Lecture 25: Embodied vision



loday

® Formalisms for intelligent agents (environment, state, action, policy)
® |mitation learning
® Reinforcement learning

® Markov Decision Processes

® Policy gradient algorithm

® Just a high-level overview. See Sutton & Barto book [http://
iIncompleteideas.net/book/RLbook201 8.pdf| for much more complete treatment
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http://incompleteideas.net/book/RLbook2018.pdf
http://incompleteideas.net/book/RLbook2018.pdf

Announcements

® Sign up for final presentation timeslot by tonight!

e Email us ASAP if no time works for your group



THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

[Silver et al., 2016]

Agent observation raw pixels

3:4Y

Indoor map overview

[Jaderberg et al. 2018]
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1he whole purpose of visual perception, In humans,
IS t0 make good motor decisions.

“We move In order 1o see and we see in order to move” — J. J. Gibson

VWe are sensorimotor systems.
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Intelligent agents
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Intelligent agents

Actions
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Environment ‘/
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How to represent a state”? How to represent policy”?

state: pixels! policy: action classifier

4>
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|_earning from examples

(aka supervised learning)

Training data

{xlvyl}
{xo, 2} — Learner | — f: X =Y

{$3,y3}

f* —argmmZE Vi)

rfer
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Imitation learning

(still just supervised learning, applied to learn policies)

Training data

{s1,0a1}]

{s9,a5} —> Learner | — T .S — Q

{83,0a3}
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mitation learning

i:é@: ‘! Learner

:.E“:g:. d3 £ b4+ } Objective

Aotes Mo ) m(s) = softmax(gs(s))

o } L(a,7(s)) = H(a, m(5))

womE S Of3Ace > — T
Eggﬁzg y Hypothesis space

iz.gzg: Convolutional neural net

mhn oo m} Optimizer

e me " Stochastic gradient descent
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End-to-end Driving via
Conditional Imitation Learning

Felipe Codevilla, Matthias Mueller, Alexey Dosovitskiy, Antonio Lopez, Vladlen Koltun

Submitted to ICRA 2018



We train and evaluate robotic vehicles in the physical world
(top) and in simulated urban environments (bottom)



~rom Images to actions
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Auxiliary measurements, e.g. speed. Measurements L = Action
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Goal capturing expert’s intentions, Command C ) a
e.g. “Turn right at the next intersection.” (or vector to goal) | UL | (€)

[See Codevilla et al., “bBad-to-end driving via conditional imitation learning”, 2018]



~rom Images to actions

Segmentation

® Can use mid-level representations like depth, motion.

® Or do transfer learning from pretained net

Depth Optical flow

[See Zhou et al., “Does computer vision matter for action?”, 2019]



(“Return”)

BeNavIor ..o
“Trajectory”)

Reinforcement learning
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L.earner

Policy
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What’s a good policy”? (what’s the learning objective®)
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Reinforcement learning

PE=mN

Observations Actions
Rewards

o ]

| earn a policy that takes actions that maximize reward
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Imitation learning Reinforcement learning

No training data, have to play around
and collect the data yourself

+ No need for labeled data

+ Can learn things no human knows
how to do

- Less Instructive

- No curriculum

- Have to explore

Hand-curated training data

+ Instructive examples

+ Follows a curriculum

- EXpensive

- Limited to teacher's knowledge
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Reinforcement learning

State, Reward Actions
St+15 Tt (¢

\ Environment ‘/

f . St, At —7 St41
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Reinforcement learning

Policy

SR N Markov decision process (MDP)
State Actions
St+1 1 a Learnead

\ / Reward 7 ‘ O ‘ O
Action @ ‘( ‘/\‘&‘JA
SR S A S

time

State S ‘

A sample from the MPD is called a Trajectory 7 — (SO, aop,To,S1,41,71, .. )

20 Source: Isola, Torralba, Freeman



Reinforcement learning

Policy
/ TSt T Gt \ Trajectory T = (SQ,CLQ,TQ,Sl,al,Tl,...)

State, Reward Actions
St+15T¢ A

Environment

f D Sty At —7 St41

\ / Discounted Returns R(T) — Z Vtrta S (07 1>
t=0

L earn a policy that takes actions that maximize expected reward

" =argmaxE, .| R(7)]
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Reinforcement learning

lLearner
Objective
R(7)
Data
Hvpothesis space

These days: deep net

Optimizer

Can’t, in general, backprop through env!

