Lecture 24: Language

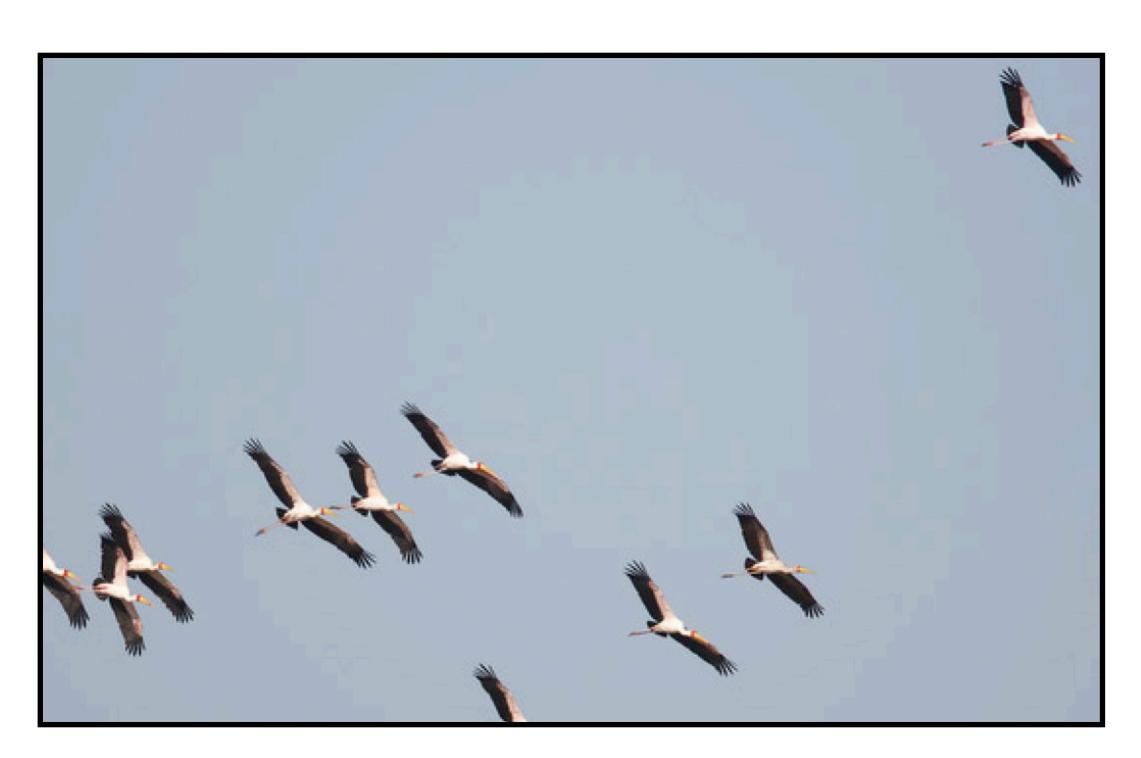
Announcements

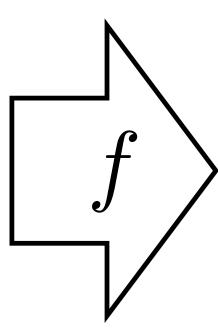
- Project proposal comments out
- Chat with me at office hours if you have questions

Today

- Sequence modeling
- Image captioning
- Attention
- Visual Question Answering (VQA)
- Neural module networks

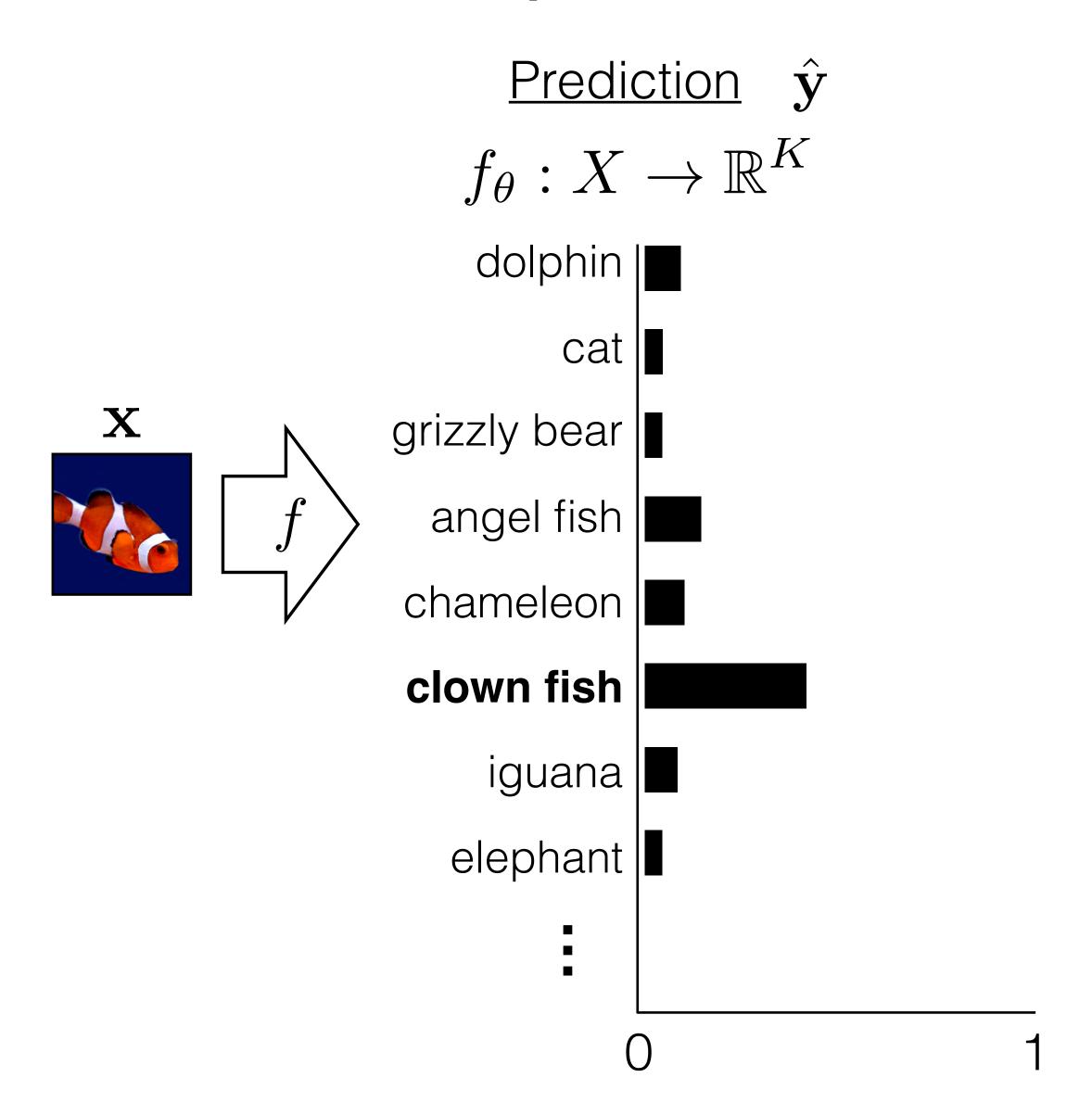
Image captioning



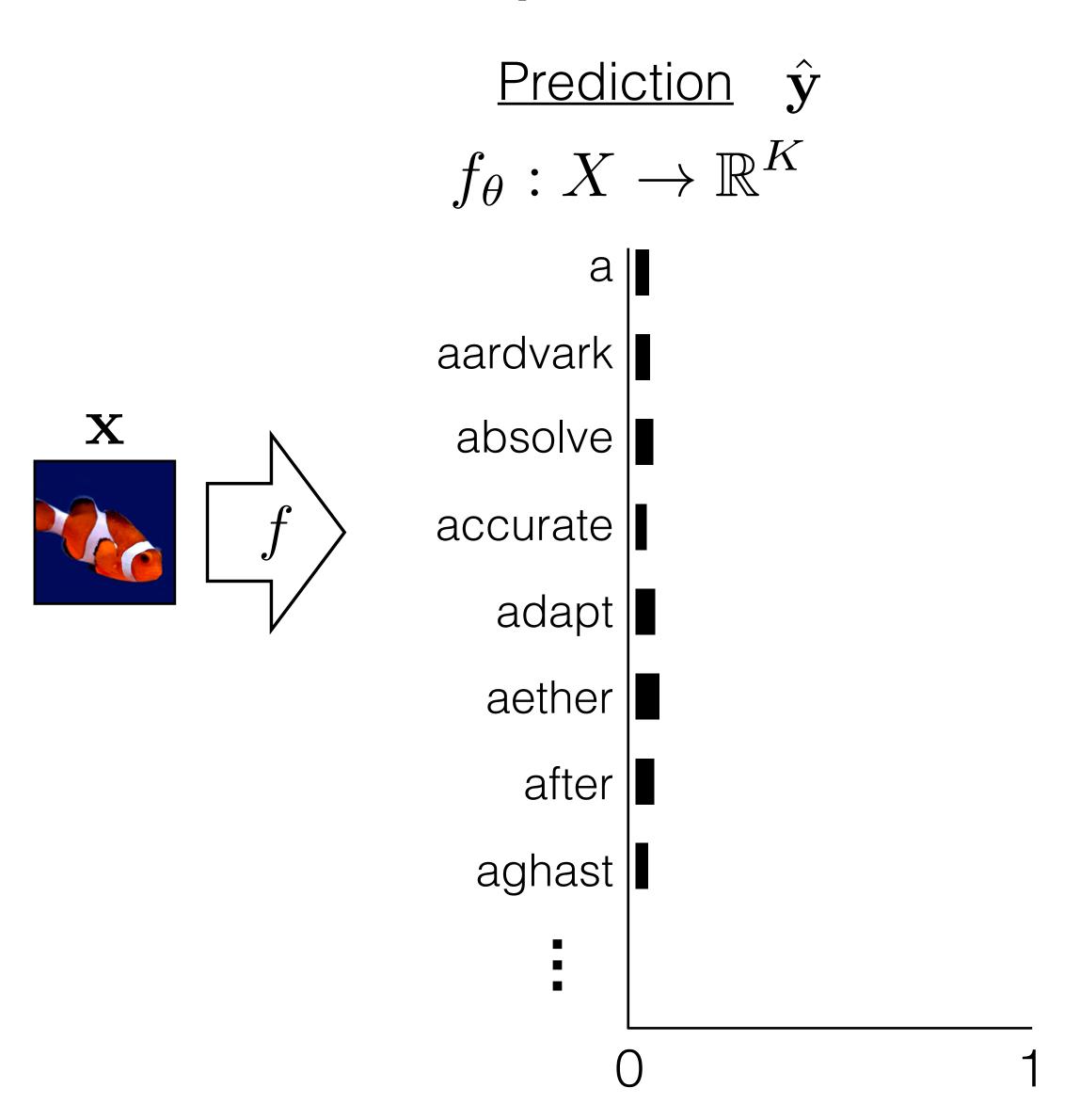


"A flock of birds against a gray sky"

How to represent words as numbers?

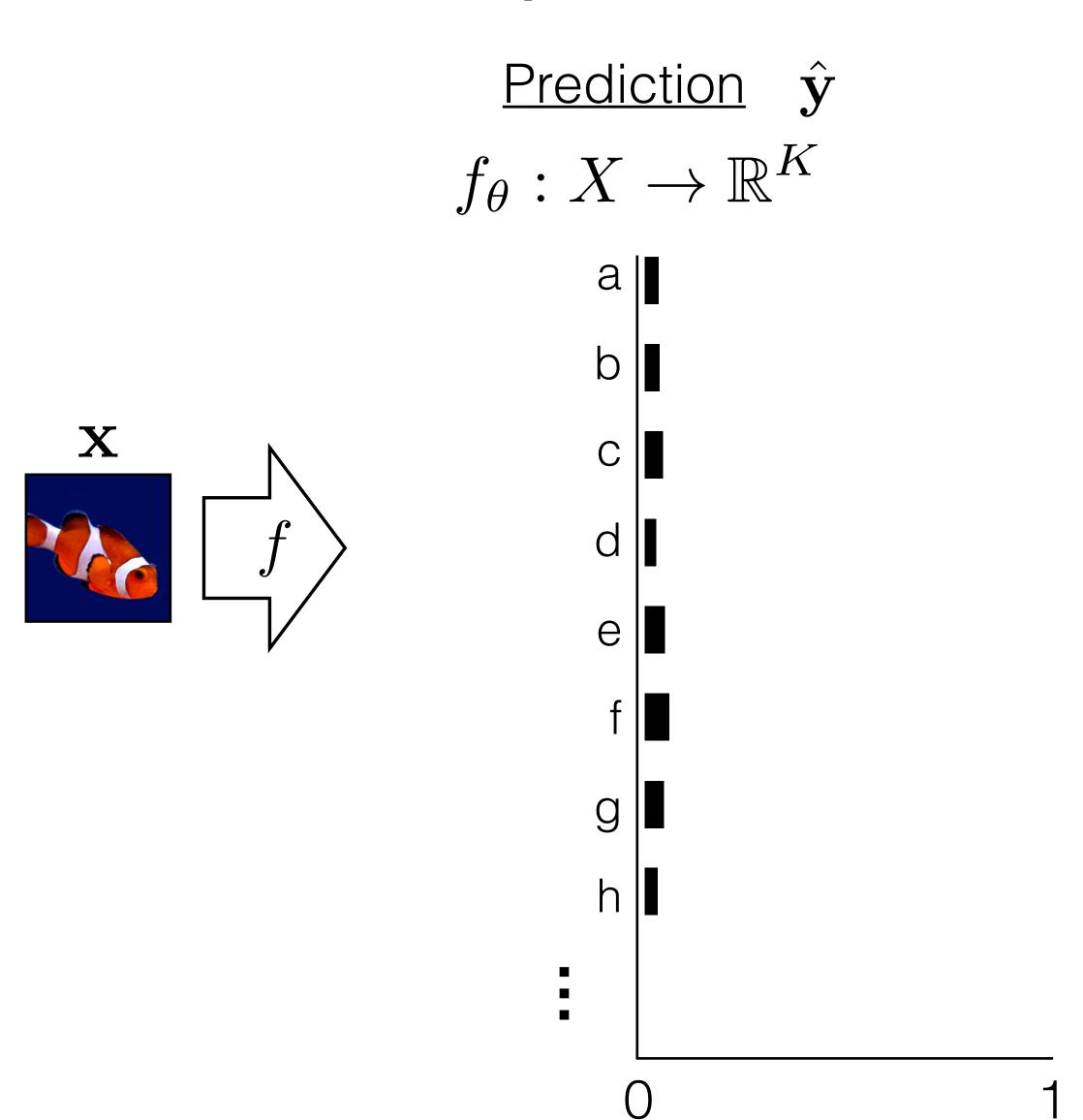


How to represent words as numbers?



Rather than having just a handful of possible object classes, we can represent all words in a large vocabulary using a very large K (e.g., K=100,000).

