Lecture 18: Depth estimation



Announcements

o PS9 out tonight: panorama stitching

e New grading policies from UMich (details TBA)

e [nal presentation will take place over video chat.
- We'll send a sign-up sheet next week



loday

e Stereo matching

e Probabllistic graphical models
Belief propagation

e [ earning-based depth estimation




Basic stereo algorithm
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For each epipolar line

For each pixel in the left image

e compare with every pixel on same epipolar line in right image

e pick pixel with minimum match cost

Improvement: match windows

" Source: N. Snavely



Stereo matching based on SSD

[eft Right
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Best matching disparity

" Source: N. Snavely



Window size

20

N. Snavely

Source
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Stereo as energy minimization
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* What defines a good stereo correspondence?

1. Match quality
* Want each pixel to find a good match in the other image

2. Smoothness

 If two pixels are adjacent, they should (usually) move about the

same amount ,
Source: N. Snavely



Stereo as energy minimization

* Find disparity map d that minimizes an energy

function E(d)

e Simple pixel / window matching

E(d)= ) C(zyd(z,y))

(z,y)€l

() — Squared distance between
(CE’ I3 d(m’ y)) windows /(x, y) and J(x + d(x,y), y)

Source: N. Snavely



Stereo as energy minimization

‘ %W’*NM\M\-

C(x, y, d); the disparity space image (DSI)

Source: N. Snavely



Stereo as energy minimization

y =141

| 43

d

Simple pixel / window matching: choose the minimum of each
column in the DSI independently:

d(z,y) = argmin C(z,y,d)
d’ 10

Source: N. Snavely



Greedy selection of best match

" Source: N. Snavely



Stereo as energy minimization

* Better objective function

E(d) = Eq(d) + AE4(d)
O

match cost smoothness cost
Want each pixel to find a good Adjacent pixels should (usually)
match in the other image move about the same amount

Source: N. Snavely



Stereo as energy minimization
E(d) = Ed(d) + AE,(d)

match cost: Z C QU y, $ y))

smoothness cost: Es(d) — Z V(dp, dq)

g:set of neighboring pixels @ ‘ """ ® @ * """ ®

® o o o
4-connected 8-connected
neighborhood  neighborhood Source: N. Snavely



Smoothness cost

Eq(d) = Z V(dpa dq)
(p,q)€E

How do we choose V?

V(dpv dq> = |dp — dg \/
L, distance

0 itd, =d
V(dpadq){ g !

1 it d, # d, ||
“Potts model” 7

Source: N. Snavely



Probabillistic interpretation

E(d) = Eq(d) + AE,(d)
Exponentiate: exp(E(d)) — exp(Ed(d) 1 )\E'S (d))

exp(£(d)) _ 1

N ize: -

(n?arl?eaﬁl[zseum to 1) 7 ~ 7 exp(Fq(d) + AEs(d))
where / = ZGXPE d/)

Rewrite: P(d =k ]—l o;(d;) ]—l lpl](dl, d )

(1,))

Example adapted from Freeman, Torralba, Isola



Probabillistic interpretation

“Local evidence” ‘Palrwise compatibility”
How good are the matches?  |Is the depth smooth?

/ /

P(d | I)= HTMMFWWMM
(Z,])

Example adapted from Freeman, Torralba, Isola



Probabillistic interpretation

L ocal evidence: Pairwise compatibility:

(Ii — Liva,)* a, 1td;=d,;
¢i(di) =exp ———  Yii(di,dj) =
20 Vi J {,8, otherwise

P(d | I)= kﬂcpl(d)ﬂ yii(d;, d))
(Z,])

Example adapted from Freeman, Torralba, Isola



Probabillistic graphical models

Graph structure:

® Open circles for latent variables x
- di In our problem

® [lled circle for observations V;
- Pixels in our problem

® Fdges between interacting variables . '.-.
- In general, graph cliques for 3+ variable X1 u

INteractions

18
Example adapted from Freeman, Torralba, Isola



Probabillistic graphical models

Yi Y2
Why formulate it this way?

® xploit sparse graph structure for fast inference,
usually using dynamic programming
e Can use probabilistic inference methods
® Provides framework for learning parameters X1 X2

P(d | I)= kﬂcpl(d)ﬂ yij(d;, d))
(Z,])



Probabillistic graphical models

X1 X2 A3 P(x1, %3, x3) = P(x2)P(x1|x2)P(x3]x2)

Undirected graphical model.

