released on twitter.

| earned from Iinteractions with users

~ 3 TayTweets {x 2 Follow
. TayandYou

@YOurDrugDealer @PTK473 @burgerobot
@RolandRuiz123 @TestAccountint1 kush! [ i'm

smoking kush infront the police ]X{i
F?8.ET“.VEETS ;1258 !~. ; ﬁ ? g ﬁ‘

3:03 AM - 30 Mar 2016

Started mimicking offensive language, was shut down.

Image source: https://money.cnn.com/201 6/03/30/technology/tay—tweets—microsoft/indexfhtml



https://money.cnn.com/2016/03/30/technology/tay-tweets-microsoft/index.html

The Giraffe- Tree problem

A giraffe standing in the grass
next to a tree.

[“Measuring Machine Intalligence Through Visual Question Answering”, Zitnick et al., 2016]



Nearest neighbor baseline

Source: L. Zitnick



Nearest Neighbor

A black and white cat Two zebras and a giraffe in a field.
sitting in a bathroom sink.

See mscoco.org for image information Source: L. Zitnick



Image captioning
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A man riding a
motorcycle on a beach.

An airplane is parked on the
tarmac at an airport.

Source: L. Zitnick



Results

=)

COCO Caption Challenge

CIDEr-D Meteor ROUGE-L BLEU-4

Googlel4] 0.943 0.254 0.53 0.309
MSR Captivatori®] 0.931 0.248 0.526 0.308
m-RNNI15] 0.917 0.242 0.521 0.299
MSRI8] 0.912 0.247 0.519 0.291
Nearest Neighborf11] 0.886 0.237 0.507 0.280
m-RNN (Baidu/ UCLA)[16]1|0.886 0.238 0.524 0.302
Berkeley LRCNIZ2] 0.869 0.242 0.517 0.277
Humanis] 0.854 0.252 0.484 0.217
Montreal/Torontol10] 0.85 0.243 0.513 0.268
PicSOMI13] 0.833 0.231 0.505 0.281
MLBLI7] 0.74 0.219 0.499 0.26

ACVTIL] 0.709 0.213 0.483 0.246
NeuralTalkl12] 0.674 0.21 0.475 0.224
Tsinghua Bigeyel14] 0.673 0.207 0.49 0.241
MIL[6] 0.666 0.214 0.468 0.216
Brno University(3] 0.517 0.195 0.403 ¢ 0.134

Source: L. Zitnick



Visual Question Answering Dataset
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Source: L. Zitnick



Source: Isola. Torralba, Freeman [“Colorful image colorization”, Zhang et al., ECCV 2016]



[“Colorful image colorization”, Zhang et al., ECCV 2016]
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Source: Isola. Torralba, Freeman [“Colorful image colorization”, Zhang et al., ECCV 2016]



(Generalization



Go ugle

Search

Everything
Images
Maps
Videos
News
Shopping

More

Any time
Past 24 hours
Past week

Training data

What Google thinks are
student bedrooms

student bedroom

About 66,700,000 results (0.15 seconds)

15

Test data

Source: Isola, Torralba, Freeman



Training data Test data

Driving simulator (GTA) Driving in the real world

Need learning methods that can bridge this domain gap!

16 Source: Isola, Torralba, Freeman



Revisiting the problem of generalization
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Source: Isola, Torralba, Freeman
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Source: Isola, Torralba, Freeman



Training data Test data
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20 Source: Isola, Torralba, Freeman



Training data Test data
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. , { (train) (train)} iid
This is a huge assumption! i i Paata
| icel test) (test), iid
Almost never true in practice! [ (Fost) y(best)y 31,

21 Source: Isola, Torralba, Freeman



Training data
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Much more commonly, we have
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Source: Isola, Torralba, Freeman
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Our training data did cover the part of the distribution that was tested

(biased data)
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Source: Isola, Torralba, Freeman



testing domain

tralnlng aomain (where we actual use our model)

\

Domain gap between Ptrain and Ptest will cause
us to fail to generalize.