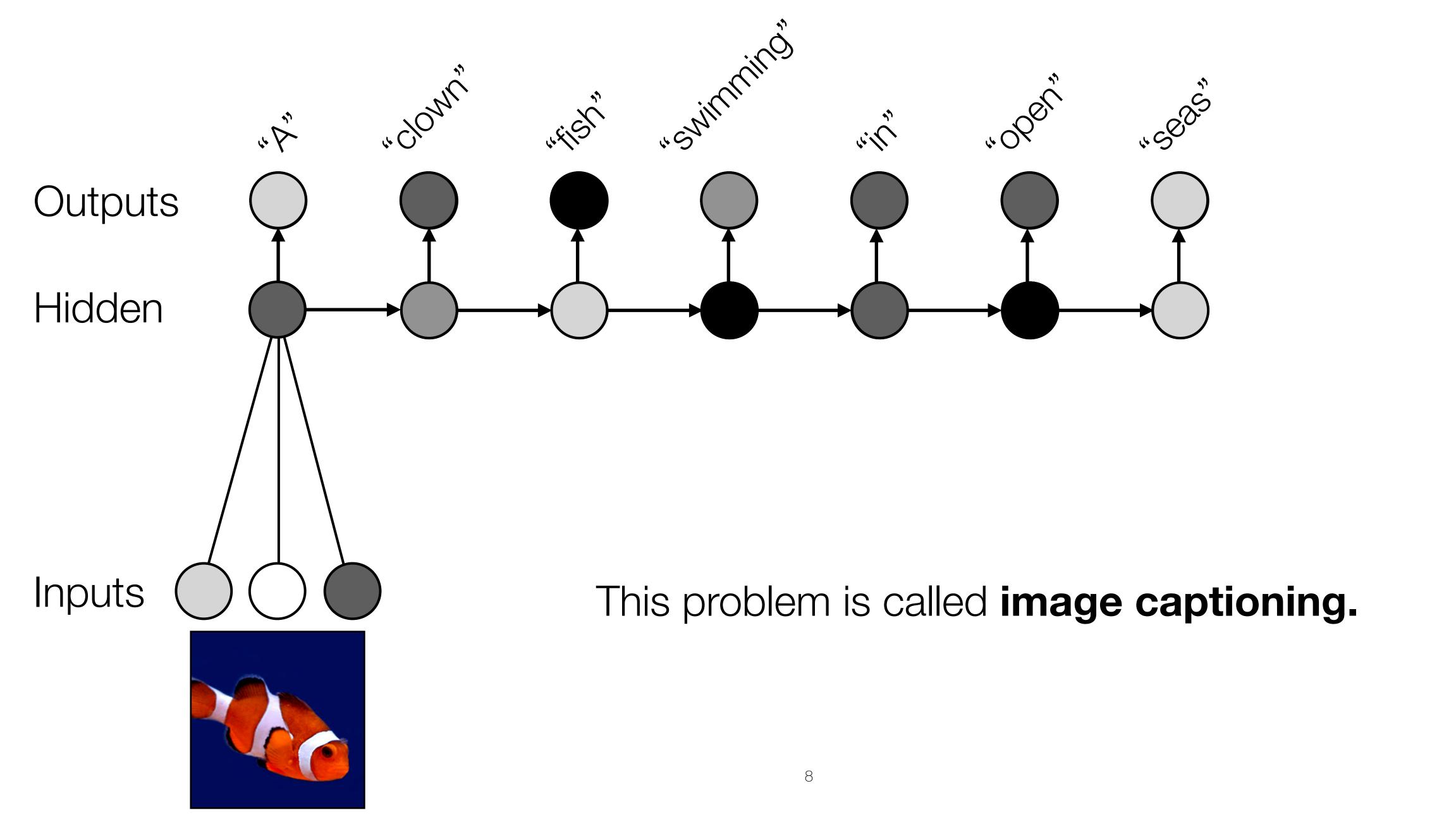
How to represent words as numbers?

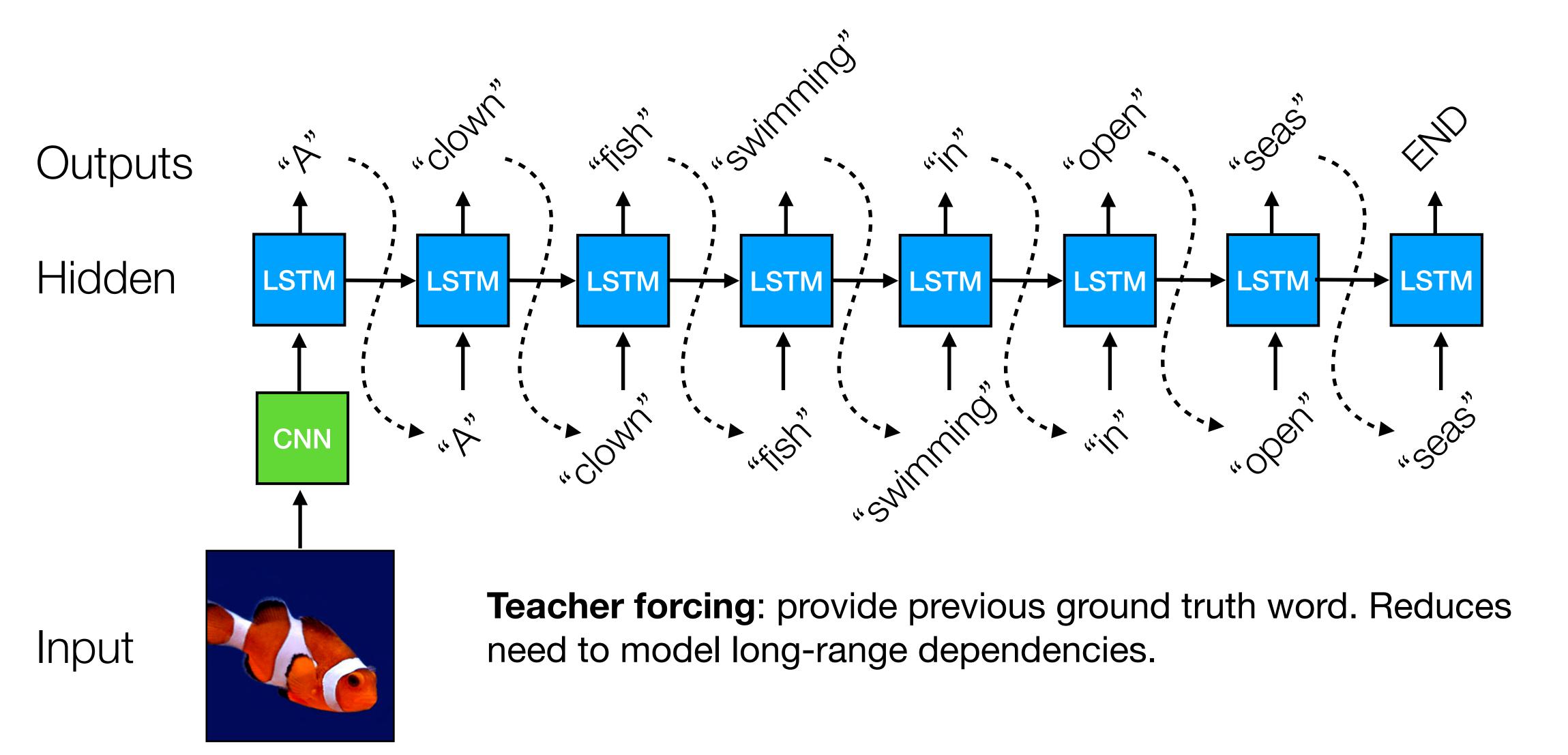


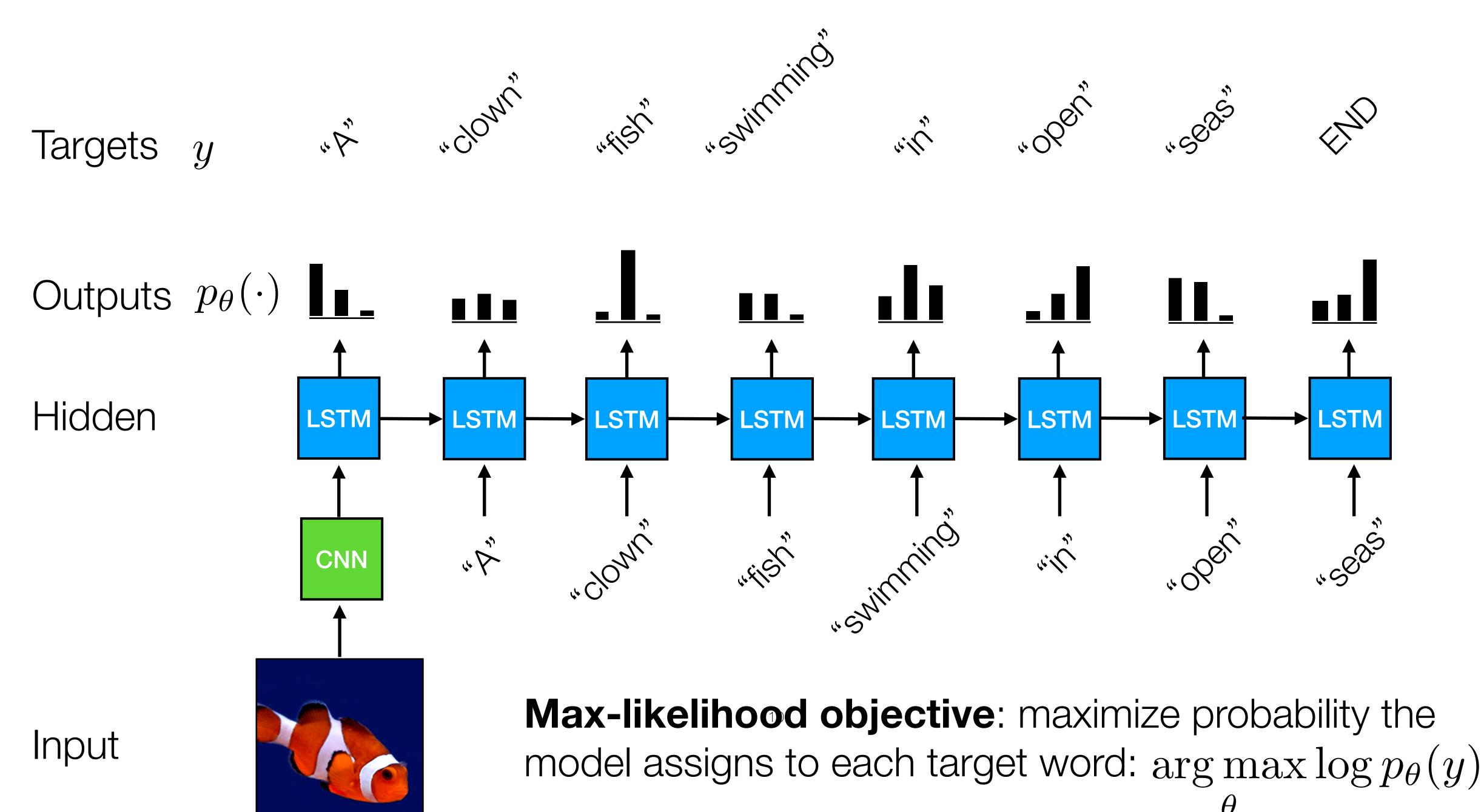
Or, represent each character as a class (e.g., K=26 for English letters),

and represent words as a sequence of characters.

7







Source: Isola, Torralba, Freeman

Testing

Samples

Outputs $p_{\theta}(\cdot)$

Hidden

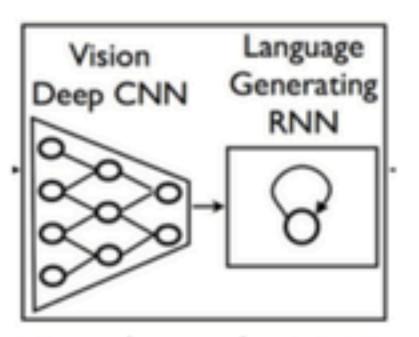
CNN

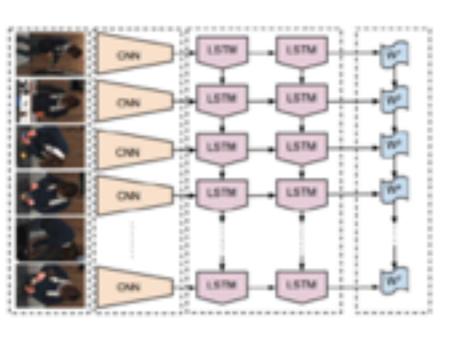
Sample from predicted distribution over words.

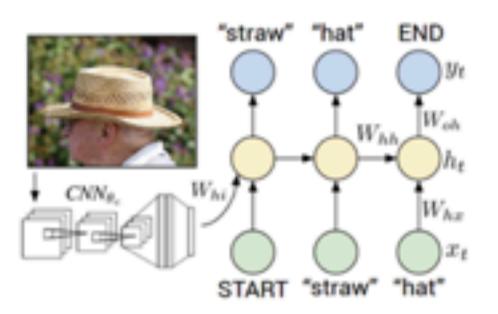
Input

Alternatively, sample most likely word.