Also known as Markov Random Field (MRF). Directed graphical mpde\
Also know as Bayesian network

(Not covered in this course)



Marginalization

Y1 y2 y3
O O O
O O O
X1 X2 X3

What’s the marginal distribution for x4
.e. what’s the probabillity of x4 being in a particular state”

P(x1]y) = Z Z P(x1, x2, x3|y)

X2 X3

® Sut this is expensive: O(|L|"N)
® —xploit graph structure!



Marginalization

1
P(x1[y) PG) Z Z P12(x1, X2)P23(X2, X3) 1 (Y1, X1 W2 (Y2, X2)¥3(y3, X3)

X2 X3

1
%%(yl’ *1) ; Pralx1, X2)P2(y2, X2) ; $23(x2, x3)¥3(y3, X3)

1
P(y)

1
PG) Y1 (y1, x1)maoy(x1)

1(y1, X1) Z P12(x1, X2 )2 (Y2, X2)m3z(x2)




Message passing

node 4 node 5 node 6 | |
Can think of “local evidence”

Y1 Y2 V3 .
O O O message passing

Mz X»)

X X2 X3

" l

node 1 node 2 node 3
Message that node x3 sends 1o node xo

— 1 (y1, x1) Z P12(x1, X202 (Y2, X2)m32(x2)

Message that x2 sends to X1

W1 (1, x1)map(x1) §

P®

1
P(®y)



Message passing

node 4 node 5 node 6

d\". l O }" : O d\". -‘~ O

Ma(X1) Mso(X>) Me3( X3)

Y w
m-i(xXy) M2 X»)

A 4
X X2 X3

" l

node 1 node 2 node 3

® Message mijis the sum over all states of all nodes In the subtree

leaving node | at node |
® [t summarizes what this node “believes”.

® £ .g. If you have label x2, what'’s the probability of my subgraph®?
® Shared computation! E.g. could reuse mz2 to help estimate p(xz2| v).



Belief propagation

e Estimate all marginals p(xi | y) at once!
[Pearl 1982]

® (Given a tree-structured graph, send
messages In topological order

nodes k

Sending message from j to i:
1. Multiply all Incoming messages
(except for the one from i)
2. Multiply the pairwise compatibility
3. Marginalize over X;

mi(x;) = Zw,,u,,x]) [ | e
ken(J)\



General graphs

® \/ision problems often are often on grid graphs

® Pretend the graph is tree-structured and do belief
propagation iteratively!

® Can also have consistency with N > 2 variables
- But complexity is exponential in N!

Loopy belief propagation:
1. Initialize all messages to 1
2. Walk through the edges in an
arbitrary order (e.g. random)
3. Apply the messages updates

O




Finding best labels

Often want to find the labels that jointly maximize probability:

T o Pxi, x2, x3ly)

This is called maximum a posteriori estimation (MAP estimation).

Marginal; “Max marginal” instead:
P(x1]y) = Z ZP(xl,xz,x3|)7) b(ry | y) = max P(x1, x2, x3()
X2 X3
mi(x) = ) Wi x) | | mex) mji() = max g, x) || omig()
X ken(j) \i ken(j) \i



Application to stereo

[Felzenzwalb & Huttenlocher, *

—fficient

Belief

Propagation for Early Vision”, 2000]
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Deep learning + MRF refinement

Left image patch Right image patch
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[Zbontar & LeCun, 2015]

Query patch Positive Negative
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CNN-based matching + MRF refinement



Learning to estimate depth without ground truth

Learn “volume”™;
color + occupancy

32.09)~ ||| ®GBo)
F

3D scene Viewpoints

[Mildenhall*, Srinivasan®, Tanick®, et al., Neural radfance fields, 2020]



Learning to estimate depth without ground truth

5D Input Output Volume Rendering

Position + Direction ["][l Color + Density Rendering Loss

Fv (%.3,2,6,¢) > — (RGBo) \ /—\
Yoo o/_ F@ Ray 2 <o yeﬂx/ 1 Rayl)/ ||.—g.t. 2
& ﬂ g « /P‘l\ P> SLET
-g.t.
\ \ / Ray Distance g
A good volume should reconstruct the input views

IMildenhall*, Srinivasan*,3lranick*, et al. 2020]



Learning to estimate depth without ground truth

[Mildenhall*, Srinivasan*fzranick*, et al. 2020]



Learning to estimate depth without ground truth

[Mildenhall*, Srinivasan*,ﬁranick*, et al. 2020]



Next class: motion



