Lecture 2: Image filtering



e PS1 due next Tuesday

e Updated office hours next week, due to
noliday. New times will be on Plazza.

e (uestions?



Recall last week...

INnput Image



INn this lecture

What other transformations can we do??



Filtering

g[ﬂ, m] > H > f[ﬂ, m]

Our goal: remove unwanted
sources of variation, and keep the
iINnformation relevant for whatever
task we need to solve.

Source: Torralba, Freeman, Isola



Linear filtering
4l

g[n,m]—» H _'f[nam]

Very general! For a filter, H, to be linear, it has to satisfy:

H(Cam,n|) = CH(ajm,n|)

Source: Torralba, Freeman, Isola



Linear filtering
il

g[n,m]—» H _’f[nam]

A linear filter in its most general form can be written as (for a 1D signal of length N):

fln] = z hn, k) g[k]

In matrix form:
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Source: Torralba, Freeman, Isola
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Why handle each spatial position differently”?

Want translation invariance!
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Image denoising

Photo by Fredo Durand



Moving average

o | et’s replace each pixel with a weighted
average of its neighborhood

e [he weights are called the filter kernel

e \\Vhat are the weights for the average of a
3x3 neighborhood”?

“box filter”

Source: D. Lowe



Moving average [T
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Moving average [T
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Moving average
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Moving average
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Moving average
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Moving average
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Moving average AEIER
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Moving average AEIEIE
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Handling boundaries

Source: Torralba, Freeman, Isola



Hanadling boundaries

Zero padding
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11x11 box

Source: Torralba, Freeman, Isola



Output Input
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Hanadling boundaries

circular repetition mirror edge pixels repeat edge pixels
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Source: Torralba, Freeman, Isola



Moving average AEIEIE
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Convolution

e | et h be the Image and g be the kernel. The output of
convolving h with g Is:

f[m,n]:hog:Zh[m—k,n—l]g[k,l]

=
0

Convention: h
kernel is “flipped”

Source: F. Durand



Properties of the convolution

Commutative
h[n]og[n] =g[n]oh|n]
Associative

hn]ogln]og[n] =h[n]o (g[n]oq[n]) = (h[n]og[n])cq|n]

Distributive with respect to the sum
hn]o (f[n] + g[n]) = h[n]of [n] + h[n] o g[n]



Why flip the kernel?

f[m,n]:hog:Zh[m—k,n—l]g[k,l]

/

Indexes go backward!




Cross correlation

flmn]=hxg=> hlm+kn+1IglkI]
k.l

/

No flipping!

Sometimes called just correlation

Neilther associative nor commutative

N the literature, people often just call both “convolution”
Filters often symmetric, so won't matter



Convolutional neural networks

* Neural network with specialized connectivity structure

Mostly just convolutions!

C3:f. maps 16@10x10
S4:f. maps 16@5x5

C5 layer F6 layer OUTPUT

TN

SN

C1: feature maps

INPUT 6@28x28

32x32 S2: f. maps

6@14x14

LT

Convolutions

Subsampling Full connection

Convolutlons Subsampllng

(LeCun et al. 1989)

Fullcomlectlon I Gaussnan connections

Source: Torralba, Freeman, Isola



Filtering examples



Practice with linear filters

0100
011]0 ?
0100

Original

Source: D. Lowe



Practice with linear filters

- “Impulse’ ,
Original Filtered

(no change)

Source: D. Lowe



Practice with linear filters

0/0]0
0101 ?
0/0]0

“Translated

Original

Impulse”

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters

000 . 1111

0[2[0] ™= 9 1111

000 11111
Original Sharpening filter

- Accentuates difterences with
local average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Practice with linear filters

Original

Can you do this”



Rectangular filter

him,n]

Source: Torralba, Freeman, Isola



Rectangular filter

Source: Torralba, Freeman, Isola



“Naturally” occurring filters

Input iImage Motion blur

Source: Torralba, Freeman, Isola



“Naturally” occurring filters

S —

e

Input image Convolution weights Convolution output

Source: Torralba, Freeman, Isola



Camera shake

(from Fergus et al, 2007)

Blur kernel

Source: Torralba, Freeman, Isola



Blur occurs in many natural situations

Source: Torralba, Freeman, Isola



Smoothing with box filter revisited

e \What's wrong with this picture”
e \\V\hat’s the solution?