It was very popular a few years ago





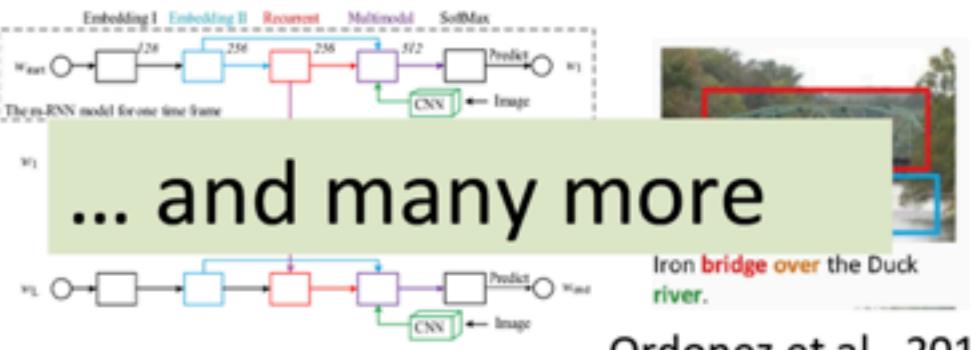


Vinyals et al., 2015

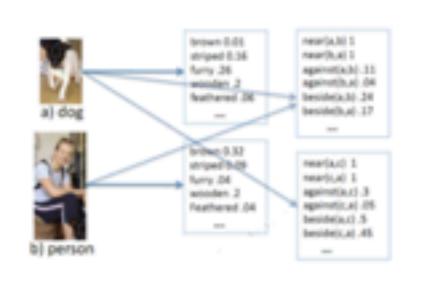
Donahue et al., 2015

Karpathy and Fei-Fei, 2015 Hodosh et al., 2013

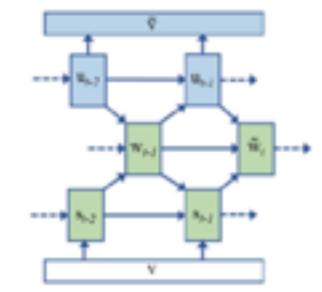
Fang et al., 2015



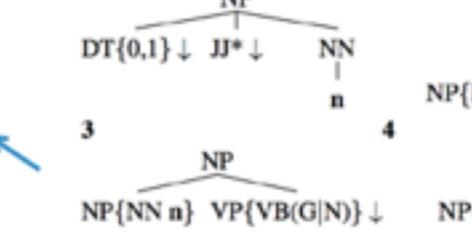
Ordonez et al., 2011 Mao et al., 2015

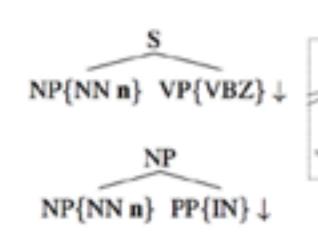


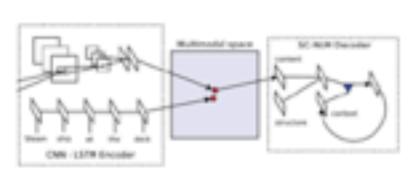
Kulkarni et al., 2011



Sus, park, street> Meaning Space





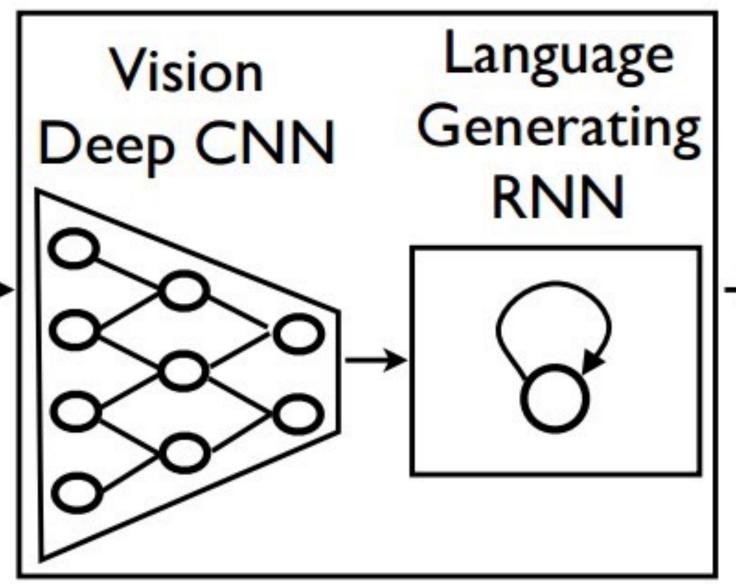


Chen and Zitnick, 2015 Farhadi et al., 2010 Mitchell et al., 2012

Kiros et al., 2015

Show and Tell: A Neural Image Caption Generator

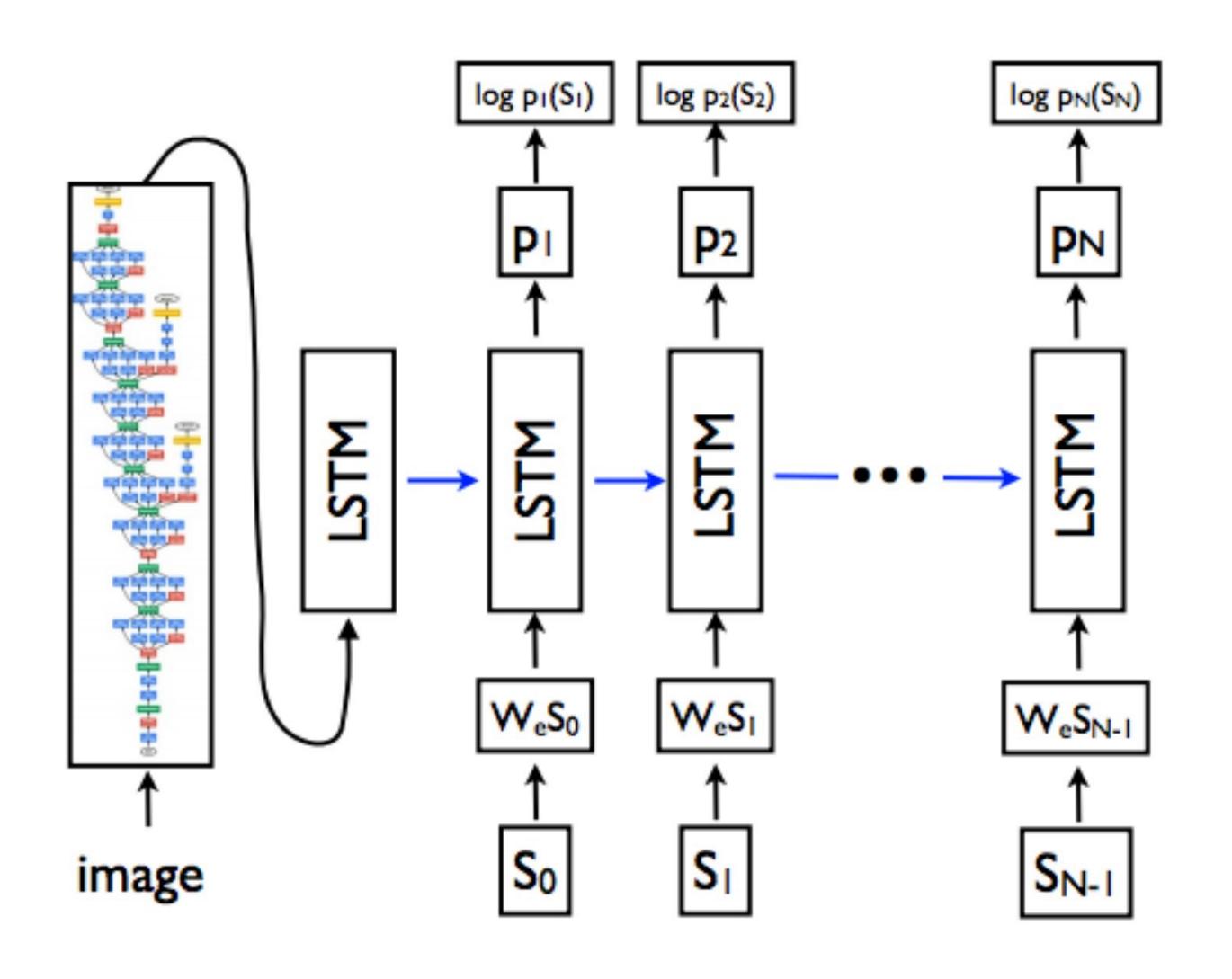
[Vinyals et. al., CVPR 2015]

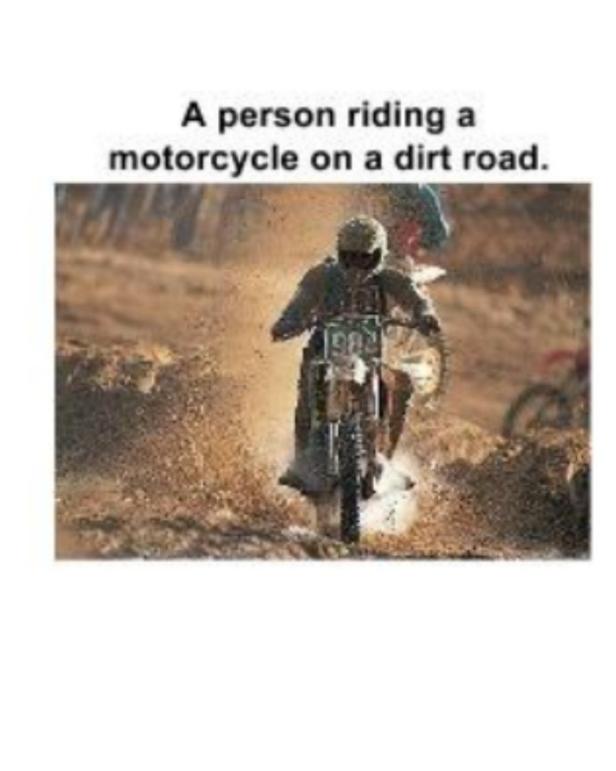


A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Show and Tell: A Neural Image Caption Generator [Vinyals et. al., CVPR 2015]



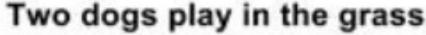


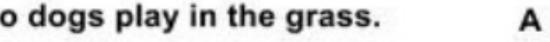
A person riding a motorcycle on a dirt road.

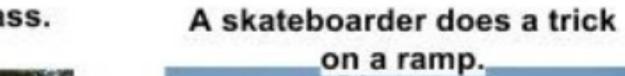
A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

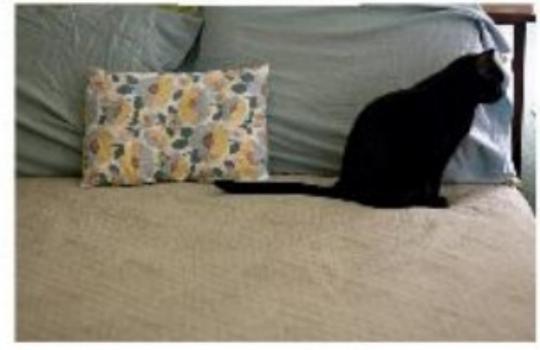




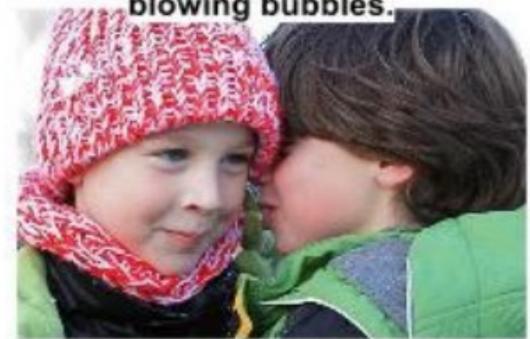


Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.



A little girl in a pink hat is blowing bubbles.



A red motorcycle parked on the

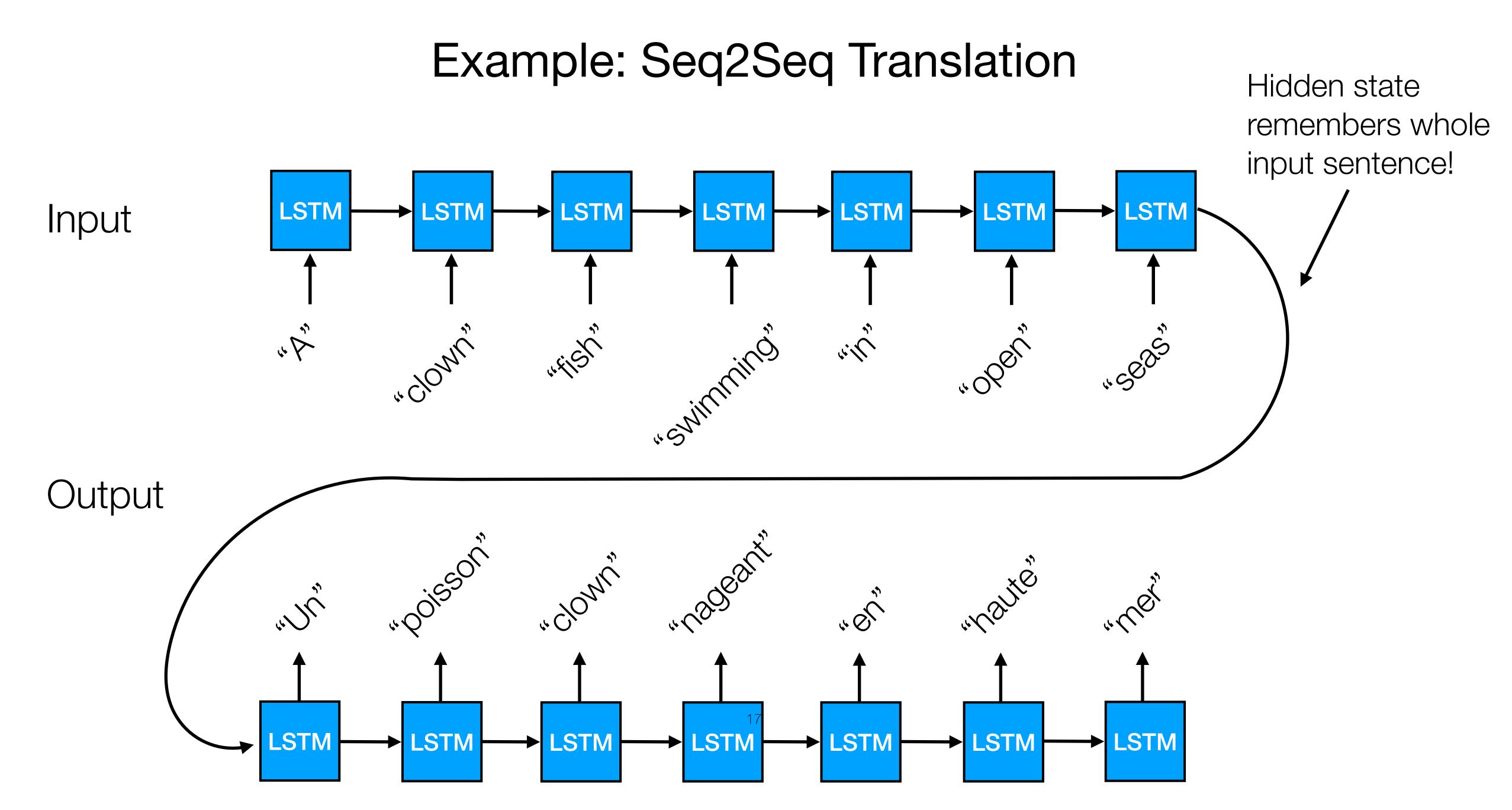
A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