Space of natural images

Training data

Test data 24

Source: Isola, Torralba, Freeman



Soclal consequences

Color Matters in Computer Vision

Facial recognition algorithms made by Microsoft, IBM and Face++ were more likely to
misidentify the gender of black women than white men.

Gender was misidentified in up to 1 percent of lighter-skinned males in a set of Gender was misidentified in 35 percent of darker-skinned females in a set of 271
385 photos. photos.

25

https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html

Source: Isola, Torralba, Freeman



Algorithmic Bias

Gender
Classifier

B= Microsoft

.N
(S

FACE™

Darker
Male

94.0%

99.3%

88.0%

Darker
Female

79.2%

65.5%

65.3%

http://gendershades.org/overview.html

Lighter
Female

98.3%

94.0%

92.9%

Largest
Gap

20.8%

33.8%

34.4%
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Proceedings of Machine Learning Research 81:1-15, 2018

Conference on Fairness, Accountability, and Transparency

Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification”

Joy Buolamwini

JOYAB@MIT.EDU

MIT Media Lab 75 Amherst St. Cambridge, MA 02139

Timnit Gebru

TIMNIT.GEBRU@MICROSOFT.COM

Microsoft Research 641 Avenue of the Americas, New York, NY 10011

Editors: Sorelle A. Friedler and Christo Wilson

Abstract

Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
gorithms and datasets with respect to phe-
notypic subgroups. Using the dermatolo-
gist approved Fitzpatrick Skin Type clas-
sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, IJB-A and Adience.
We find that these datasets are overwhelm-
ingly composed of lighter-skinned subjects
(79.6% for 1JB-A and 86.2% for Adience)
and introduce a new facial analysis dataset
which is balanced by gender and skin type.
We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
for lighter-skinned males is 0.8%. The
substantial disparities in the accuracy of
classifying darker females, lighter females,
darker males, and lighter males in gender
classification systems require urgent atten-
tion if commercial companies are to build
genuinely fair, transparent and accountable
facial analysis algorithms.

Keywords: Computer Vision, Algorith-
mic Audit, Gender Classification

1. Introduction

Artificial Intelligence (AI) is rapidly infiltrating
every aspect of society. From helping determine

* Download our gender and skin type balanced PPB
dataset at gendershades.org

© 2018 J. Buolamwini & T. Gebru.

Source: Isola, Torralba, Freeman

who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding.

http://proceedings.mlr.press,v81 ’buolamwini‘l 85’buolamwini‘| 8a.pdf




Questionable data choices

Composite heterosexual faces Composite gay faces Average facial landmarks
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https://www.nytimes.com/2017/10/09/science/stanford-sexual-orientation-study.html
27



https://www.nytimes.com/2017/10/09/science/stanford-sexual-orientation-study.html

How can we collect good data”

/

+ Correctly labeled
+ Unblased (good coverage of all relevant kinds of data)

28 Source: Isola, Torralba, Freeman






1 he value of data

The Large Hadron Collider Amazon Mechanical Turk
$ 10 10 3 $102-104

Source: Isola, Torralba, Freeman



But can humans collect good data”



qz\/ -

Source: Isola, Torralba, Freeman



Getting more humans in the annotation loop

Labeling to get a Ph.D.
A |

Labeling for fun
Lu15 Von Ahn and Laura Dabbish 2004

eeeeeeeeee

2 O5  The ESP Game ogogo

Labeling for money
(Sorokin, Forsyth, 2008)

amazonmechanical turk

Labeling to prove
you’re human

Labeling because it trafic lights
gives you added value

Visi pedia

(Belongie, Perona, et al)

Source: Isola, Torralba, Freeman



Beware of the human in your 1oop

* What do you know about them®

* Will they do the work you pay for”

L et’s check a few simple experiments

Source: Isola, Torralba, Freeman



People have biases...

Turkers were offered 1 cent to pick a number from 1 to 10.

