
Lecture 2: Image filtering



• PS1 due next Tuesday 
• Updated office hours next week, due to 

holiday. New times will be on Piazza. 
• Questions?



Recall last week…

EdgesInput image

Missing 
edges

Extra 
edges



In this lecture

What other transformations can we do?



Filtering

Source: Torralba, Freeman, Isola

Our goal: remove unwanted 
sources of variation, and keep the 
information relevant for whatever 
task we need to solve.

g[n, m] f[n, m]



Linear filtering

Very general! For a filter, H, to be linear, it has to satisfy:

H(a[m,n] + b[m,n]) +H(a[m,n]) +H(b[m,n])

H(Ca[m,n]) = CH(a[m,n])
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Source: Torralba, Freeman, Isola



A linear filter in its most general form can be written as (for a 1D signal of length N):

In matrix form:

Linear filtering

Source: Torralba, Freeman, Isola



Photo by Fredo Durand, slide by Torralba, Freeman, Isola

Why handle each spatial position differently?

Want translation invariance!



Photo by Fredo Durand

Image denoising



• Let’s replace each pixel with a weighted 
average of its neighborhood 

• The weights are called the filter kernel 
• What are the weights for the average of a  

3x3 neighborhood?

111

111

111

“box filter”

Source: D. Lowe

Moving average
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Handling boundaries

Source: Torralba, Freeman, Isola



Handling boundaries

11x11 box

=

Zero padding

Source: Torralba, Freeman, Isola



Handling boundaries
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Source: Torralba, Freeman, Isola
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Convolution
• Let h be the image and g be the kernel. The output of 

convolving h with g is:

h

Source: F. Durand

Convention:  
kernel is “flipped”



Properties of the convolution

Commutative

Associative

Distributive with respect to the sum



Why flip the kernel?

Indexes go backward!



Cross correlation

• Sometimes called just correlation 
• Neither associative nor commutative 
• In the literature, people often just call both “convolution” 
• Filters often symmetric, so won’t matter

No flipping!



Convolutional neural networks

• Neural network with specialized connectivity structure 
• Mostly just convolutions!

(LeCun et al. 1989)
Source: Torralba, Freeman, Isola



Filtering examples



Practice with linear filters
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Source: D. Lowe



Practice with linear filters

000
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Original Filtered 
(no change)

Source: D. Lowe

“Impulse”



Practice with linear filters
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Original

?

Source: D. Lowe

“Translated  
Impulse”



Practice with linear filters
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By 1 pixel

Source: D. Lowe



Practice with linear filters

Original
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Source: D. Lowe



Practice with linear filters
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Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters

Original
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original
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Sharpening filter 
- Accentuates differences with 
local average

Source: D. Lowe



Sharpening

Source: D. Lowe



Practice with linear filters

Original

    ?

Can you do this?



Rectangular filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, Freeman, Isola



Rectangular filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, Freeman, Isola



Motion blur

“Naturally” occurring filters

Input image

Source: Torralba, Freeman, Isola



“Naturally” occurring filters

Convolution outputConvolution weightsInput image

Source: Torralba, Freeman, Isola



Camera shake

(from Fergus et al, 2007)

Source: Torralba, Freeman, Isola



Blur occurs in many natural situations

Source: Torralba, Freeman, Isola



Smoothing with box filter revisited

Source: D. Forsyth

• What’s wrong with this picture? 
• What’s the solution?



Smoothing with box filter revisited

• What’s wrong with this picture? 
• What’s the solution?

“fuzzy blob” Source: S. Lazebnik

• To eliminate edge effects, weight contribution of 
neighborhood pixels according to their closeness to the 
center



Gaussian kernel

Source: K. Grauman

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel

• Constant factor in front makes kernel sum to 1 (can 
also omit it and just divide by sum of filter weights).



Gaussian vs. box filtering

Source: S. Lazebnik



Gaussian standard deviation

49σ=2 σ=4 σ=8
Source: Torralba, Freeman, Isola



Gaussian filters
• Convolution with self is another Gaussian 

• Can smooth with small-σ kernel, repeat, get same result as 
larger-σ 

• Convolving two times with Gaussian kernel with std. dev. σ  
is same as convolving once with kernel with std. dev. 

Source: K. Grauman

2σ

I blur(blur(I)) blur(blur(blur(I))) blur(blur(blur(blur(I))))



Gaussian filters
• It’s a separable kernel 

• Blur with 1D Gaussian in one direction, then the other.  
• Faster to compute. O(n) time for an n*n kernel instead of O(n2) 
• Learn more about this in Problem Set 1!

I blurx(I) blury(blurx(I))



Edges: recall last lecture…
Image gradient:

Approximation image derivative:

Edge strength

Edge orientation:

Edge normal:

I(x,y)

Slide credit: Antonio Torralba



Discrete derivatives

Source: Torralba, Freeman, Isola



[-1 1]

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]

Source: Torralba, Freeman, Isola



[-1 1]T

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T

Source: Torralba, Freeman, Isola



Can we recover the image?

?

Source: Torralba, Freeman, Isola



Reconstruction from 2D derivatives

[-1 1]

[-1 1]T

c

c

=
c

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.
Source: Torralba, Freeman, Isola



Reconstruction from 2D derivatives

[1 -1]

[1 -1]T

Source: Torralba, Freeman, Isola



Editing the edge image

[1 -1]

[1 -1]T

Source: Torralba, Freeman, Isola



Thresholding edges

Source: Torralba, Freeman, Isola



Issues with derivative filters

[1 -1]

• Sensitive to edges at small spatial scales 
• Also sensitive to noise 
• You'll see this in Problem Set 1



Why is this happening?

Where is the edge?
Source: S. Seitz

Noisy input image 



Solution: smooth first
f

h

f * h

Source: S. Seitz
To find edges, look for peaks in



Gaussian Derivative of Gaussian (x)

Source: N. Snavely

Derivative of Gaussian filter



Derivative of Gaussian filter

x-direction y-direction

Source: N. Snavely



Derivatives of Gaussians: Scale

σ=2 σ=4 σ=8

Source: Torralba, Freeman, Isola



Picks up larger-scale edges

Source: Torralba, Freeman, Isola



Computing a directional derivative

= ?

+ =

(From multivariable calculus)

Directional derivative is a linear 
combination of partial derivatives

Source: N. Snavely



Derivative of Gaussian filter

x-direction y-direction

+ =

Source: N. Snavely



The Sobel operator

• Common approximation to derivative of Gaussian 
• Where does this come from?

Source: N. Snavely



• Apply filter to itself repeatedly.  
• Converges to Gaussian, due to Central Limit Theorem

An approximation to the Gaussian

[1 1]    [1 1] = [1 2 1]

[1 1]    [1 1]    [1 1] = [1 3 3 1]

b1  =  [1  1]

b2  =

b3  =

Source: Torralba, Freeman, Isola



Binomial filter

72



Sobel operator: example

Source: N. Snavely / Wikipedia



Next class: frequency