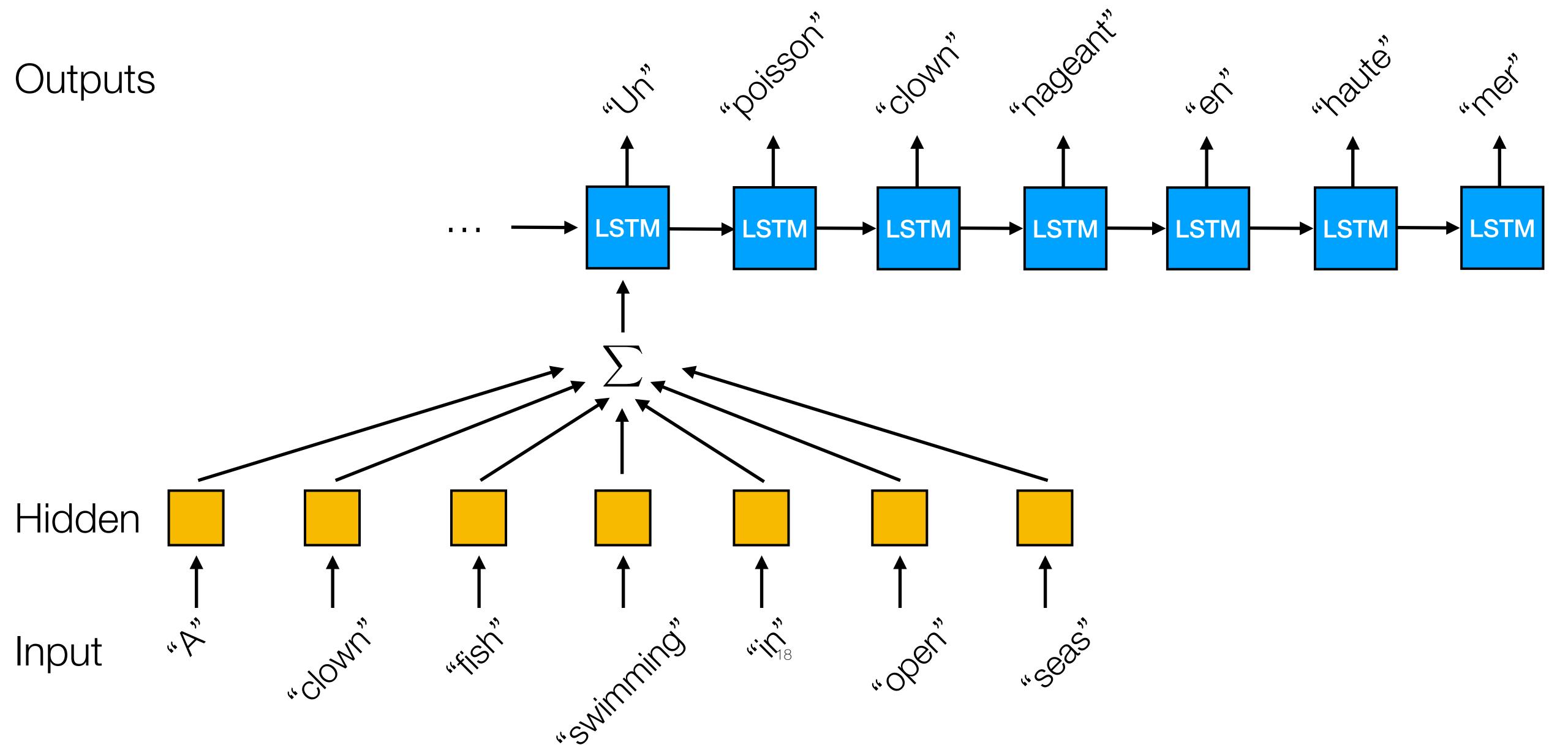
A yellow school bus parked

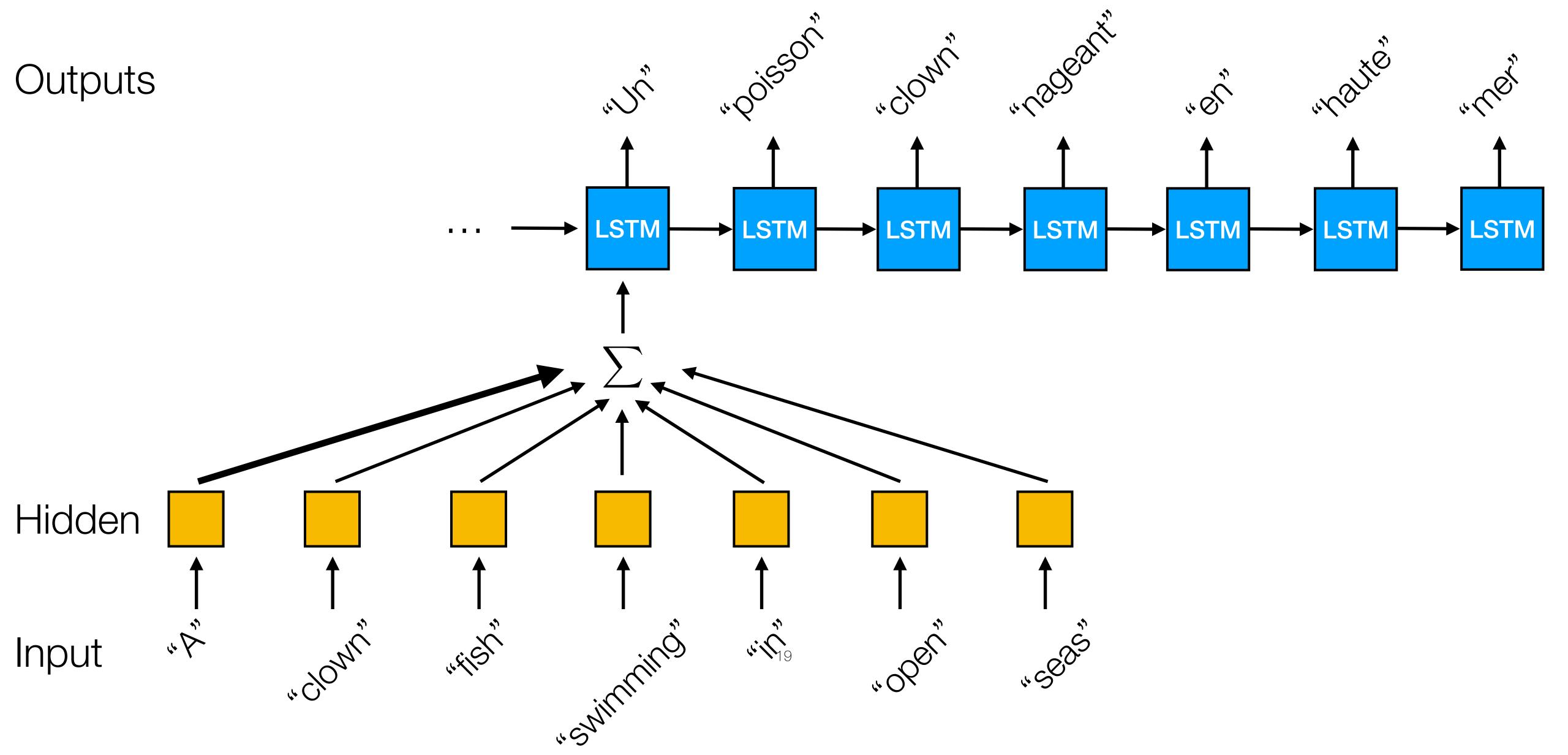
Shortcomings of recurrent models

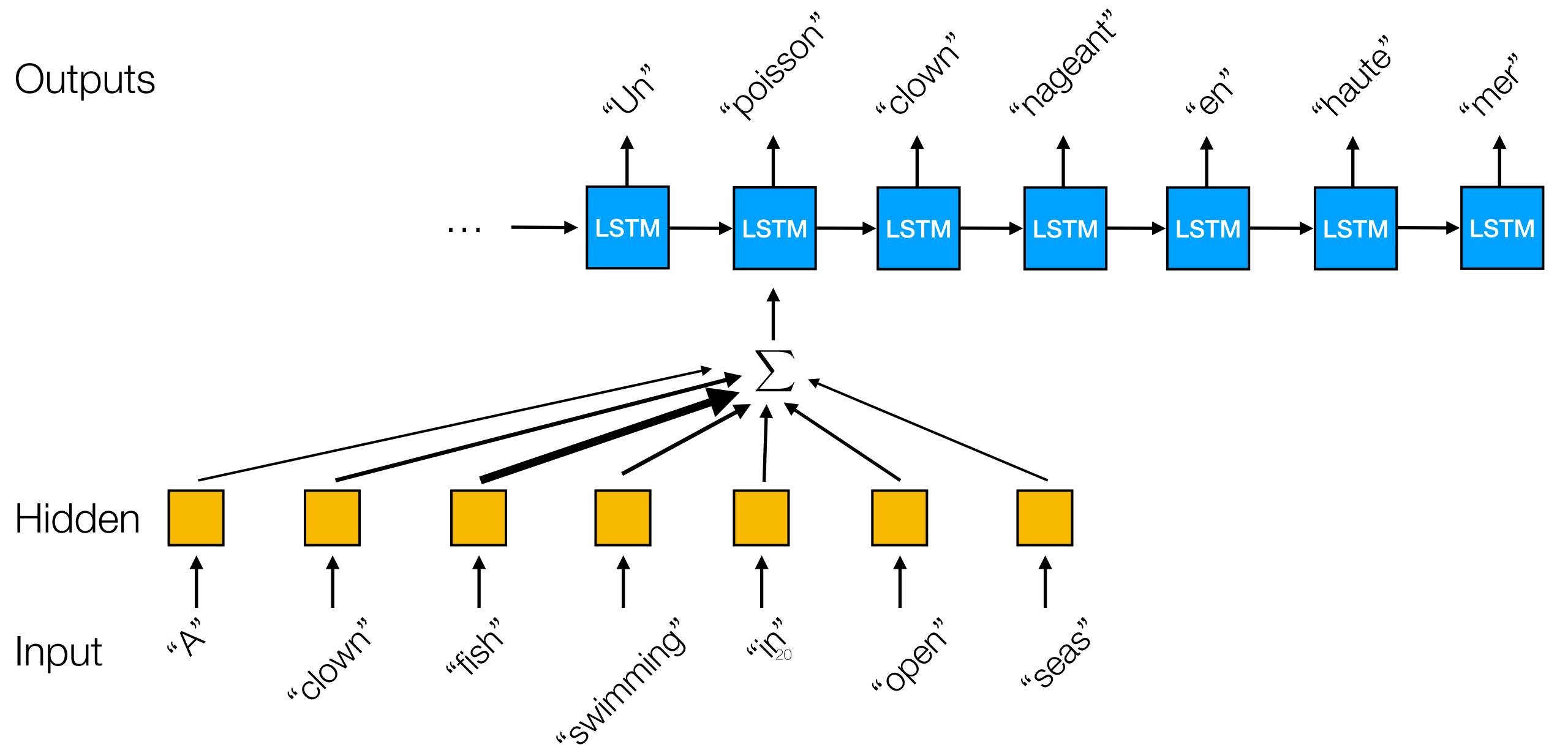
- The recurrent state needs to **remember** a lot
- Instead of remembering: look at the input data! This idea is often implemented using **attention**.
- Example: "sequence to sequence" language translation

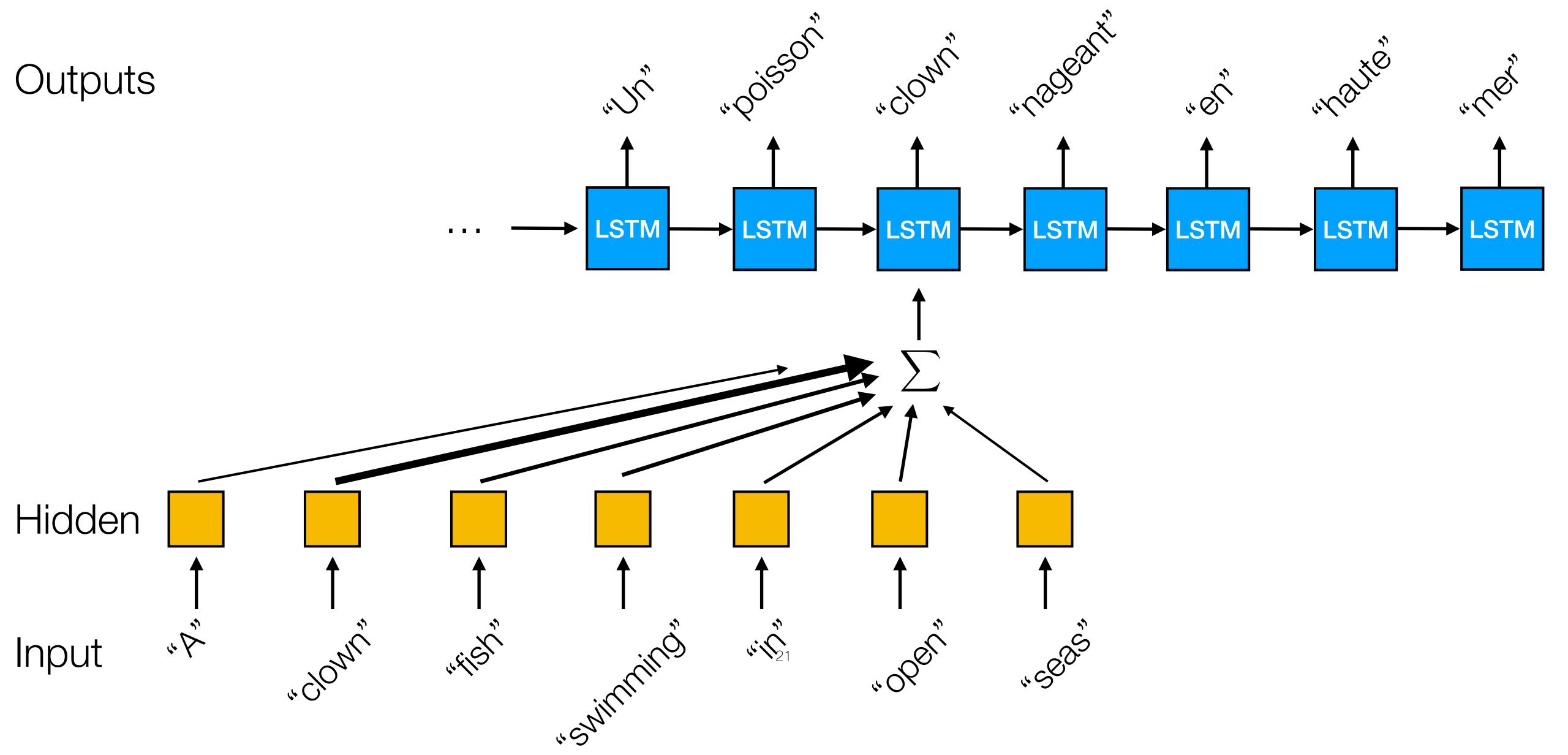


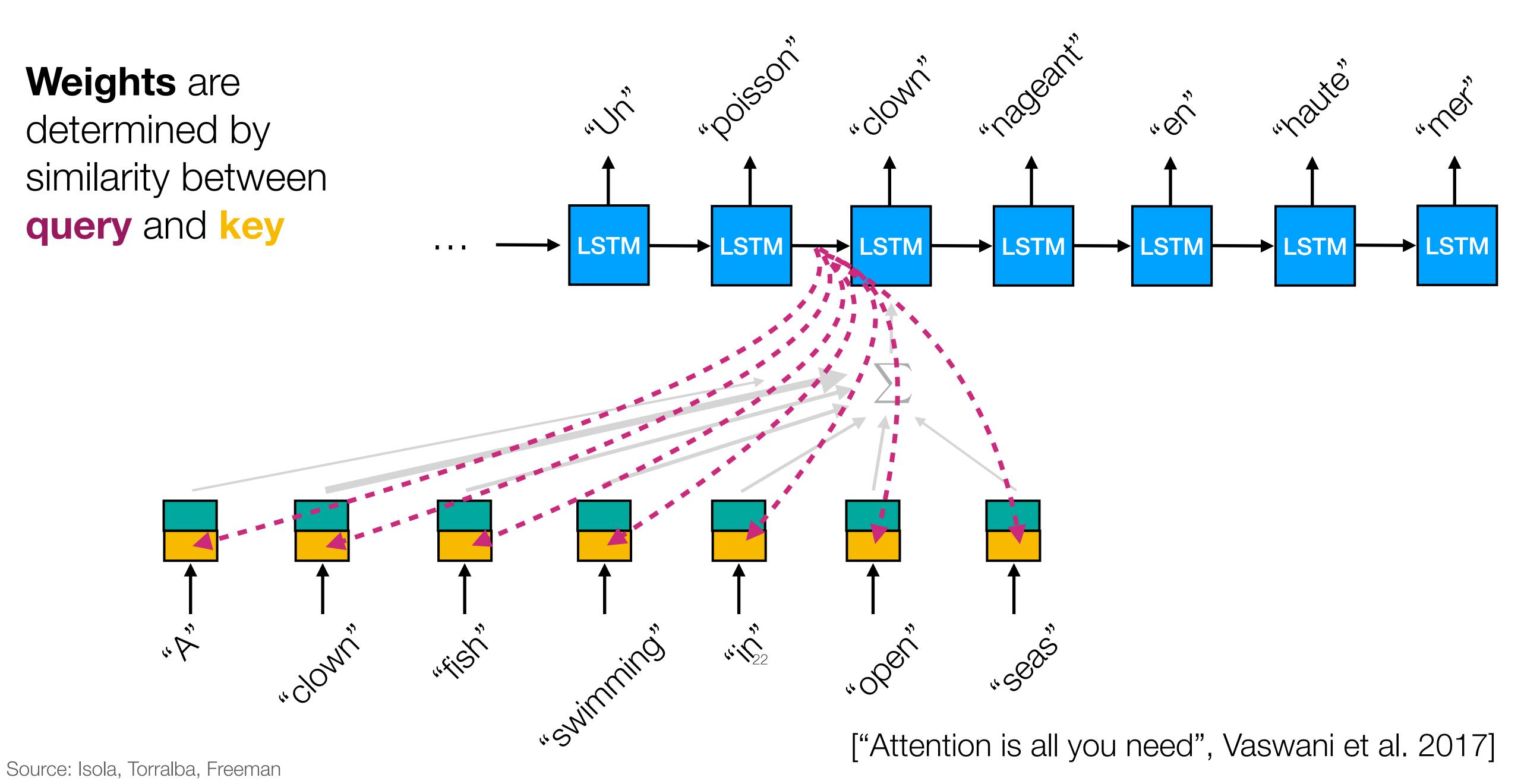
Pooling



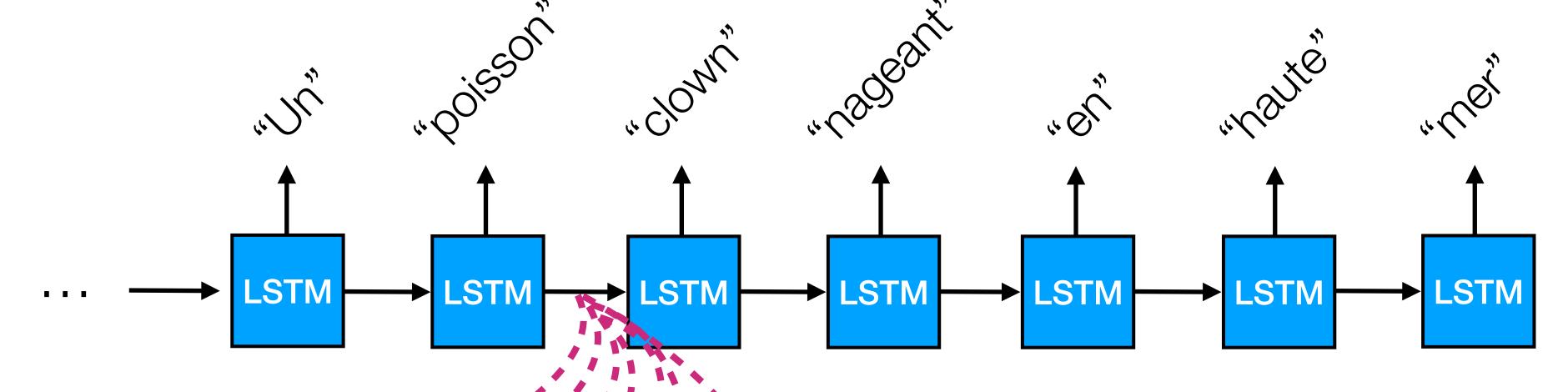


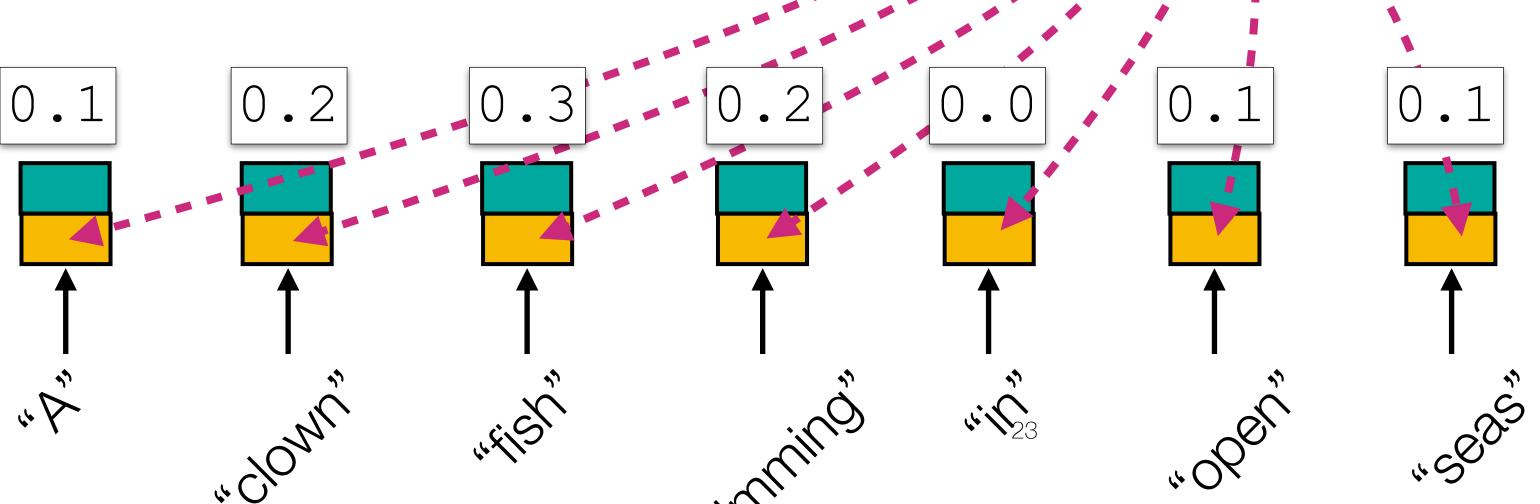






Weights are determined by similarity between query and key





- Make weights add up to 1: $\operatorname{softmax}(q^{\top}k_1, q^{\top}k_2, \dots, q^{\top}k_T)$
 - Often rescale dot products by constant 1/sqrt(d) to improve gradient flow.
 - Concatenate position info.