~850 turkers
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=xperiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/

Source: Isola, Torralba, Freeman



Do humans have consistent biases”?

4 ™

Choose Item
Requester: SimpleSphere Reward: $0.01 per HIT HITs Available: 1 Duration: 60 minutes
Qualifications Required: None

Please choose one of the following:

== Results form 100 HITS:

60

50

40

30 -

T

B

top middle bottom

20 -

10 -

36

=xperiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/

Source: Isola, Torralba, Freeman



Are humans reliable even in simple tasks”

" Choose the given item.
Requester: SimpleSphere Reward: $0.01 per HIT HITs Available: 1 Duration: 60 minutes

Qualifications Required: None

Please click button B:

td

Results of 100 HITS:
A 2
B: 96
C: 2

37

=xperiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/

Source: Isola, Torralba, Freeman



Do humans do what you ask for”?

( 2

Flip a coin
Requester: ROBERT C MILLER Reward: $0.01 per HIT HITs Available: 3 Duration: 5 minutes
Qualifications Required: None

Please flip an actual coin and type either H or T below.

After 50 HITS; And 50 more;

31 heads, 19 tails 34 heads, 16 tails

38

=Xperiment by Rob Miller
From http://groups.csail.mit.edu/uid/deneme/

Source: Isola, Torralba, Freeman



SO we can sometimes collect good training data.

But suppose we messed up. Our test setting doesn't
looK lIke the training data!

How can we bridge the domain gap?

39 Source: Isola, Torralba, Freeman



FINAINg More representative images

Places365 Kitchen

[Fouhey et al., "From Lifestyle Vlogs to Everyday Actions”, 2017]



FINAINg More representative images

VLOG Kitchen

-
-
.

[Fouhey et al., "From Lifestyle Vlogs to Everyday Actions”, 2017]



Name that dataset game

______ LabelMe
MSRC Corel COIL-100
UIUC PASCALO7 ImageNet

Torralpba and Efros, “An unbiased look at dataset bias,” 2011]



testing domain

tralnlng aomain (where we actual use our model)

\

Domain gap between Ptrain and Ptest will cause
us to fail to generalize.

Space of natural images

Training data

Test data -

Source: Isola, Torralba, Freeman



target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Ptarget Will cause
us to fail to generalize.

Space of natural images

Source data

Target data ™

Source: Isola, Torralba, Freeman



|[dea #1: transtform the target domain to look like the source domain

Data space

source data target data

45

(Or vice versa) This is called domain adaptation

Source: Isola, Torralba, Freeman



Domain adaptation

We have source domain pairs {xsource ysource}

L earn a mapping F: xsource —> ysource

We want to apply F to target domain data xtarget
FInd transformation [ xtarget — > xsource

Now apply F(T(xtarget)) to predict ytarget

Source: Isola, Torralba, Freeman



psource

t's a just another distribution mapping problem!

47
Source: Isola, Torralba, Freeman



CycleGAN

Horses /ebras

48
Source: Isola, Torralba, Freeman



Domain adaptation

Pt arget

psource

49
Source: Isola, Torralba, Freeman



target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Ptarget Will cause
us to fail to generalize.

Space of images

Source data

Target data

50

Source: Isola, Torralba, Freeman



CyCADA: Cycle-Consistent Adversarial Domain Adaptation

Source domain

[Hoffman, Tzeng, Park, Zhu, Isola, Saenko,

Darrell,

Target domain

—fros, arXiv 2017]

51
Source: Isola, Torralba, Freeman



CycleGAN

52
Source: Isola, Torralba, Freeman



CycleGAN

53
Source: Isola, Torralba, Freeman



CycleGAN FCN

54
Source: Isola, Torralba, Freeman



OpenAl Dactyl

FINGER PIVOTING SLIDING FINGER GAITING

55 Source: Isola, Torralba, Freeman



target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Ptarget Will cause
us to fail to generalize.

