Lecture 18: Depth estimation

Announcements

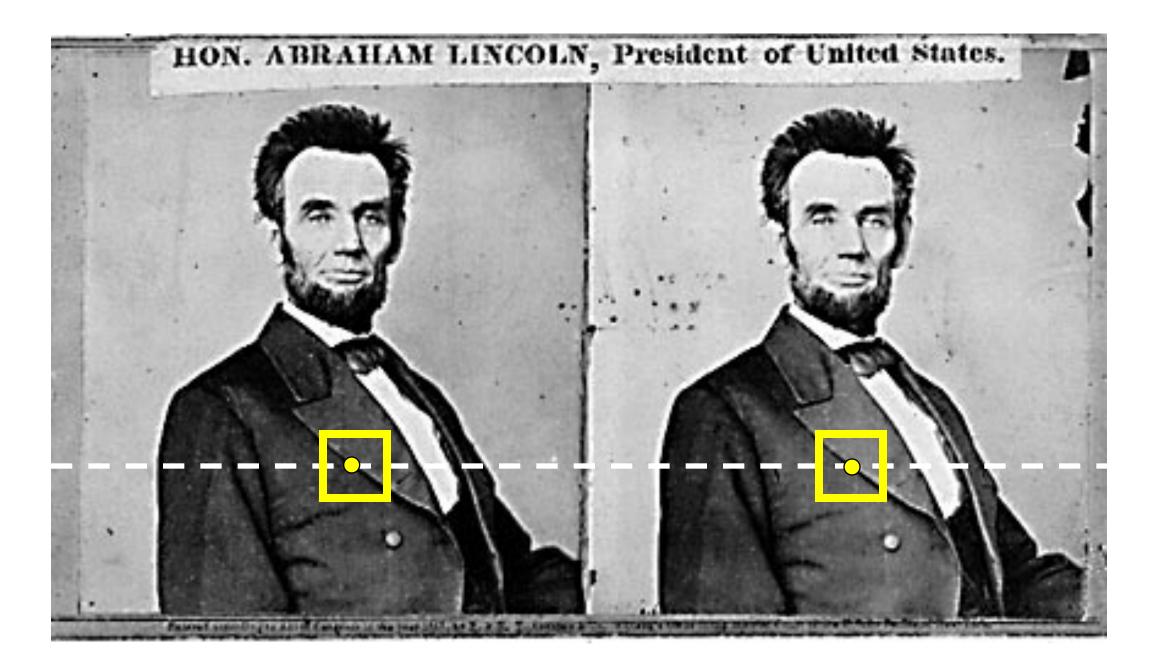
- PS9 out tonight: panorama stitching
- - We'll send a sign-up sheet next week

New grading policies from UMich (details TBA) Final presentation will take place over video chat.

Today

- Stereo matching
- Probabilistic graphical models
- Belief propagation
- Learning-based depth estimation