["Attention is all you need", Vaswani et al. 2017]

Source: Isola, Torralba, Freeman

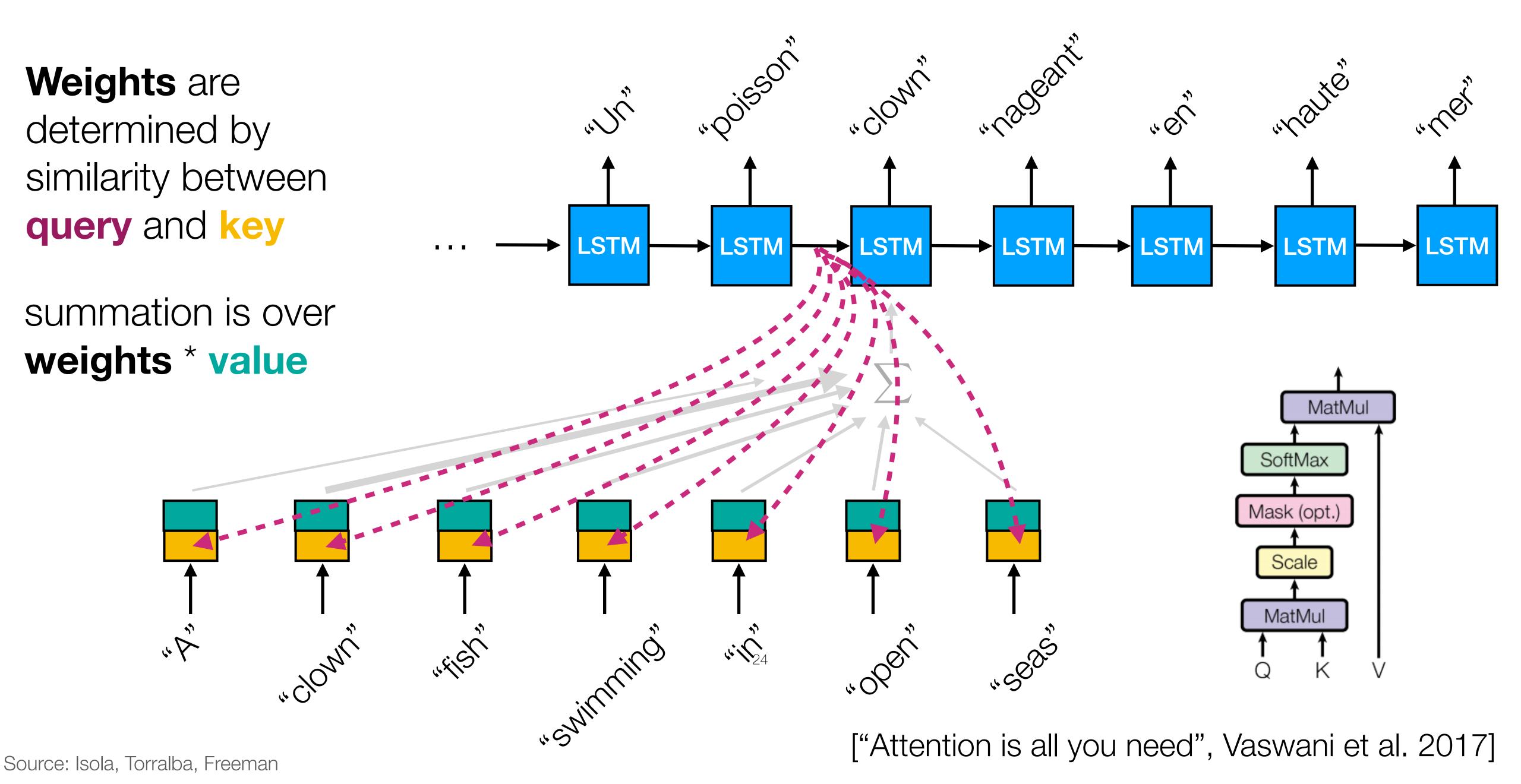
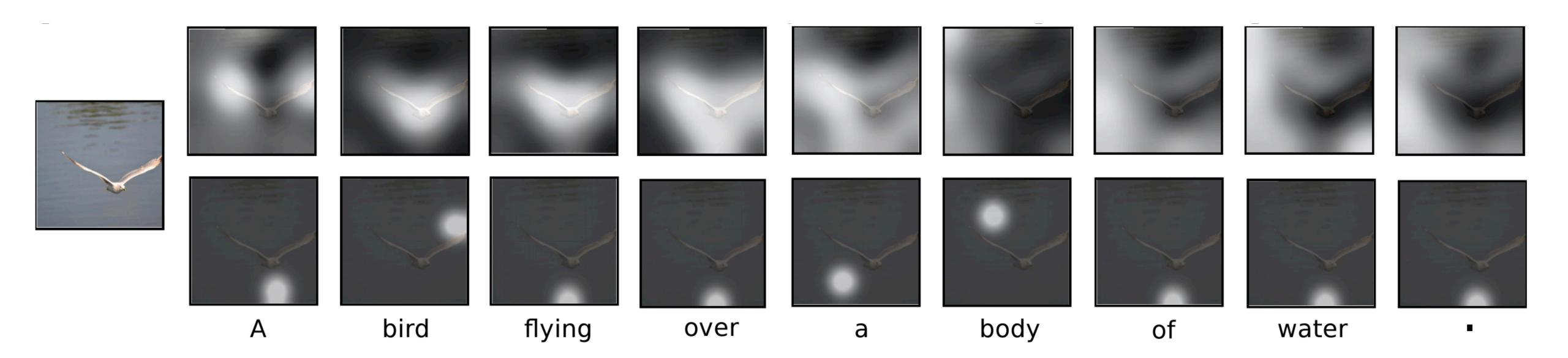


Image captioning with attention



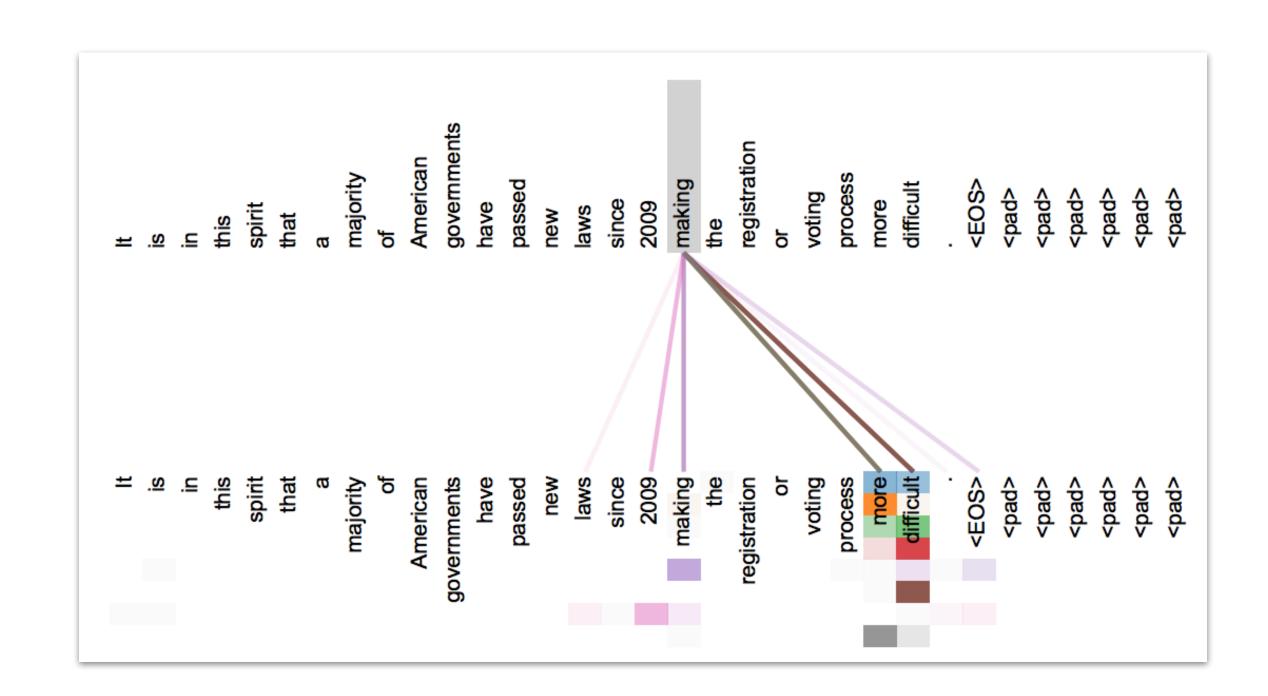
Discovering words in raw audio-visual data

https://link.springer.com/chapter/10.1007%2F978-3-030-01231-1_40

[Harwath et al. "Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input", 2018]

Transformers

- Get rid of the recurrent net!
- Just stack many layers of attention.
- Use multiple keys/values per layer.
- Powerful model for natural language processing. Used pretty much everywhere now...



VQA: Visual Question Answering

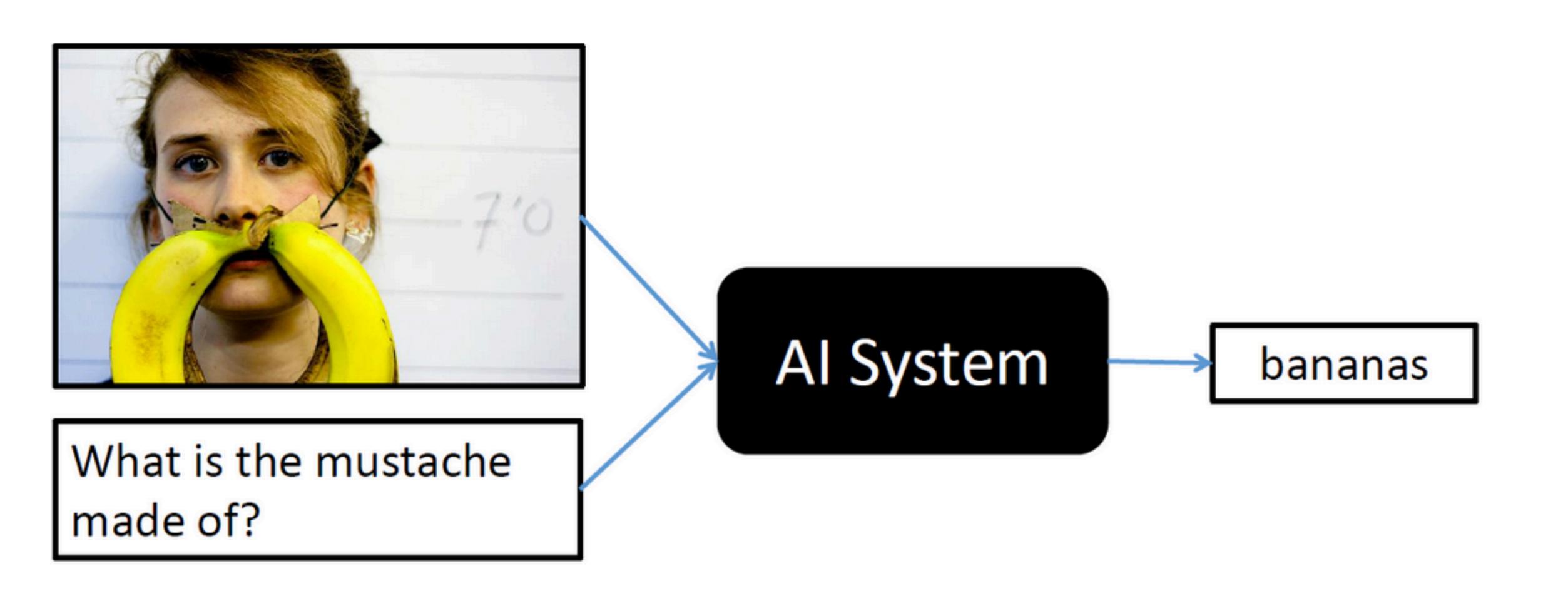
www.visualqa.org

Aishwarya Agrawal*, Jiasen Lu*, Stanislaw Antol*, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of *free-form* and *open-ended* Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance.

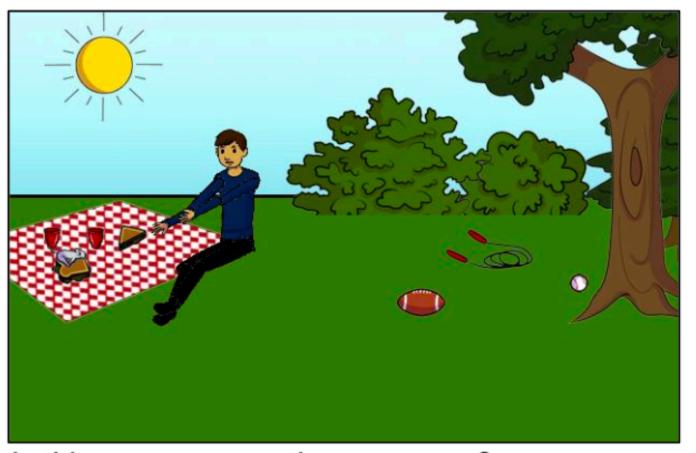
2016

[https://arxiv.org/pdf/1505.00468v6.pdf]



[http://www.visualqa.org/challenge.html]

What color are her eyes? What is the mustache made of?



Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy?

Does this person have 20/20 vision?

Fig. 1: Examples of free-form, open-ended questions collected for images via Amazon Mechanical Turk. Note that commonsense knowledge is needed along with a visual understanding of the scene to answer many questions.