/
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Environment is not differentiable! — How to optimize”

Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabllity.

raw pixels hidden layer

<0 X moving UP
N £
kv’f‘.‘«;\‘

-
Song V4

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]
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Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabillity.

UP DOWN -® DOWN -® DOWN -® UP »® WIN
DOWN’. UP »® UP »® | OSE
DOWN"DOWN* DOWN* UP ~® | OSE
DOWN». UP »® UP -® WIN

[Adapted from Andrej Karpathy http://karpathy.github.io/2016/05/31/rl/]
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Prediction y Ground truth label y | 0SS

Jo : X — RH H(yaf’):—iykbg?)k
dolphin ||l dolphin =
cat |§ cat
grizzly bear (§ grizzly bear
f angel fish || angel fish
chameleon ||l (+) chameleon
clown fish || NGNGB clown fish
iguana | iguana
elephant I elephant
0 1 0 1 0
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Eventual return

e +10 points

i O points

Policy output Action ' +10 points

........ ¥ +100 points

o Up 5.5,,.-“ ............... » +10 points
Down

"B 110 points

m(a|s) = probability of choosing action a given state s
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Fventual return

e 0 points
| , N O points

Policy output Action P
% +10 points
------- > O points

m Down I o P
DOWH E.‘E'-‘:%%':'::‘:: ------------------ } O pO”’]tS

0 1 ’

"B 110 points

m(a|s) = probability of choosing action a given state s
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Policy gradient

Want to take derivatives of expected reward w.r.t. the policy parameters.

0 _ 0
SErml B = 2 [ p(rio)R()dr

— [ p(r16) | 55 loeto(r10)| Rir)a

[0 |
Seny | g 1B (T R(T)

Do actions with high rewards more often, and low rewards less often
This is called the REINFORCE algorithm.
Converges very slowly, In comparison to supervised learning with gradients
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Policy gradient

e \What happens in a rollout”? Recall we're maximizing E,-, 5g 108(P (7\9))1%(7)-

9 % :
%log( p(7]0)) = %log p(so 1:[7T9 a;|st) tl;[lp St|St—1,a1—1)

9 T
=25 ogHm ai|st)

E — O T\ A ‘S
9(9 g 9 t|°ot
t=0

o Al actions become more likely If the reward is high.
® [oesn't do credit assignment.
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Policy gradient

e Algorithm: do SGD on policy

1. Sample a rollout, e.q. play the game with current policy

T = (SOaaOaslvala . '75T7aT)

2. Compute reward, e.g. what was our game score?

r(m) = R(st)

3. Do a gradient Gpdate:

0
0 < 0+ ar(T)%m(aﬂst)
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Approximated via sampling

l

. Action conditional Expected
Policy output |
expected return return
I o) Up — Yy —
I Down
1 0 +10
VoE,r, [R(T)] —E,on, [R(T)V@ log 7T9] < Estimate gradient using REINFORCE

and do gradient descent
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Environment is not differentiable! — How to optimize”

Policy gradients
1. Start with an arbitrary initial policy

2. Rollout this stochastic policy a bunch of times, sampling different random
actions each time

3. Update your policy to place higher probability on actions that led to higher
returns

Mathematically, this approximates gradient ascent on policy parameters, so as
to maximize reward.
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Intelligent agents
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" \Why vision?
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(credit: Johannes Burge)

Why vision®

1. Human-like intelligence (and animal-like), relies heavily on vision

We already know it works well!
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Why vision®

2. Eyes are good sensors

- -

Farther away things look smaller

Get details on stuff that we can immediately interact with,
rough summary of more distant context

35 Source: Isola, Torralba, Freeman



Why vision®

2. Eyes are good sensors

|_aser rangefinder
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Why vision®

2. Eyes are good sensors

|_aser rangefinder
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Why vision®

2. Eyes are good sensors

I—

Camera

38 Source: Isola, Torralba, Freeman



Why vision®

3. Universal interface
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Model-based intelligence

Reinforcement learning

| / Representation

learning

f vision can give us a good
representation/model of the world, then
planning and control should be easy.

Yann LeCun’s “cake”
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Atari Games
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~10-50 million interactions! 21 million games!

[Slide adapted from Pulkit Agrawal]

Source: Isola, Torralba, Freeman

41



Next class: more visual reinforcement learning
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