Basic stereo algorithm



For each epipolar line

For each pixel in the left image

- pick pixel with minimum match cost

Improvement: match *windows*

compare with every pixel on same epipolar line in right image

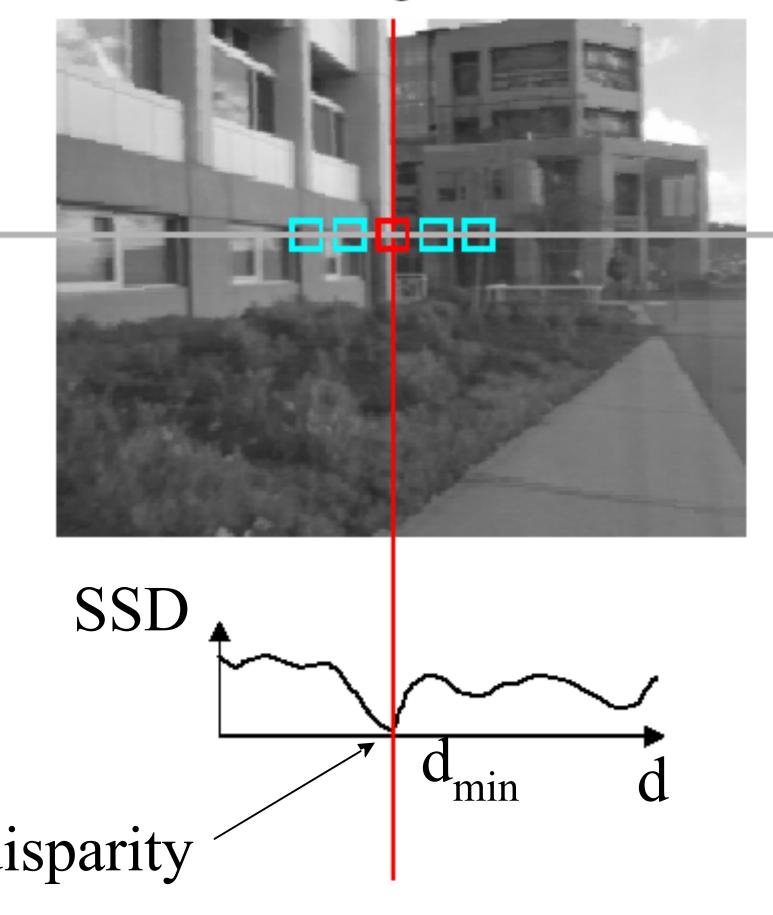
Source: N. Snavely

Stereo matching based on SSD

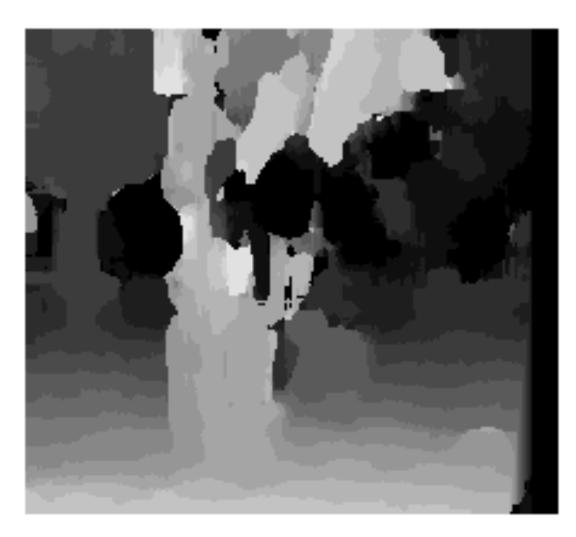
Left

Best matching disparity

