Lecture 2: Image filtering

 PS1 due next Tuesday holiday. New times will be on Piazza. • Questions?

Updated office hours next week, due to

Recall last week...

Input image

In this lecture

What other transformations can we do?

Our goal: remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve.

Filtering

Linear filtering

 $g\left[n,m
ight]
ightarrow$

Very general! For a filter, H, to be linear, it has to satisfy:

H(a[m, n] + b[m, n]) + H(a[m, n]) + H(b[m, n])H(Ca[m,n]) = CH(a[m,n])

H
$$\rightarrow f[n,m]$$

Linear filtering

 $g\left[n,m
ight]
ightarrow$

A linear filter in its most general form can be written as (for a 1D signal of length N): N-1 $f[n] = \sum h[n,k]g[k]$ k=0In matrix form: $h\left[0,
ight.
ight. h\left[1
ight.
ight]$ $egin{array}{c} h\left[0,0
ight]\ h\left[1,0
ight] \end{array}$ $\begin{bmatrix} J & I \\ \vdots \\ f [M-1] \end{bmatrix} = \begin{bmatrix} I & I \\ \vdots \\ h [M-1,0] \end{bmatrix} \begin{bmatrix} I \\ i \end{bmatrix}$

H
$$\rightarrow f[n,m]$$

$$\begin{bmatrix} f [0] \\ f [1] \\ \vdots \\ f [M-1] \end{bmatrix} = \begin{bmatrix} h [0,0] & h [0,1] & \dots & h [0,N-1] \\ h [1,0] & h [1,1] & \dots & h [1,N-1] \\ \vdots & \vdots & \vdots & \vdots \\ h [M-1,0] & h [M-1,1] & \dots & h [M-1,N-1] \end{bmatrix} \begin{bmatrix} g [0] \\ g [1] \\ \vdots \\ g [N-1] \end{bmatrix}$$

Why handle each spatial position differently?

Want translation invariance!

Image denoising

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

	40	?		

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

60 40

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

	40	60		
		?		

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

40	60		
	80		

0	0	0	0	0	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	90	90	90	0	0
0	90	0	90	90	0	0
0	90	90	90	90	0	0
0	0	0	0	0	0	0

Moving average

40	60	60	40	20	
60	90	60	40	20	
50	80	80	60	30	
50	80	80	60	30	
30	50	50	40	20	

Moving average

Input									
0	0	0	0	0	0	0			
0	90	90	90	90	0	0			
0	90	0	90	90	0	0			
0	90	90	90	90	0	0			
0	90	90	90	90	0	0			
0	90	90	90	90	0	0			
0	0	0	0	0	0	0			

	40	60	60	40	20	
	60	90	60	40	20	
	50	80	80	60	30	
?	50	80	80	60	30	
	30	50	50	40	20	

Handling boundaries

Zero padding

Handling boundaries

11x11 box

=

circular repetition

zero padding

Input

Handling boundaries

mirror edge pixels

repeat edge pixels

Moving average

0	0	0	0	0	0	0	0
0	0	90	90	90	90	0	0
0	0	90	90	90	90	0	0
0	0	90	90	90	90	0	0
0	0	90	0	90	90	0	0
0	0	90	90	90	90	0	0
0	0	0	0	0	0	0	0
	Input						

	40	60	60	40	20	
	60	90	60	40	20	
	50	80	80	60	30	
30	50	80	80	60	30	
	30	50	50	40	20	

Convolution

convolving *h* with *g* is:

$$f[m,n] = h \circ g = \sum_{k,l} h[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

• Let h be the image and g be the kernel. The output of

h

Source: F. Durand

Commutative $h[n] \circ g[n] = g[n] \circ h[n]$ Associative Distributive with respect to the sum $h[n] \circ (f[n] + g[n]) = h[n] \circ f[n] + h[n] \circ g[n]$

Properties of the convolution

- $h[n] \circ g[n] \circ q[n] = h[n] \circ (g[n] \circ q[n]) = (h[n] \circ g[n]) \circ q[n])$

$f[m,n] = h \circ g = \sum h[m-k,n-l]g[k,l]$ k,l Indexes go backward!

Why flip the kernel?

Cross correlation

$f[m,n] = h * g = \sum h[m+k, n+l] g[k,l]$ k,l No flipping!

- Sometimes called just correlation
- Neither associative nor commutative
- In the literature, people often just call both "convolution"
- Filters often symmetric, so won't matter

- Mostly just convolutions!

