Lecture 26: More embodied learning + Ethics in computer vision (part 1)

Today

- Embodied learning
 - Q-learning
 - Playing games
 - Model-based reinforcement learning
- Ethics in computer vision (part 1)
 - Detecting fake images

Recall: Reinforcement learning

Recall: Reinforcement learning

state: pixels!

policy: action classifier

Reinforcement learning

A sample from the MPD is called a **Trajectory**

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots)$$

Recall: Reinforcement learning

Learn a policy that takes actions that maximize expected reward

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\tau \sim \pi} [R(\tau)]$$

Eventual return

 $\pi(a|s)$ = probability of choosing action a given state s

Eventual return

 $\pi(a|s)$ = probability of choosing action a given state s

Recall: Policy gradient

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)\nabla_{\theta}\log \pi_{\theta}] \longleftarrow \text{Estimate gradient using REINFORCE}$$
 and do gradient descent on policy

How good is a state?

Value function: expected future reward from starting in s.

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \mid s_0 = s, \pi\right]$$

- One advantage is *credit assignment*. We know which state/action was useful.
- Often more sample efficient, and updates have less variance.

How good is a state-action pair?

- Could we learn the value function and use it to choose actions?
 - Doesn't quite work. You'd also need to know the dynamics, i.e. what state you'd end up with if you took each action.
- Instead, learn action-value function (or Q function).

$$Q(s,a) = \mathbb{E}\left[\sum_{t\geq 0} R_t \mid s_0 = s, a_t = a\right]$$

ullet Optimal action for a state: $rgmax\ Q(s,a)$

Finding a good Q function

 Good Q function should satisfy a recurrence relation called the Optimal Bellman Equation:

Finding a good Q function

Measuring the Bellman error for Q:

$$r(s_t, a_t) + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)$$

- Approximate Q with a neural net Q(s, a; θ). For each episode i:
 - 1. Do the policy induced by Q and get a trajectory:

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots)$$

2. Update the parameters using backprop, minimizing approximation error:

$$t_{i} = r(s_{t}, a_{t}) + \gamma \max_{a} Q(s_{t+1}, a; \theta_{i-1})$$
$$L(\theta_{i}) = (t_{i} - Q(s_{t}, a_{t}; \theta_{i}))^{2}$$

Playing Atari games

Playing Atari games

Model-based control

- Learn the **dynamics** of the environment: $p(s_{t+1} \mid s_t, a_t)$
- You can learn that through exploration, without an explicit reward.
- If states = images, we want to predict the future after you do an action

Model-based control

- Learn the **dynamics** of the environment: $p(s_{t+1} \mid s_t, a_t)$
- You can learn that through exploration, without an explicit reward.
- If states = images, we want to predict the future after you do an action

Pushing task

Video prediction

Image forensics

Image manipulation

From Forrest Gump, 1994

his associates simply found photos of athletes on the Internet and either used those photos or used software such as PhotoShop to insert the applicants' faces onto the bodies of legitimate athletes. For example, as set forth in greater detail below, CW-1 explained to McGLASHAN that he would create a falsified athletic profile for McGLASHAN's son, something he told McGLASHAN he had "already done ... a million times," and which would involve him using "Photoshop and stuff" to deceive university admissions officers.

FBI affidavit on college admissions scandal

Image forensics: detecting fake images

Hany Farid

Hard to use supervised learning!

Strategy #1: use hard-to-fake physical cues

Real photo

Fake photo

Strategy #1: use hard-to-fake physical cues

[Johnson and Farid, 2007]

Strategy #2: subtle signals in imaging pipeline

- Cameras compress images differently.
- During quantization, some do round(), others do floor() or ceil()
- Use knowledge of cameras to detect quantization type
- If a photo seems to have **both** kinds of quantization, it's probably a composite from different cameras!

Strategy #3: learned anomaly detection

 Instead of hand-crafting cues, can we learn to detect "anomalous" images, and flag suspicious images?

Inconsistent

Consistent

Predicting metadata consistency

CameraMake: Apple

CameraModel: iPhone 4s

ColorSpace: sRGB

ExifImageLength: 2448
ExifImageWidth: 3264

Flash: Flash did not fire

FocalLength: 107/2

WhiteBalance: Auto

ExposureTime: 1/2208

• • •

CameraMake: NIKON CORPORATION

CameraModel: NIKON D90

ColorSpace: sRGB

ExifImageLength: 2848
ExifImageWidth: 4288

Flash: Flash did not fire

FocalLength: 18/796

WhiteBalance: Auto ExposureTime: 1/30

• •

Same camera model?

Photo source: reddit.com/user/jjrosado

Affinity matrix

Patch i

Photo source: reddit.com/user/jjrosado

Input

Prediction

Ground truth

Photo source: <u>TheOnion.com</u>

Input

Prediction

Ground truth

Photo source: <u>TheOnion.com</u>

Input

(Hays & Efros 2009)

Prediction

Ground truth

Strategy #4: supervised learning

- Malicious image editors often use the same tools, e.g. Photoshop
- Can we "overfit" to these tools and detect them well?

Make random fakes by scripting Photoshop.

Manipulated Photo

Warp Prediction

Suggested "Undo"

Original Photo

Suggested "Undo"

Manipulated Photo

New challenges on the horizon

Celeb-DF: A New Dataset for DeepFake Forensics

Yuezun Li¹, Xin Yang¹, Pu Sun², Honggang Qi² and Siwei Lyu¹

¹University at Albany, State University of New York, USA ²University of Chinese Academy of Sciences, China

New challenges on the horizon

- Any internet troll can make a fake video!
- They don't look that convincing yet, but of course quickly improving!
- Supervised learning methods can detect "known" deepfake algorithms
- But what about methods we've never seen before?
- Getting harder to tell what's real vs. fake

What's real and what's fake?

["The suspicious video that helped spark an attempted coup in Gabon" Washington Post. 2020]

https://www.youtube.com/watch?v=F5vzKs4z1dc

What's real and what's fake?

["The suspicious video that helped spark an attempted coup in Gabon" Washington Post. 2020]

What's real and what's fake?

["The suspicious video that helped spark an attempted coup in Gabon" Washington Post. 2020]

Next class: ethics in computer vision (part 2)