Space of images

Source data

Target data

56

Source: Isola, Torralba, Freeman



|[dea #2: train on randomly perturbed data, so that test set just looks
Ike another random perturiation

Data space

Training data Jest data

@ o © “ “
‘¢0 o

This is called domain randomization or data augmentation

Source: Isola, Torralba, Freeman



Training data

Source: Isola, Torralba, Freeman

Data augmentation

"Fish”

"Fish”

“Fish”

"Fish”

58

—— —— = =

Mirror

Crop

Crop

Darken



Domain randomization

Training data Test data

[Sadeghi & Levine 2016
Above example is from [Tobin et al. 2017

Source: Isola, Torralba, Freeman



Table 1: Ranges of physics parameter randomizations.

Parameter

Scaling factor range

Additive term range

object dimensions
object and robot link masses
surface friction coefficients

robot joint damping coefficients

actuator force gains (P term)

uniform (
uniform(
uniform(

0.95,1.05))
0.5,1.5))
0.7,1.3])

loguniform([0.3, 3.0])
loguniform([0.75, 1.5])

joint limits
gravity vector (each coordinate)

N(0,0.15) rad
N(0,0.4) m/s?

Consecutive Goals Achieved

50

40

30

20

10

@® All Randomizations

10
Years of Experience

No Randomizations

100

60
Source: Isola, Torralba, Freeman



What if we go way outside of the training distribution?

Source: Isola, Torralba, Freeman



Y 25-

20 A

15 -

10 -

Training data

7} 7?/7;

5 6 7 8 9 10

X

Test data

Y 25-

20 A

15 A

10 A

{m(train) (train) }]\Ll 0 -

’
®

generalization error ¢ ’
.

Our training data did not cover the part of the distribution that was tested
(biased data)

62

Source: Isola, Torralba, Freeman



“‘Deep Neural Networks are Easily Fooled: High Confidence Predictions

for Unrecognizable Images”
[INguyen, Yosinski, and Clune, CVPR 2015]

robin “ cheetah || armadillo lesser panda

centipede jackfruit bubble

Source: Isola, Torralba, Freeman



“‘Deep Neural Networks are Easily Fooled: High Confidence Predictions

for Unrecognizable Images”

[INguyen, Yosinski, and Clune, CVPR 2015]
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Source: Isola, Torralba, Freeman



Welrdness of high-dimensional space:

Data space

Training data

Usually, there are blind spots where the model has not
fit the distribution well, and behaves unpredictably

Source: Isola, Torralba, Freeman



Adversarial noise

r

“*School bus” “Ostrich’

arg max p(y = ostrich|x +r) subject to ||r|| <e

r

[“Intriguing properties of neural networks”, Szege%dy et al. 2014]

Source: Isola, Torralba, Freeman



Anything to worry about?

“NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles”, Lu et al. 2017

FastSign A

(Early) 2017’s attacks fail on physical
objects, since they are optimized to
attack a single view!

67
Source: Isola, Torralba, Freeman



Anything to worry about?

Later in 2017...

“Synthesizing Robust Adversarial Examples”, Athalye, Engstrom, llyas,
Kwok, 2017
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Source: Isola, Torralba, Freeman



Adversarial examples

o Current deep models have bad worst-case performance
e (Can be exploited by an adversary

e Few guarantees, can't fully trust what the model’s output

Source: Isola, Torralba, Freeman



Mission-critical computer vision systems
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Source: https://www.nytimes.com/2020/02/25/business/tesla-autopilot-ntsb.html, https://az.com/1402843/watch-teslas-autopilot-see-the-streets-of-paris/



https://www.nytimes.com/2020/02/25/business/tesla-autopilot-ntsb.html
https://qz.com/1402843/watch-teslas-autopilot-see-the-streets-of-paris/

Some things to worry about...

Misinformation

i

Our datasets are often poorly labeled

ANnd usually biased (overrepresent certain categories)

ML method perform beautifully on laboratory data, but often generalize
poorly to real-world data

71

Can have negative social conseguences



Project office hours until 2pm