Right



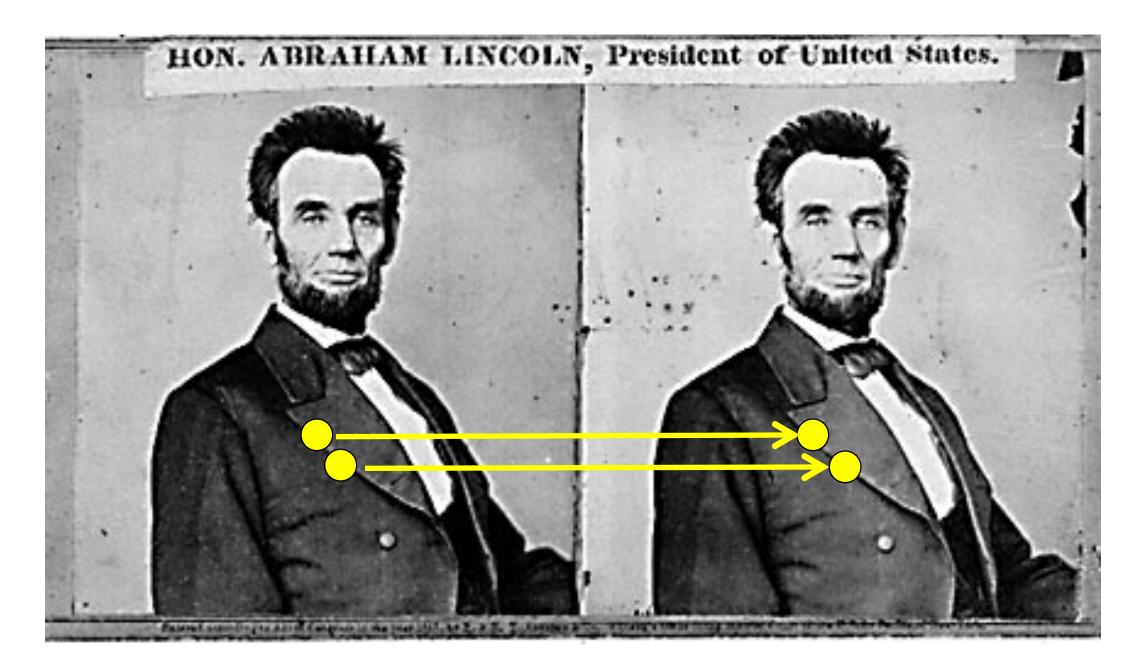
Window size



W = 3

W = 20

Source: N. Snavely



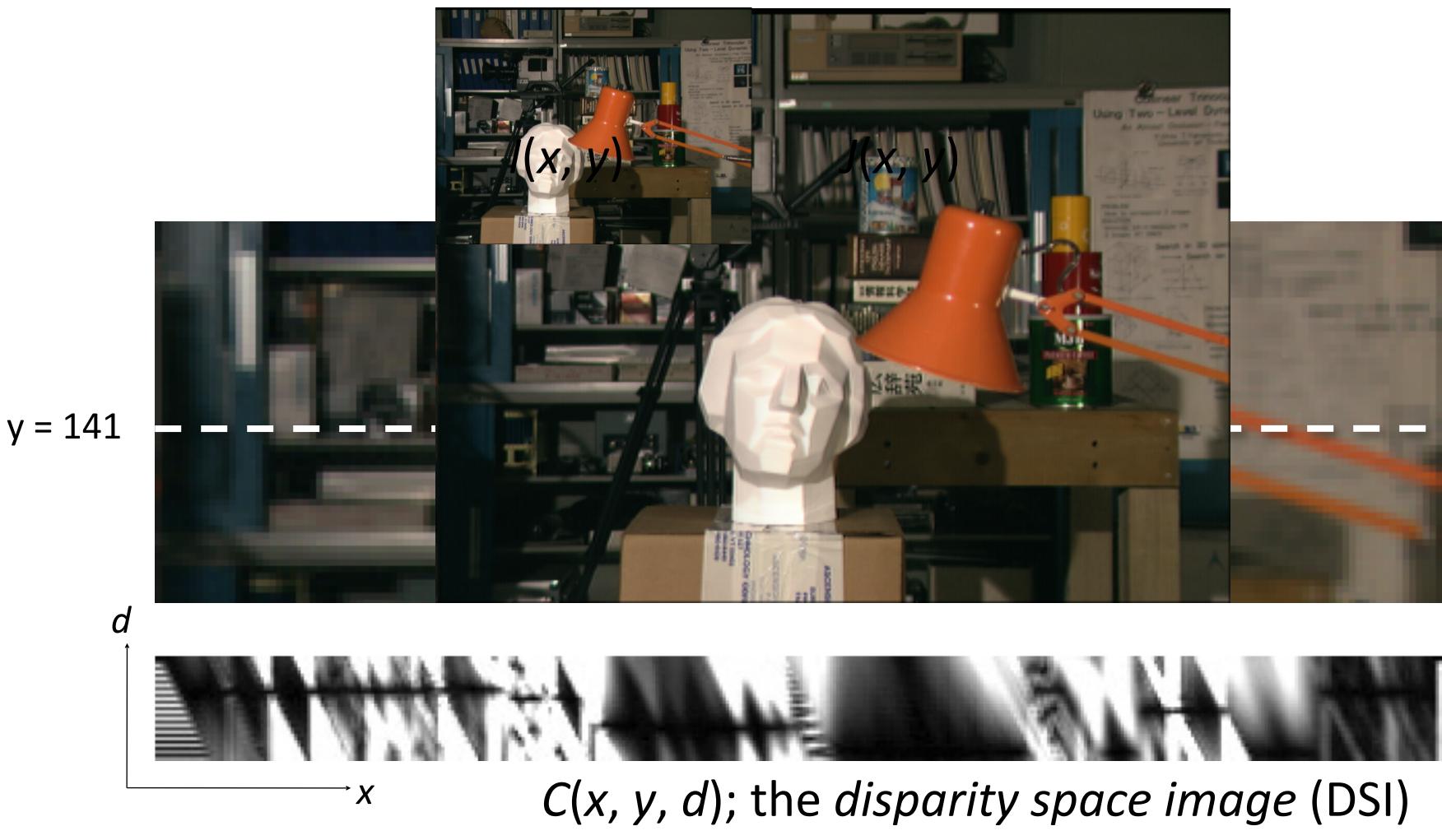
- What defines a good stereo correspondence?
 - 1. Match quality
 - Want each pixel to find a good match in the other image
 - 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the ${\color{black}\bullet}$ same amount

