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Lecture 18: Depth estimation



• PS9 out tonight: panorama stitching 
• New grading policies from UMich (details TBA) 
• Final presentation will take place over video chat. 
- We’ll send a sign-up sheet next week
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Announcements



Today

• Stereo matching 
• Probabilistic graphical models 
• Belief propagation 
• Learning-based depth estimation
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Basic stereo algorithm

For	each	epipolar	line
	 For	each	pixel	in	the	left	image

• compare	with	every	pixel	on	same	epipolar	line	in	right	image

• pick	pixel	with	minimum	match	cost

Improvement:		match	windows
Source: N. Snavely4



Stereo matching based on SSD

SSD 

dmin d 

Best matching disparity

Source: N. Snavely5



Window size

W = 3 W = 20

Source: N. Snavely6



Stereo as energy minimization

• What	defines	a	good	stereo	correspondence?	
1. Match	quality	
• Want	each	pixel	to	find	a	good	match	in	the	other	image	

2. Smoothness	
• If	two	pixels	are	adjacent,	they	should	(usually)	move	about	the	

same	amount	
Source: N. Snavely7



Stereo	as	energy	minimization

• Find	disparity	map	d	that	minimizes	an	energy	
function		

• Simple	pixel	/	window	matching

Squared	distance	between	
windows	I(x,	y)	and	J(x	+	d(x,y),	y)=

Source: N. Snavely8



Stereo	as	energy	minimization

I(x,	y)	 J(x,	y)	

y	=	141

C(x,	y,	d);	the	disparity	space	image	(DSI)x

d

Source: N. Snavely9



Stereo	as	energy	minimization

y	=	141

x

d

Simple	pixel	/	window	matching:	choose	the	minimum	of	each	
column	in	the	DSI	independently:

Source: N. Snavely10



Greedy	selection	of	best	match

Source: N. Snavely11



Stereo as energy minimization
• Better	objective	function

{ {match	cost smoothness	cost

Want	each	pixel	to	find	a	good	
match	in	the	other	image

Adjacent	pixels	should	(usually)	
move	about	the	same	amount

Source: N. Snavely12



Stereo as energy minimization

match	cost:

smoothness	cost:

4-connected	
neighborhood

8-connected	
neighborhood

:	set	of	neighboring	pixels

Source: N. Snavely13



Smoothness cost

“Potts	model”

L1	distance

How	do	we	choose	V?

Source: N. Snavely14



Probabilistic interpretation

exp(E(d)) = exp(Ed(d) + �Es(d))Exponentiate:

exp(E(d))

Z
=

1

Z
exp(Ed(d) + �Es(d))

Z =

X

d0

expE(d0)where

Normalize: 
(make it sum to 1)

Rewrite: P (d | I)

Example adapted from Freeman, Torralba, Isola
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Probabilistic interpretation

P (d | I)

“Local evidence” “Pairwise compatibility”
How good are the matches? Is the depth smooth?

Example adapted from Freeman, Torralba, Isola
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Probabilistic interpretation

P (d | I)

Local evidence: Pairwise compatibility:

Example adapted from Freeman, Torralba, Isola
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Probabilistic graphical models

P (d | I)

Graph structure: 
• Open circles for latent variables xi 

- di in our problem 
• Filled circle for observations yi 

- Pixels in our problem 
• Edges between interacting variables 

- In general, graph cliques for 3+ variable 
interactions 

Example adapted from Freeman, Torralba, Isola
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Probabilistic graphical models

P (d | I)

Why formulate it this way? 
• Exploit sparse graph structure for fast inference, 

usually using dynamic programming 
• Can use probabilistic inference methods 
• Provides framework for learning parameters
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Directed graphical model 
Also know as Bayesian network 
(Not covered in this course)

Probabilistic graphical models

Undirected graphical model.  
Also known as Markov Random Field (MRF). 
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Marginalization

What’s the marginal distribution for x1? 
i.e. what’s the probability of x1 being in a particular state?

• But this is expensive: O(|L|^N)  
• Exploit graph structure! 21



Marginalization
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Message passing

Message that node x3 sends to node x2

Message that x2 sends to x1

Can think of “local evidence”  
message passing
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• Message mij is the sum over all states of all nodes in the subtree 
leaving node i at node j 

• It summarizes what this node “believes”.  
• E.g. if you have label x2, what’s the probability of my subgraph? 

• Shared computation! E.g. could reuse m32 to help estimate p(x2 | y). 

Message passing
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Belief propagation
• Estimate all marginals p(xi | y) at once! 

[Pearl 1982] 
• Given a tree-structured graph, send 

messages in topological order  

Sending message from j to i:

1. Multiply all incoming messages 

(except for the one from i) 
2. Multiply the pairwise compatibility 
3. Marginalize over xj
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General graphs
• Vision problems often are often on grid graphs 
• Pretend the graph is tree-structured and do belief 

propagation iteratively! 
• Can also have consistency with N > 2 variables 

- But complexity is exponential in N!

Loopy belief propagation:

1. Initialize all messages to 1 
2. Walk through the edges in an 

arbitrary order (e.g. random) 
3. Apply the messages updates
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Finding best labels

Marginal: “Max marginal” instead:

P (x1|~y) = max

x2,x3
b(x1 | ~y) =

27

argmax

max

x1,x2,x3

Often want to find the labels that jointly maximize probability:

max

xj

This is called maximum a posteriori estimation (MAP estimation).



Application to stereo

[Felzenzwalb & Huttenlocher, “Efficient Belief Propagation for Early Vision”, 2006]
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Deep learning + MRF refinement

[Zbontar & LeCun, 2015]

Left

Right

Positive NegativeQuery patch

CNN-based matching + MRF refinement
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Learning to estimate depth without ground truth

[Mildenhall*, Srinivasan*, Tanick*, et al., Neural radiance fields, 2020]

3D scene Viewpoints

Learn “volume”: 
color + occupancy
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Learning to estimate depth without ground truth

A good volume should reconstruct the input views

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]31



Learning to estimate depth without ground truth

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]32



Learning to estimate depth without ground truth

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]

Inserting virtual objects View synthesis
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Next class: motion
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