Source: D. Forsyth



Smoothing with box filter revisited

e \What’s wrong with this picture®
e \\V\hat’s the solution?

e [0 eliminate edge effects, weight contribution of
neighibornhood pixels according to their closeness to the
center

“fuzzy blob”

Source: S. Lazebnik



(Gaussian kernel

o =2 with 30 x 30 o =5 with 30 x 30
kernel kernel

® Constant factor in front makes kernel sum to 1 (can
also omit it and just divide by sum of filter weights).

Source: K. Grauman



(Gaussian vs. box filtering

Source: S. Lazebnik



(Gaussian standard deviation

Source: Torralba, Freeman, Isola



(Gaussian filters

® Convolution with self is another Gaussian
® Can smooth with small-o kernel, repeat, get same result as
larger-o
® Convolving two times with Gaussian kernel with std. dev. ©
IS same as convolving once with kernel with std. dev. O V2

S Ne™ hNe™

| blur(blur(l)) blur(blur(blur(l)))  blur(blur(blur(blur())))

Source: K. Grauman



(Gaussian filters

® |[t's a separable kernel
o Blur with 1D Gaussian in one direction, then the other.
® [aster to compute. O(n) time for an n*n kernel instead of O(N?)
® | carn more about this in Problem Set 1!

blurx(I) blury(blurx(l))



Edges: recall last lecture...

Image gradient:

o1 oI
VI = ,
(011:' 81/)

Approximation image derivative:

>~ Iay) -1z - 1y)
Edge strength E(z,y) = |VI(z,y)|
Edge orientation: O(z,y) = £LVI = arctan gggy
T
Edge normal: n = v
| VT

Slide credit: Antonio Torralba



Discrete derivatives

d() — [19 _1]
f odp = f i —f [n — 1]

di =1[1,0,—1]/2
fod, :f[n.—l— 1] ;f[n — 1]

Source: Torralba, Freeman, Isola



[-1 1]

g[m,n]

Source: Torralba, Freeman, Isola
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Source: Torralba, Freeman, Isola



Can we recover the image”?

Source: Torralba, Freeman, Isola



Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.

Source: Torralba, Freeman, Isola



Reconstruction from 2D derivatives

Source: Torralba, Freeman, Isola



Editing the edge image

Source: Torralba, Freeman, Isola



dges

ing e

Threshold

Source: Torralba, Freeman, Isola




Issues with derivative filters

o

Ny

7

® Sensitive to edges at small spatial scales

® AlsoO sensitive to noise

® You'll see this in Problem Set 1



Why is this happening?

Noisy input image

f(x)

< f(x)

0

...................................................................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50
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To find edges, look for peaks iIn —(f x h)

Source: S. Seitz



Derivative of Gaussian filter

Gaussian

ho(u,v) =

1

z”' R
SO e
AL ONE
-':f?ﬁ‘#“":&\ﬁ’%ﬁ:ﬁ"‘*"5-"'54'-.-
}'{f;;;' '@"0‘0‘0‘\?‘3&‘;"’5%»‘%'. St
A (ORI HNS
SN
o ety /)

Derivative of Gaussian (x)
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%h@(u, V)

Source: N. Snavely



Derivative of Gaussian filter

015

x-direction y-direction

Source: N. Snavely



Derivatives of Gaussians: Scale

0—=8

Source: Torralba, Freeman, Isola



Picks up larger-scale edges

g, (x,y) =
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Source: Torralba, Freeman, Isola



Computing a directional derivative

V

v _ f — 7 Directional derivative is a linear
U — combination of partial derivatives

(From multivariable calculus)

Vaf(Z) = Vf(Z)-u

Source: N. Snavely



Derivative of Gaussian filter

x-direction y-direction

cos( 6 + sin(6

Source: N. Snavely



The Sobel operator

* Common approximation to derivative of Gaussian
* Where does this come from?/

Source: N. Snavely



An approximation to the Gaussian

o Apply filter to itself repeatedly.
e Converges to Gaussian, due to Central Limit Theorem

b; = [1 1}
b, = [11]o[11]=[121]

b, [1 1] ol 1]l 1]=[1331]

Source: Torralba, Freeman, Isola
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Binomial filter
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Sobel operator: example
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Source: N. Snavely / Wikipedia



Next class: frequency