- Find disparity map d that minimizes an energy function E(d)
- Simple pixel / window matching

C(x, y, d(x, y)) =

 $E(d) = \sum C(x, y, d(x, y))$

- $(x,y) \in I$
 - Squared distance between windows I(x, y) and J(x + d(x, y), y)

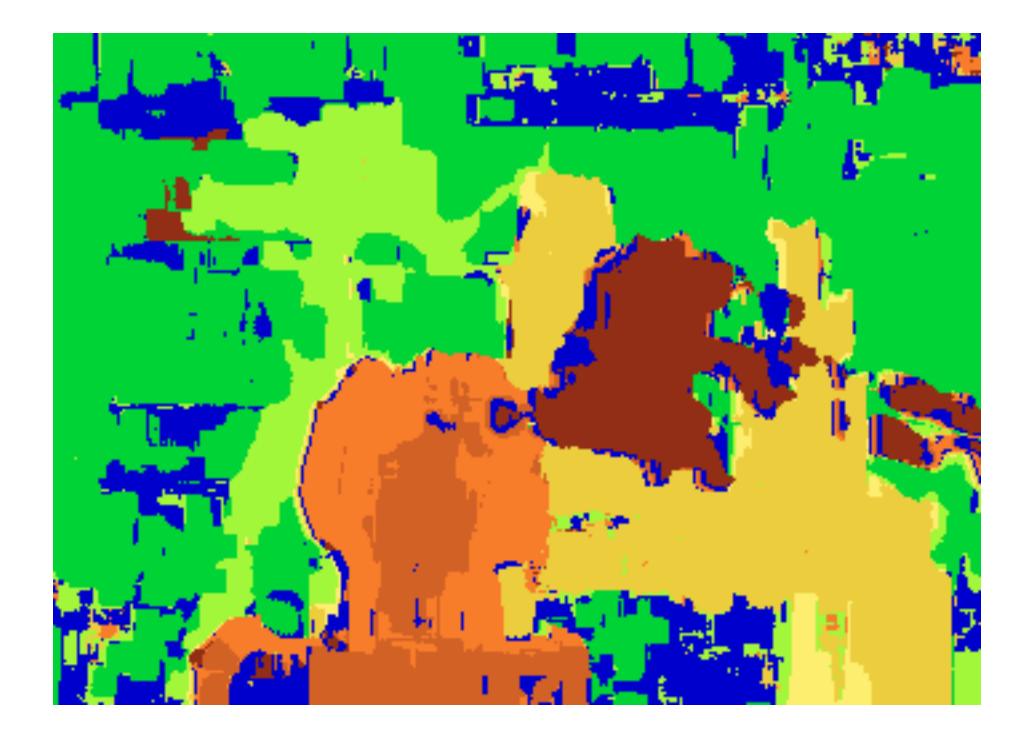


Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$d(x, y) = \arg$$

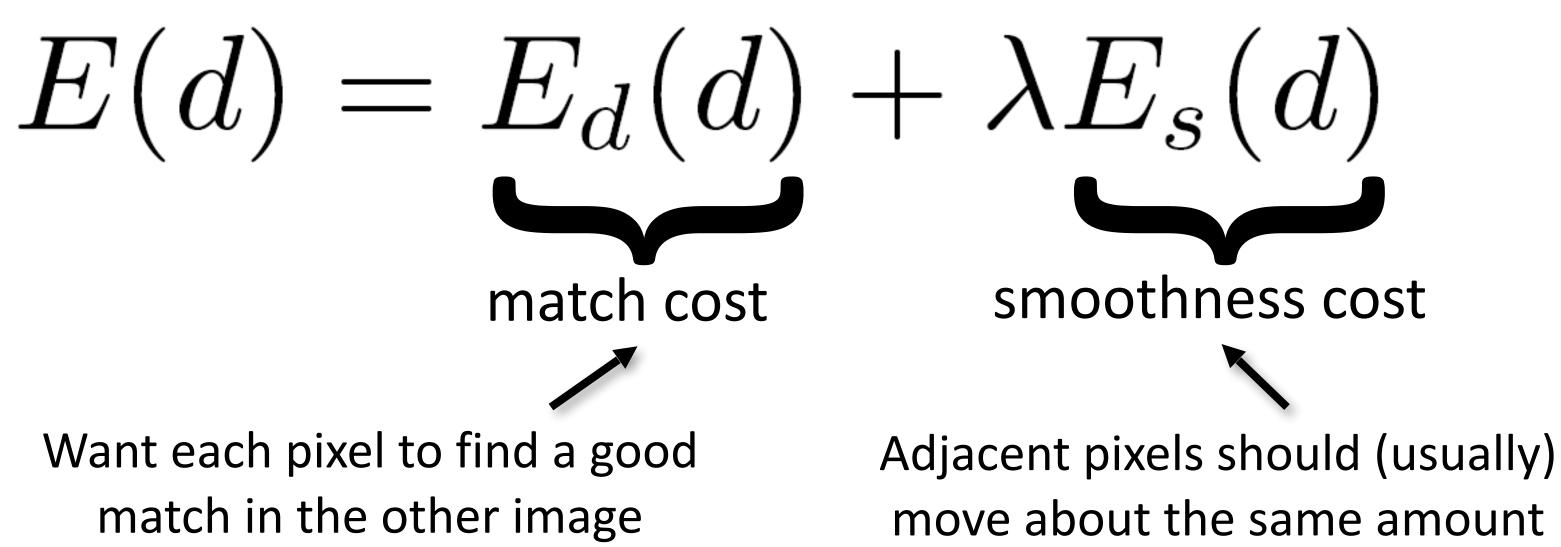
g min C(x, y, d')d'

Greedy selection of best match



Better objective function

Want each pixel to find a good match in the other image



Stereo as energy minimization $E(d) = E_d(d) + \lambda E_s(d)$ $E_d(d) = \sum C(x, y, d(x, y))$ $(x,y) \in I$ smoothness cost: $E_s(d) = \sum V(d_p, d_q)$ $(p,q) \in \mathcal{E}$ 4-connected 8-connected neighborhood neighborhood

match cost:

Smoothness cost $E_s(d) = \sum V(d_p, d_q)$ $(p,q) \in \mathcal{E}$ How do we choose *V*? $V(d_p, d_q) = |d_p - d_q|$ L₁ distance $V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$