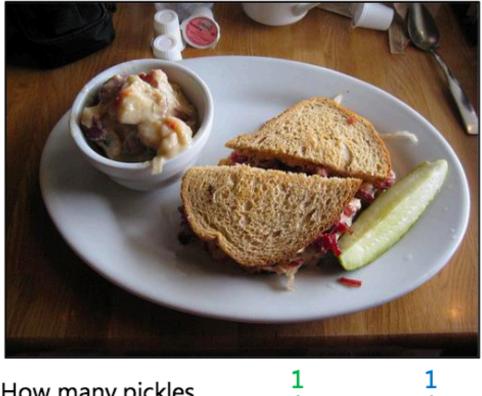
Questions and answers collected with Amazon Mechanical Turk

Is something under the sink broken?	yes yes yes	no no no
What number do you see?	33 33 33	5 6 7



Can you p	ark	no no no	no no yes)
What cold the hydra	or is w nt? w	hite and orang hite and orang hite and orang	ge red ge red ge yello	
Has the pizza baked?	been	yes yes yes	yes yes	5

What kind of store is this?	bakery bakery pastry	art supplies grocery grocery
Is the display case as	no	no
Is the display case as full as it could be?	no	yes
	no	ves



How many pickles are on the plate?	1 1 1	1 1 1
What is the shape of the plate?	circle round round	circle round round

Fig. 2: Examples of questions (black), (a subset of the) answers given when looking at the image (green), and answers given when not looking at the image (blue) for numerous representative examples of the dataset. See the appendix for more examples.

What kind of cheese is topped on this pizza?

feta

feta

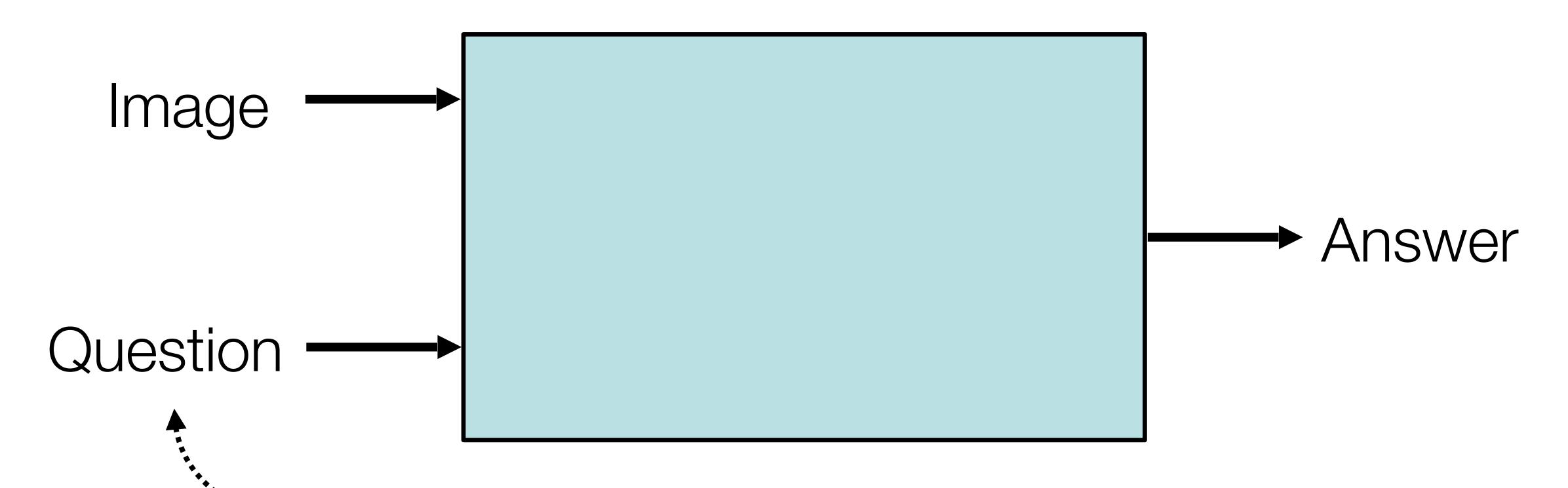
ricotta

mozzarella

mozzarella mozzarella

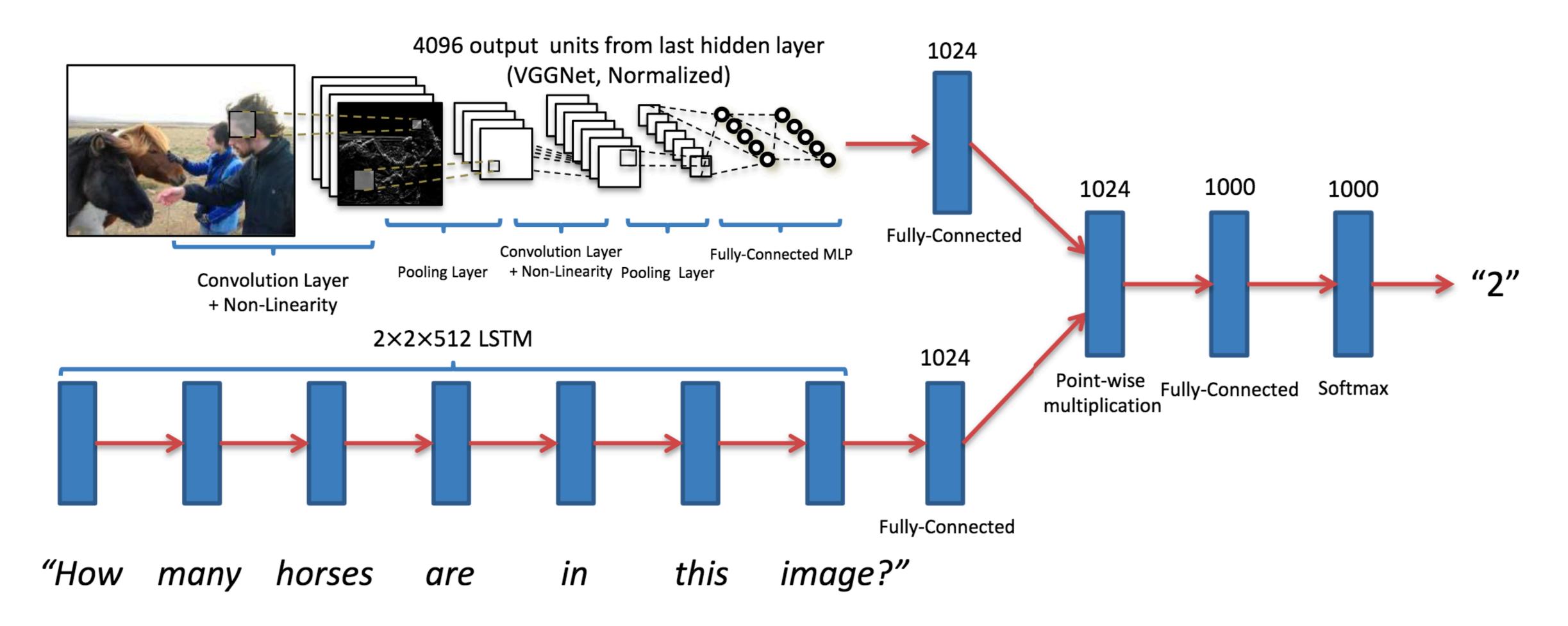
Architecture

Architecture



often, we work with word embeddings, rather than one-hot representations of words

Architecture



There are 1000 possible answers in this system. Questions are unlimited.

what is on the ground?

Submit

Predicted top-5 answers with confidence:

sand

90.748% SNOW 2.858%

beach

surfboards

0.677%

0.528%

water

35

what color is the umbrella?

Submit

Predicted top-5 answers with confidence:

yellow

95.090% white <mark>1.</mark>811% black 0.663% blue 0.541%

gray 0.362%

36

are we alone in the universe?

Submit

Predicted top-5 answers with confidence:

no

78.234%

yes

21.763%

people

0.001%

birds

0.000%

out

0.000%

what is the meaning of life?

Submit

Predicted top-5 answers with confidence:

beach

15.262%

sand

8.537%

seagull

tower

<mark>2.3</mark>93%

rocks 1.746%

what is the yellow thing?

Submit

Predicted top-5 answers with confidence:

frisbee

79.844%

surfboard

7.319%

banana

2.844%

lemon

<mark>2.4</mark>38%

surfboards

39

how many trains are in the picture?

Submit

Predicted top-5 answers with confidence:

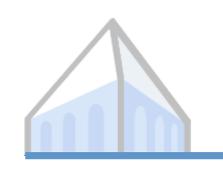
30.233%

18.270%

17.000%

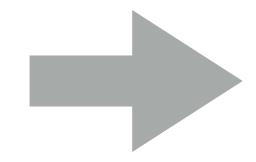
11.343%

40



Grounded question answering

What color is the necktie?



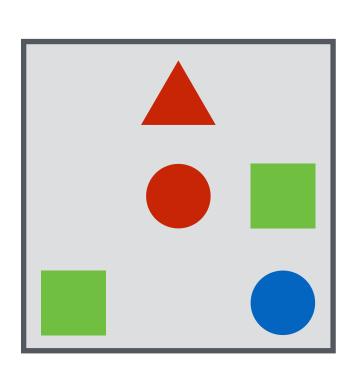
yellow

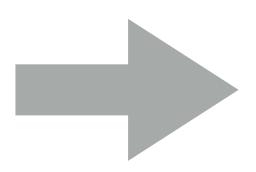
Neural module networks: a compositional language-understanding model

[Slides credit: Jacob Andreas]

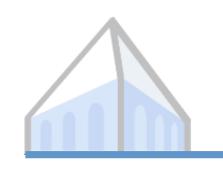
Grounded question answering

Is there a red shape above a circle?

