Lecture 22: Light and shading

Announcements

• PS10 out

- 2nd-to-last lecture on low-level vision.
- Rest of course: recent vision topics.

on low-level vision. ent vision topics.

Many interpretations of color!

(a) an image

(a) an image

(b) a likely explanation

(a) an image

(c) painter's explanation

(b) a likely explanation

(a) an image

(c) painter's explanation

(b) a likely explanation

(d) sculptor's explanation

(a) an image

(c) painter's explanation

(d) sculptor's explanation

(b) a likely explanation

(e) gaffer's explanation

- Light and surfaces
- Shape from shading
- Photometric stereo
- Intrinsic image decomposition

Recall: interaction of light and surfaces

Figure 10-7. The bidirectional reflectance distribution function is the ratio of the radiance of the surface patch as viewed from the direction (θ_e, ϕ_e) to the irradiance resulting from illumination from the direction (θ_i, ϕ_i) .

[Horn, 1986]

Spectral radiance: power in a specified direction, per unit area, per unit solid angle, per unit wavelength.

$$BRDF = f(\theta_i, \phi_i, \theta_e, \phi_e, \lambda) = \frac{L(\theta_e, \phi_e, \phi_e, \lambda)}{E(\theta_i, \phi_e, \phi_e, \lambda)}$$

Spectral irradiance: incident power per unit area, per unit wavelength

For now, ignore specular reflection

Source: Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra. Changes by N. Snavely

And Refraction...

Source: Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra. Changes by N. Snavely

And Interreflections...

Source: Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra. Changes by N. Snavely

Recall: effect of BRDF on sphere rendering

Diffuse/Lambertian reflection

https://marmoset.co/posts/physically-based-rendering-and-you-can-too/

Source: W. Freeman

Diffuse reflection

- Dull, matte surfaces like chalk or latex paint
- Microfacets scatter incoming light randomly

Diffuse reflection

• Effect is that light is reflected equally in all directions

Source: S. Lazebnik and K. Bala

Directional lighting

- All rays are parallel
- Equivalent to an infinitely distant point source

Simplifying assumptions we'll often make:

• $I = R_e$: "camera response function" is the identity

– can always achieve this in practice by inverting it

• R_i = 1: light source intensity is 1

- can achieve this by dividing each pixel in the image by R_i

Diffuse reflection

Other BRDFs

Ideal diffuse (Lambertian)

Ideal specular

Directional diffuse

Non-smooth-surfaced materials

from Steve Marschner

Shape from shading $I = k_d \mathbf{N} \cdot \mathbf{L}$

Assume k_d is 1 for now. What can we measure from one image? • $\cos^{-1}(I)$ is the angle between N and L • Add assumptions:

In practice, SFS doesn't work very well: assumptions are too restrictive, too much ambiguity in nontrivial scenes.

Constant albedo

• A few known normals (e.g. silhouettes) • Smoothness of normals

An ambiguity that artists exploit!

[Belhumeur et al. "The Bas-Relief Ambiguity", 1999]

Contours provide extra shape information

Consider points on the occluding contour:

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: finding the direction of the light source

Full 3D case:

N

S

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) & N_{z}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) & N_{z}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) & N_{z}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \\ S_{z} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) \\ \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) \\ \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

23

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

 $I(x,y) = \mathbf{N}(x,y) \cdot \mathbf{S}(x,y)$

the occluding contour, $N_7 = 0$:

Source: S. Lazebnik

Finding the direction of the light source

24

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: Detecting composite photos

Fake photo

Real photo

Source: S. Lazebnik

Photometric stereo

Source: N. Snavely

Photometric stereo

$I_{1} = k_{d} \mathbf{N} \cdot \mathbf{L}_{1}$ $I_{2} = k_{d} \mathbf{N} \cdot \mathbf{L}_{2}$ $I_{3} = k_{d} \mathbf{N} \cdot \mathbf{L}_{3}$

Can write this as a linear system, and solve:

$$k_{d} \begin{bmatrix} \mathbf{L}_{1}^{T} \\ \mathbf{L}_{2}^{T} \\ \mathbf{L}_{3}^{T} \end{bmatrix} \mathbf{N}$$

Photometric Stereo

Input

Recovered albedo

Recovered normal field

У

Recovered surface model

Source: Forsyth & Ponce, S. Lazebnik

Photometric Stereo

Input (1 of 12) Normals (RGB colormap)

Normals (vectors)

Shaded 3D rendering

Textured 3D rendering

29

Video photometric stereo

Video Normals from Colored Lights

Fig. 2. Applying the original algorithm to a face with white makeup. Top: example input frames from video of an actor smiling and grimacing. Bottom: the resulting integrated surfaces.

Gabriel J. Brostow, Carlos Hernández, George Vogiatzis, Björn Stenger, Roberto Cipolla <u>IEEE TPAMI</u>, Vol. 33, No. 10, pages 2104-2114, October 2011.

But what if we don't know the BRDF? Cookie

Clear Elastomer

[Johnson and Adelson, 2009]

Source: N. Snavely

Lights, camera, action

Sensor

Camera

(b) captured

(a) bench configuration

Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution \$20 bill example from the original retrographic sensor with a closeup view. (b) Rendering of the captured geometry using our method.

(c) reconstruction

(d) portable configuration

(e) reconstruction

(a) bench configuration

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset: macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.

What about paint?

$I = k_d \mathbf{N} \cdot \mathbf{L}$

k_d is reflectance or albedo

Intrinsic image decomposition

\$Z\$ shape / depth

R log-reflectance

S(Z,L) log-shading image of ${\rm Z}$ and ${\rm L}$

I = R + S(Z, L) Lambertian reflectance

Source: J. Barron

Intrinsic image decomposition

Near

Z shape / depth

R log-reflectance

S(Z,L) log-shading image of ${\rm Z}$ and ${\rm L}$

L illumination

I = R + S(Z, L) Lambertian reflectance

Intrinsic image decomposition

Reflectance

Shading

CNN-based reflectance estimation

Input

[Bell et al., "Intrinsic images in the wild", 2014]

Applications of intrinsic image decomposition

[Barron and Malik "SIRFS", 2012]

Application: relighting

[Barron and Malik "Scene-SIRFS", 2013]

Application: relighting

[Barron and Malik "Scene-SIRFS", 2013]

Next week: perceptual grouping