(LeCun et al. 1989)

Convolutional neural networks

Neural network with specialized connectivity structure

Filtering examples

Original

Original

"Impulse"

Filtered (no change)

 \mathbf{O}

Original

"Translated Impulse"

Original

Shifted *left* By 1 pixel

Original

 $\frac{1}{9}$

Original

 $\frac{1}{9}$

Blur (with a box filter)

(Note that filter sums to 1)

Original

Source: D. Lowe

?

Original

Sharpening filter - Accentuates differences with local average

Sharpening

before

after

Source: D. Lowe

Practice with linear filters

Original

Can you do this?

Rectangular filter

g[m,n]

h[m,n]

f[m,n]

Rectangular filter

h[m,n]

=

g[m,n]

f[m,n]

Input image

"Naturally" occurring filters

Motion blur

Input image

"Naturally" occurring filters

Convolution weights

Convolution output

Camera shake

Blur occurs in many natural situations

Smoothing with box filter revisited

• What's wrong with this picture? • What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
- To eliminate edge effects, weight contribution of center

neighborhood pixels according to their closeness to the

"fuzzy blob"

Source: S. Lazebnik

Gaussian kernel

kernel

 Constant factor in front makes kernel sum to 1 (can also omit it and just divide by sum of filter weights).

Source: K. Grauman

Gaussian vs. box filtering

Source: S. Lazebnik

Gaussian standard deviation

Gaussian filters

- Convolution with self is another Gaussian • Can smooth with small- σ kernel, repeat, get same result as
 - larger-σ
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$

blur(blur(I))

blur(blur(blur(I)))

Source: K. Grauman

Gaussian filters

• It's a separable kernel

- Blur with 1D Gaussian in one direction, then the other.
- Learn more about this in Problem Set 1!

• Faster to compute. O(n) time for an n*n kernel instead of $O(n^2)$

blur_x(I)

Edges: recall last lecture...

Edge strength

Edge orientation:

Edge normal:

Image gradient:

$$\nabla \mathbf{I} = \left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)$$

Approximation image derivative:

$$\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$$

 $E(x,y) = |\nabla \mathbf{I}(x,y)|$

$$\theta(x, y) = \angle \nabla \mathbf{I} = \arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}$$
$$\mathbf{n} = \frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$$

Slide credit: Antonio Torralba

$d_0 = [1, -1]$ $f \circ d_0 = f[n] - f[n-1]$

$d_1 = [1, 0, -1]/2$ $f \circ d_1 = \frac{f[n+1] - f[n-1]}{2}$

Discrete derivatives

g[m,n]

[-1 1]

O [-1, 1] h[m,n]

f[m,n]

g[m,n]

[-1 1]^T

f[m,n]

○ [-1, 1][⊤] =

h[m,n]

Can we recover the image?

Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.

Reconstruction from 2D derivatives

Editing the edge image

Thresholding edges

Issues with derivative filters

- Sensitive to edges at small spatial scales
- Also sensitive to noise
- You'll see this in Problem Set 1

Why is this happening?

Noisy input image

Source: S. Seitz

Where is the edge?

To find edges, look for peaks in $\frac{d}{dx}(f * h)$

Solution: smooth first

Source: S. Seitz

Derivative of Gaussian filter

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

Derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Source: N. Snavely

Derivative of Gaussian filter

x-direction

Source: N. Snavely

Derivatives of Gaussians: Scale

Picks up larger-scale edges

$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma}$$

 $g_{y}(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$

Computing a directional derivative

f

 $\frac{\partial f}{\partial x} \cdot \mathcal{U}_{\mathcal{X}}$

 $\nabla_{\vec{u}}f = ?$

 \vec{u}

Directional derivative is a linear combination of partial derivatives

 $\nabla_{\vec{u}} f$

Derivative of Gaussian filter

x-direction

Source: N. Snavely

The Sobel operator

- Where does this come from?

 s_x

Common approximation to derivative of Gaussian

Sy

An approximation to the Gaussian

• Apply filter to itself repeatedly.

$b_1 = [1 \ 1]$ $b_2 = [1 1] \circ [1 1] = [1 2 1]$ $b_3 = [1 1] \circ [1 1] \circ [1 1] = [1 3 3 1]$

Converges to Gaussian, due to Central Limit Theorem

Binomial filter

 b_1 b_2 2 b_3 3 b_4 6 4 10 b_5 5 b_6 15 20 6 21 b_7

Sobel operator: example

Source: N. Snavely / Wikipedia

Next class: frequency