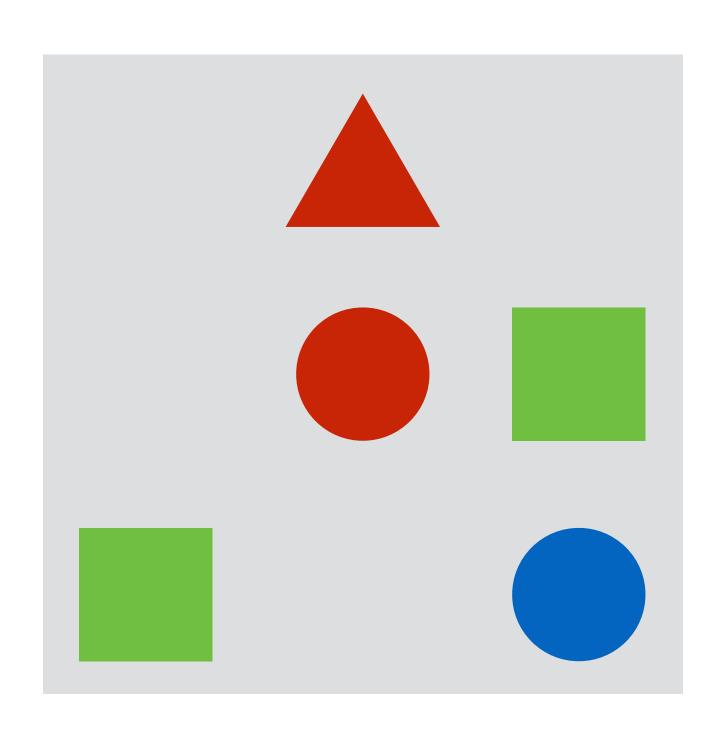


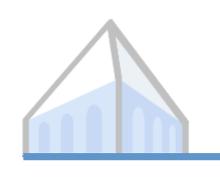


yes

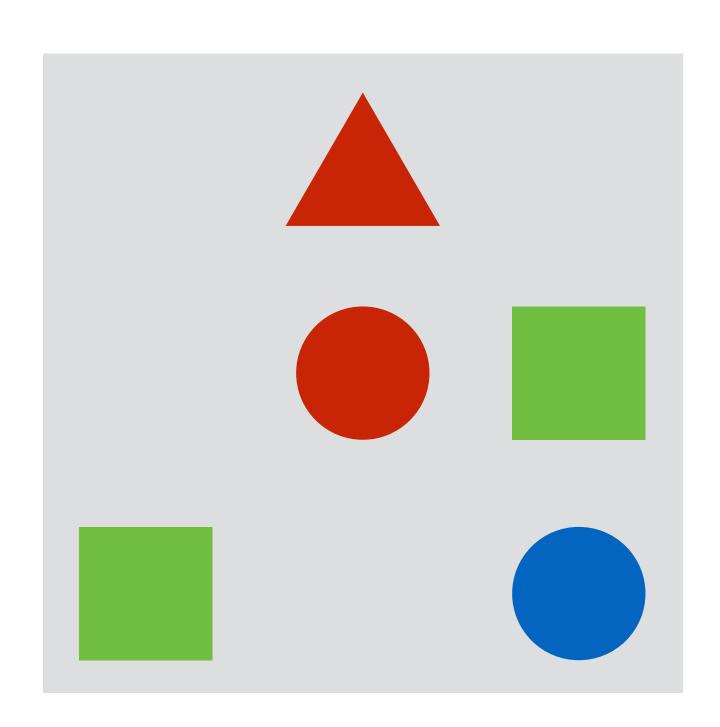


Representing meaning

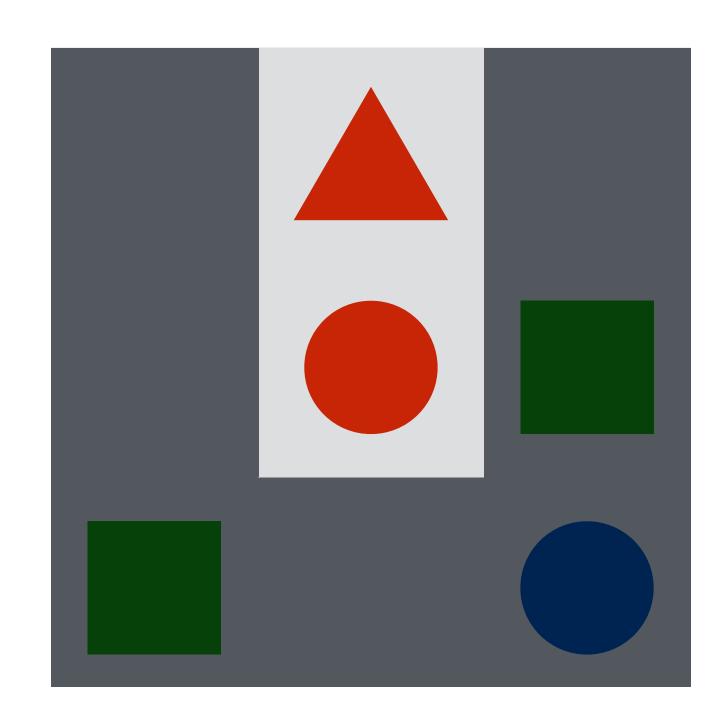




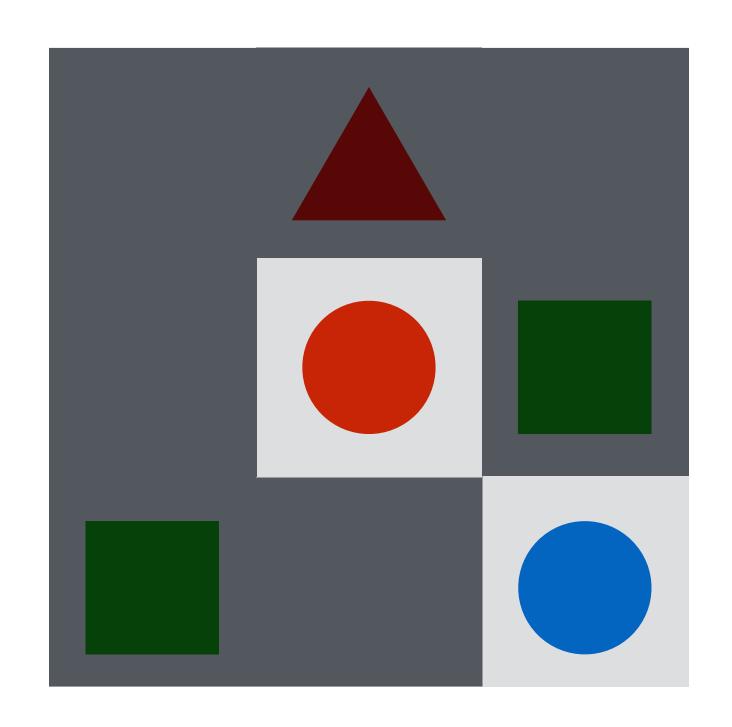
Representing meaning

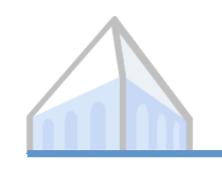


Sets encode meaning

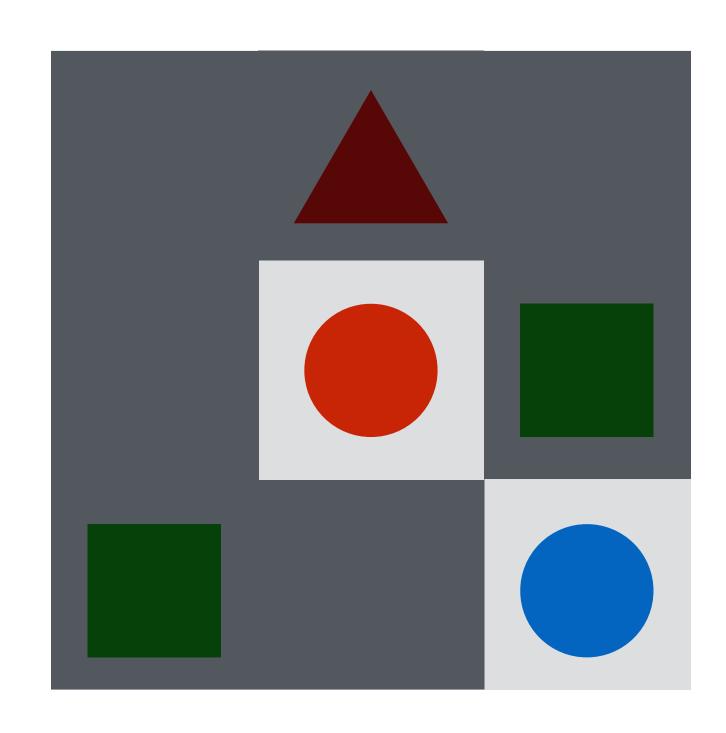


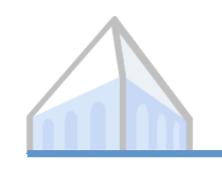
Sets encode meaning



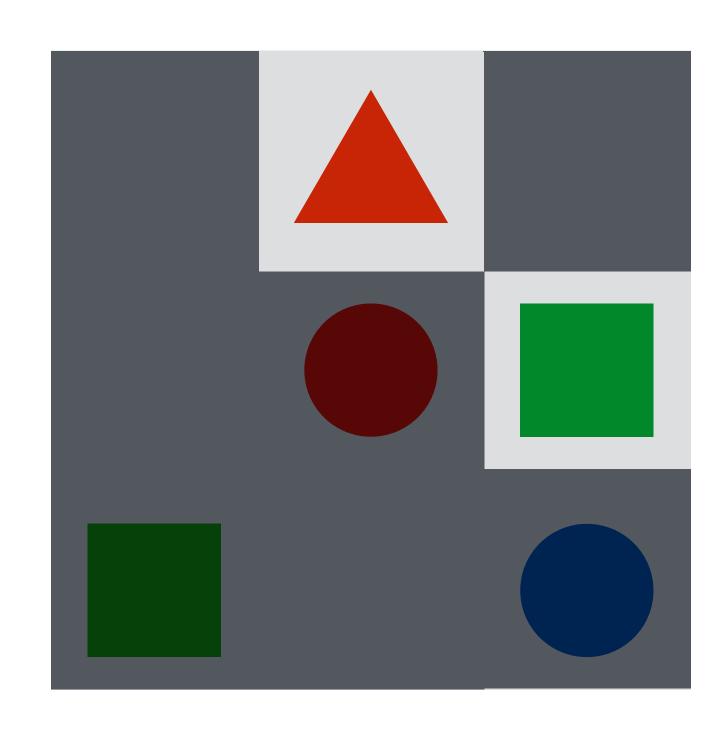


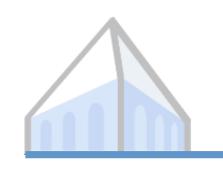
Set transformations encode meaning



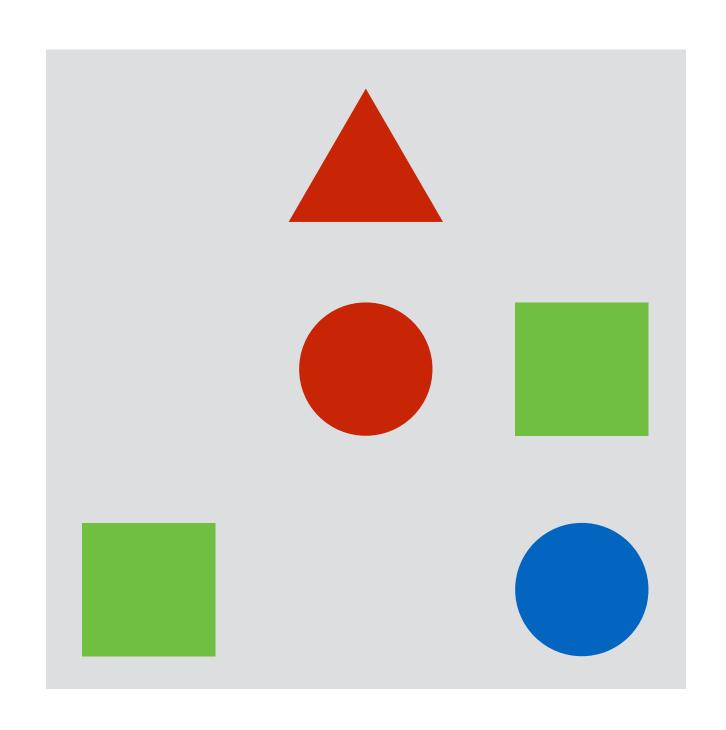


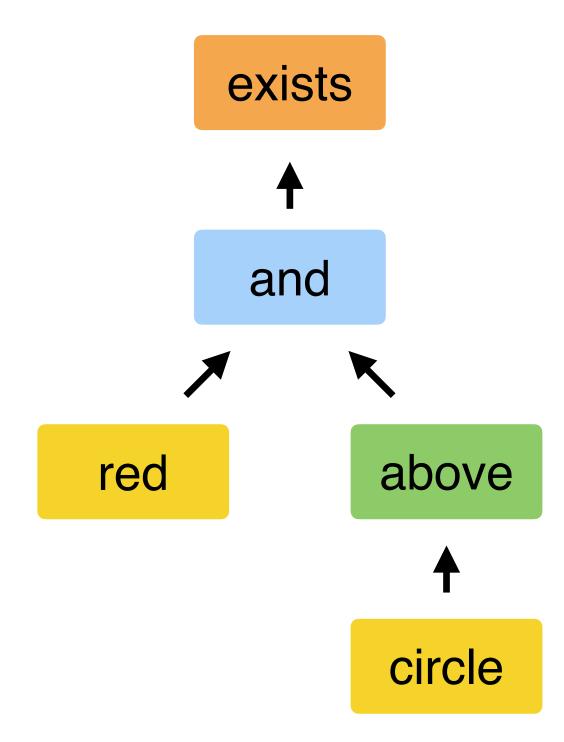
Set transformations encode meaning

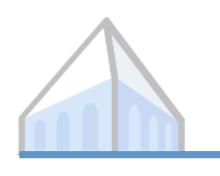




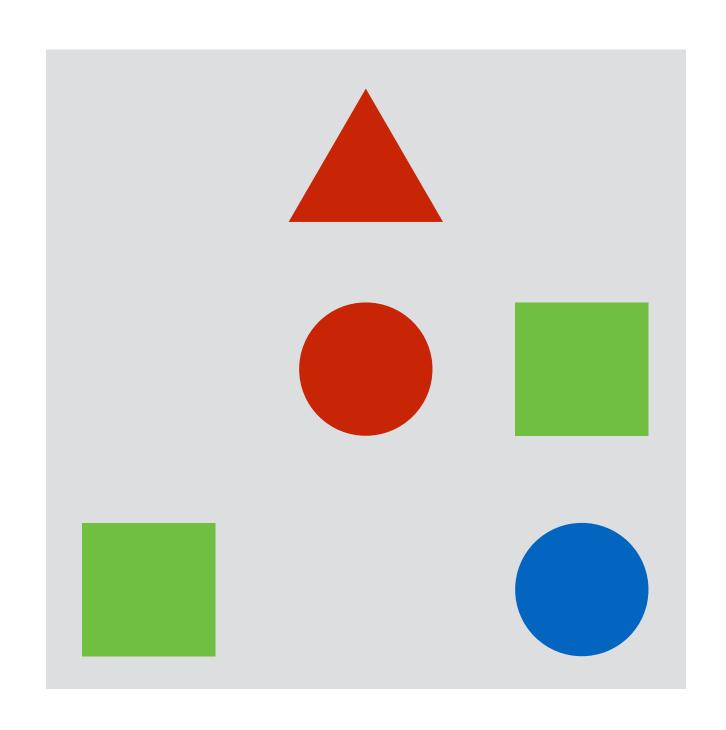
Sentence meanings are computations

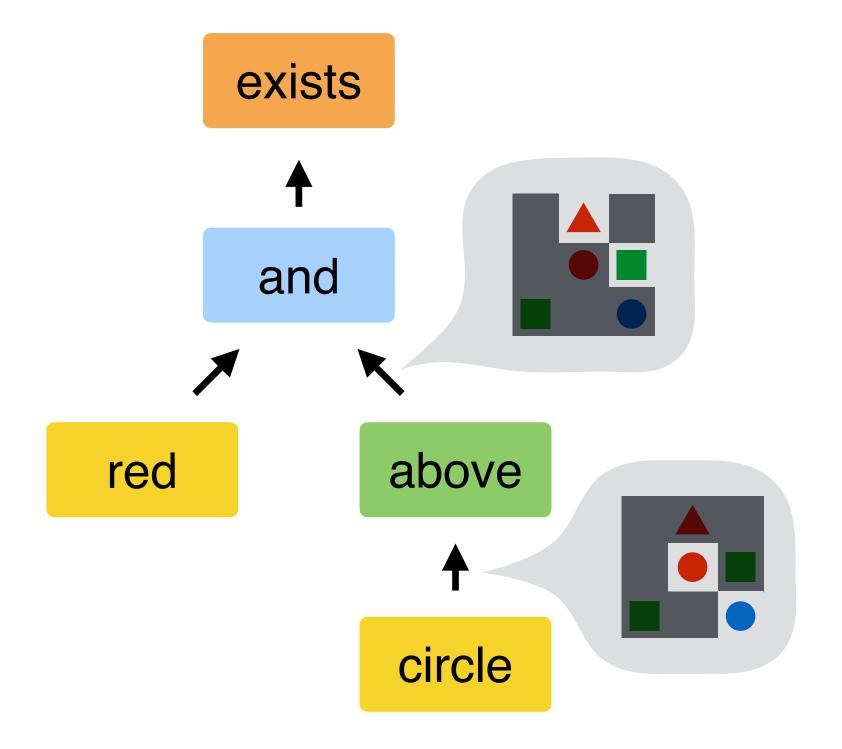


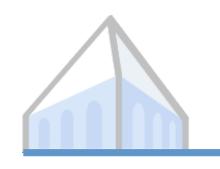




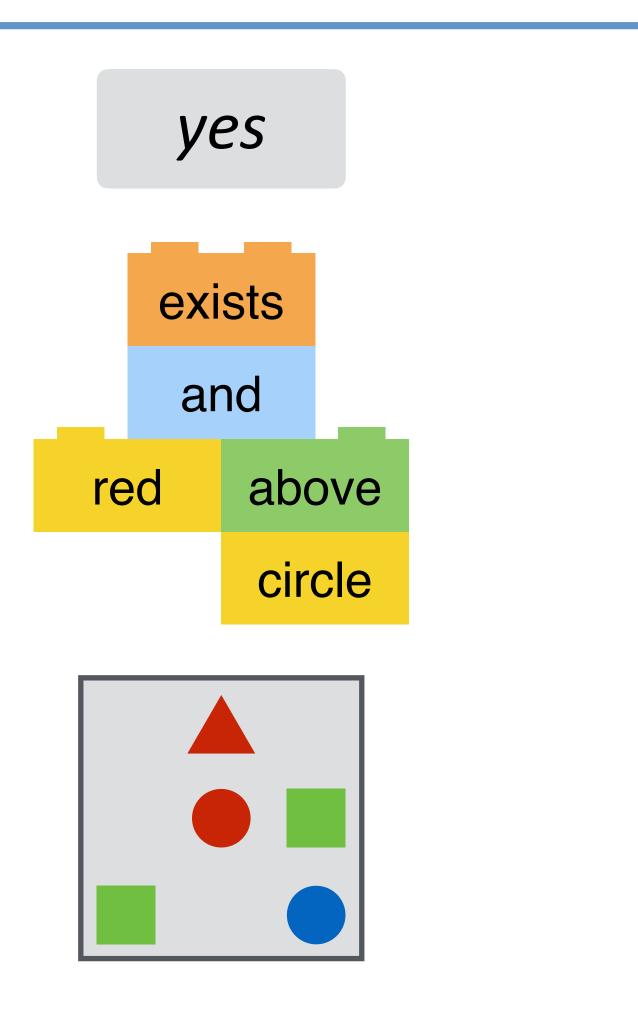
Sentence meanings are computations



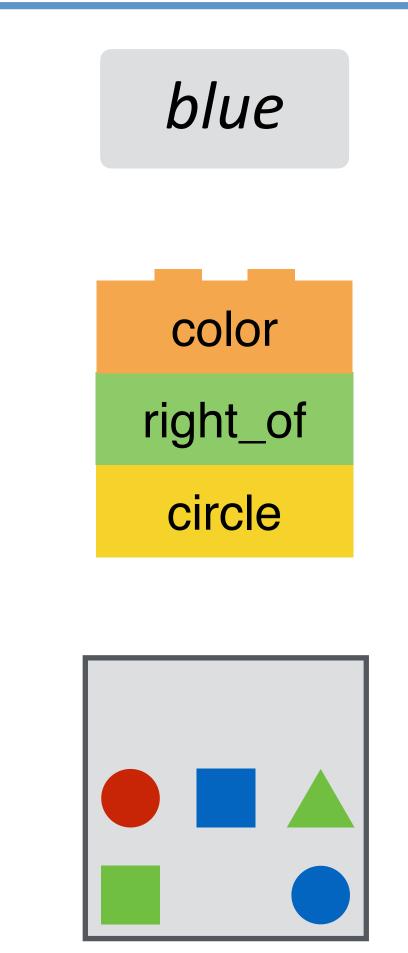


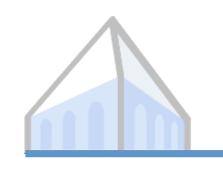


Learning



Is there a red shape above a circle?

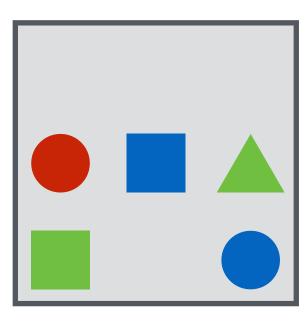




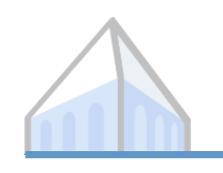
Learning

yes

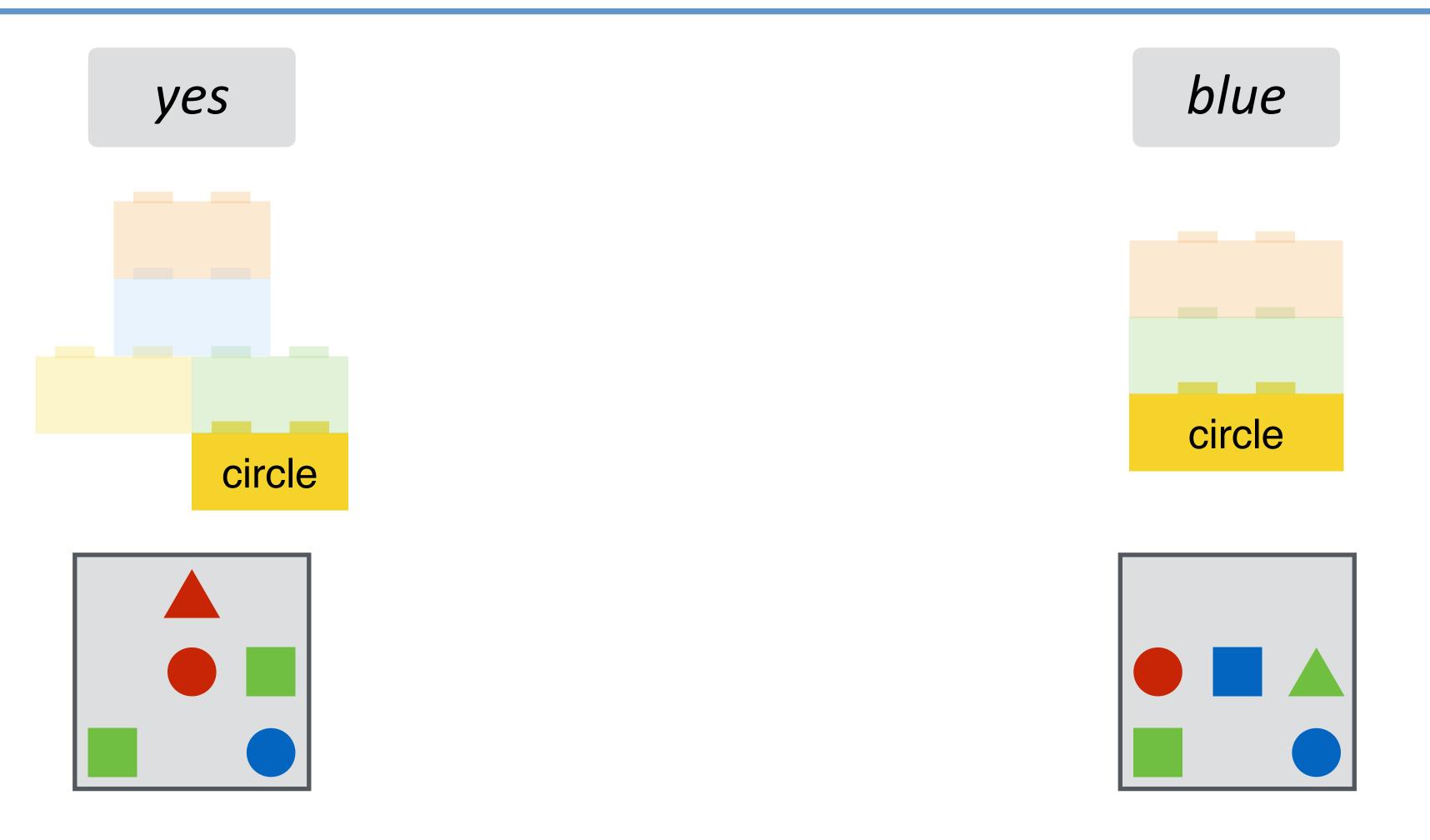




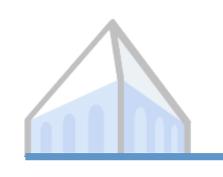
Is there a red shape above a circle?



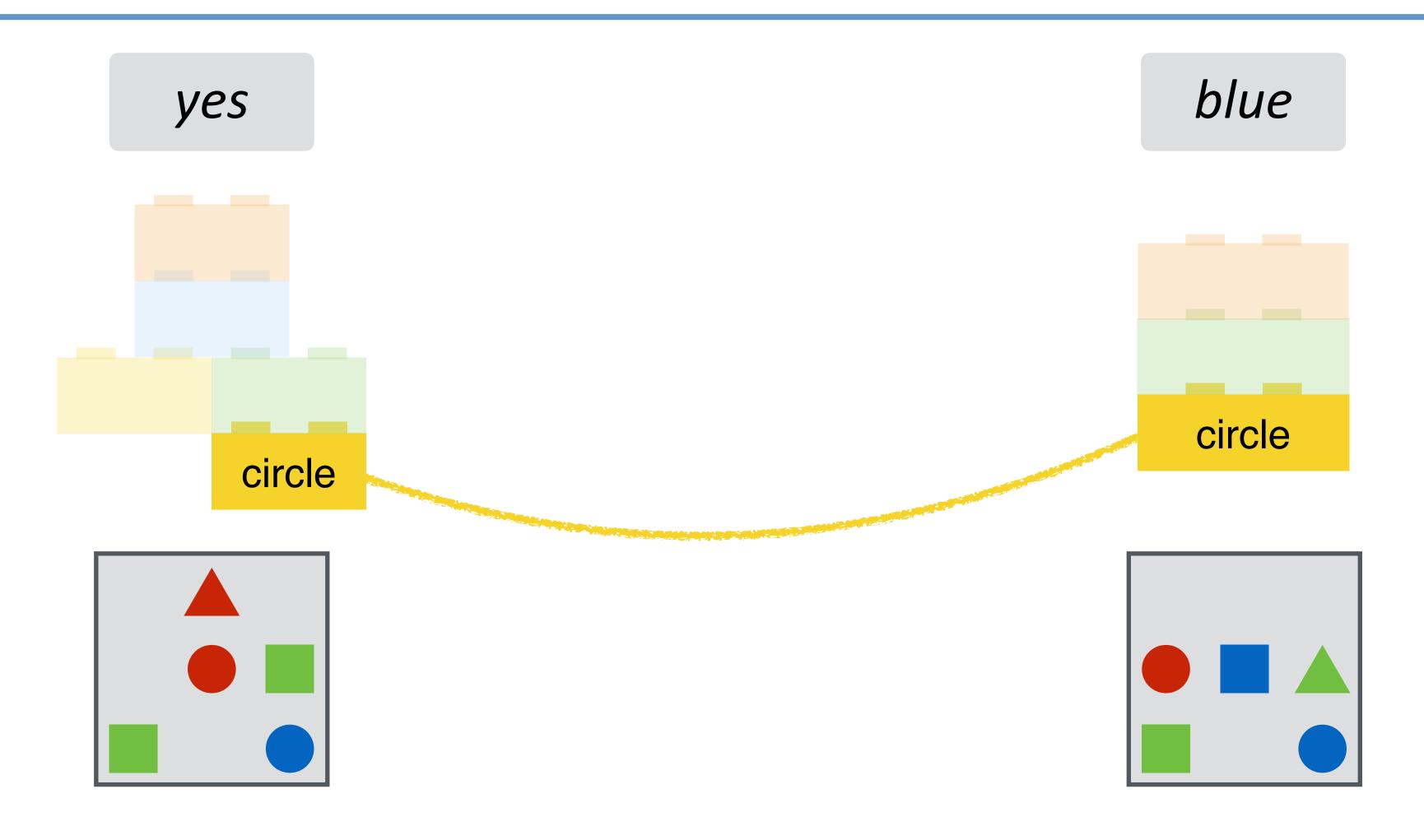
Parameter tying



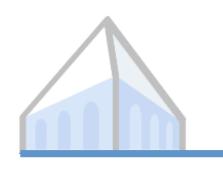
Is there a red shape above a circle?



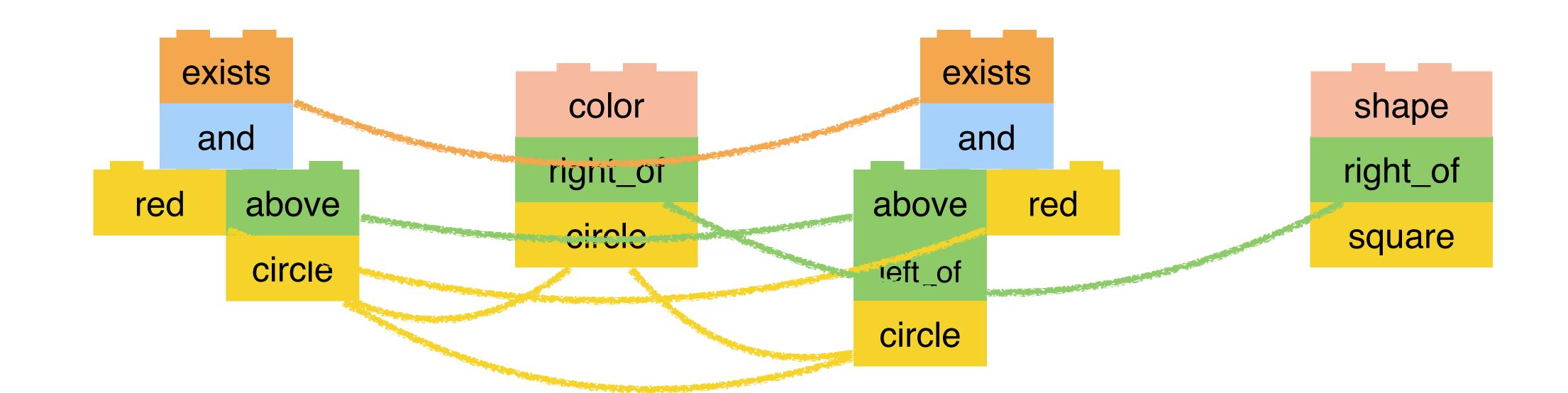
Parameter tying



Is there a red shape above a circle?



Extreme parameter tying

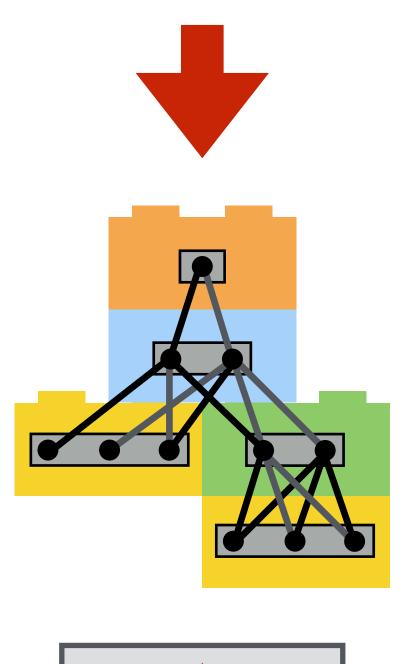


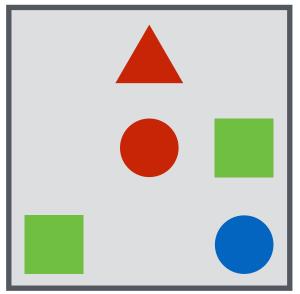
Learning with fixed layouts is easy!

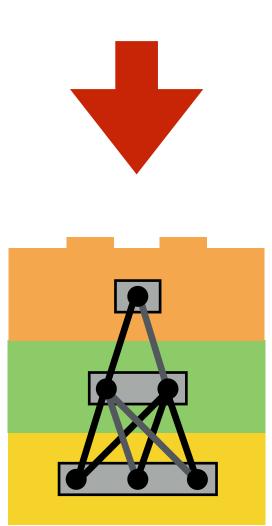
$$\underset{W}{\operatorname{arg max}} \sum_{v} p(v) = \sum_{v} p(v)$$

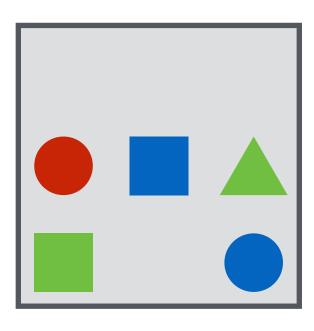
(where every root module outputs a distribution over answers and W is the set of all module parameters)

Maximum likelihood estimation



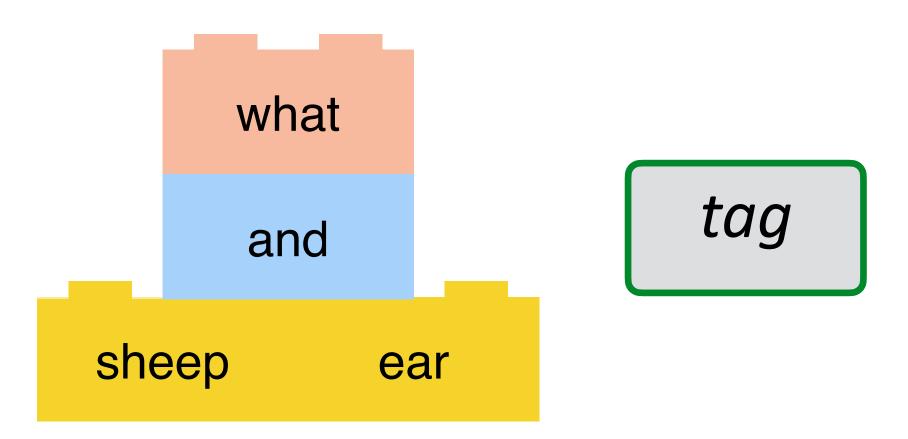




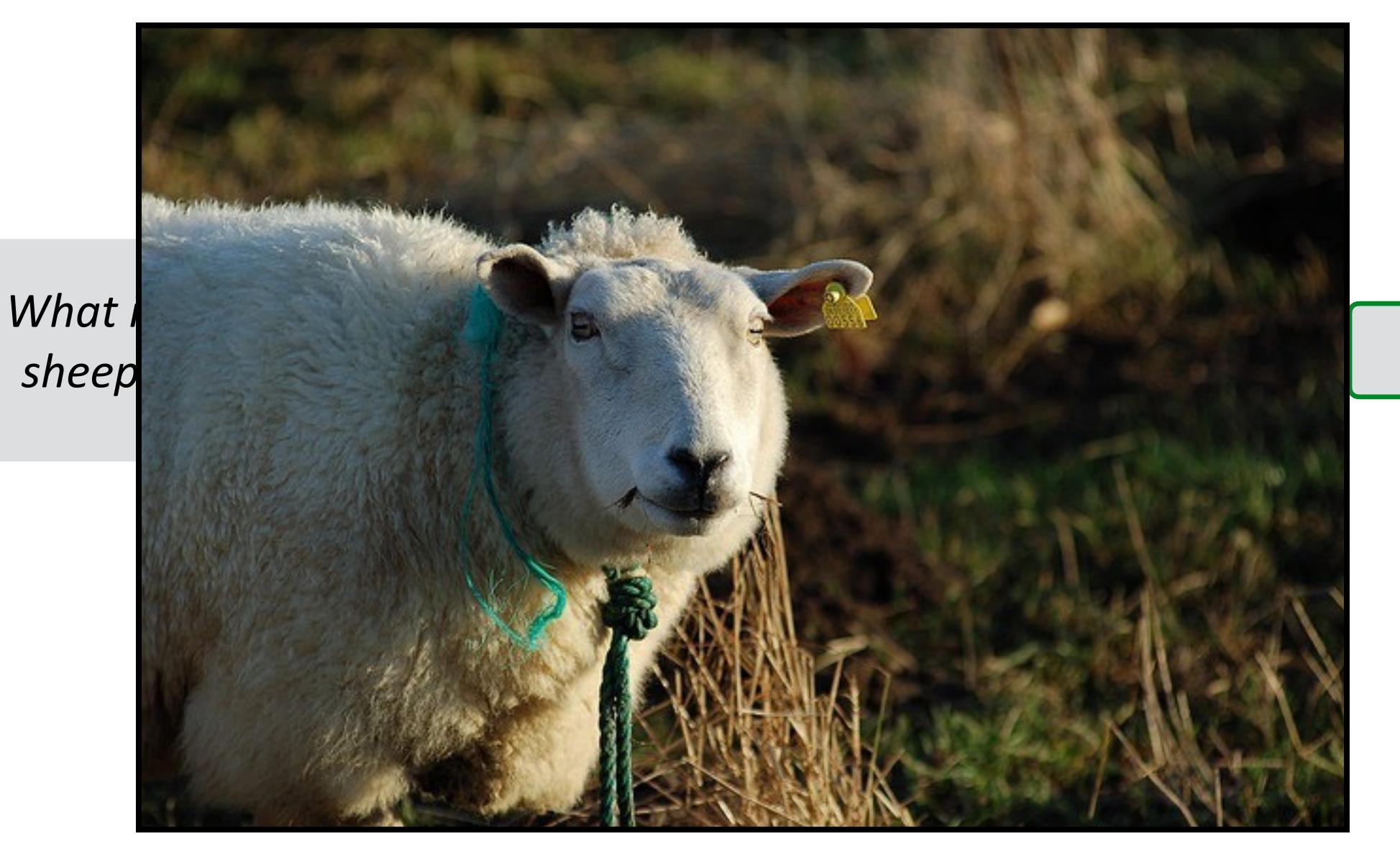


Experiments: VQA Dataset

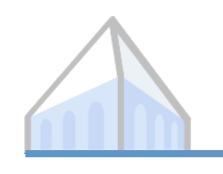
What is in the sheep's ear?



Experiments: VQA Dataset



tag



Experiments: VQA Dataset

What is in the sheep's ear?