"Potts model"

Probabilistic interpretation

 $E(d) = E_d(d) + \lambda E_s(d)$ $\exp(E(d)) = \exp(E_d(d) + \lambda E_s(d))$ $\frac{\exp(E(d))}{Z} = \frac{1}{Z} \exp(E_d(d) + \lambda E_s(d))$

Exponentiate:

Normalize: (make it sum to 1)

Rewrite:

where $Z = \sum \exp E(d')$

 $P(d \mid I) = k \qquad \phi_i(d_i) \qquad \psi_{ij}(d_i, d_j)$ (i,j)15

Example adapted from Freeman, Torralba, Isola

Probabilistic interpretation

"Local evidence" "Pairwise compatibility" How good are the matches? Is the depth smooth? $P(d \mid I) = k \prod \phi_i(d_i) \prod \psi_{ij}(d_i, d_j)$ (i, j)

Example adapted from Freeman, Torralba, Isola

Probabilistic interpretation

_ocal evidence:

 $\phi_i(d_i) = \exp \frac{(I_i - I_{i+d_i})^2}{2\sigma^2} \quad \psi$

 $P(d \mid I) = k \mid \phi_i$

Pairwise compatibility:

$$\nu_{ij}(d_i, d_j) = \begin{cases} \alpha, & \text{if } d_i = d_j \\ \beta, & \text{otherwise} \end{cases}$$

$$_{i}(d_{i})\prod_{(i,j)}\psi_{ij}(d_{i},d_{j})$$

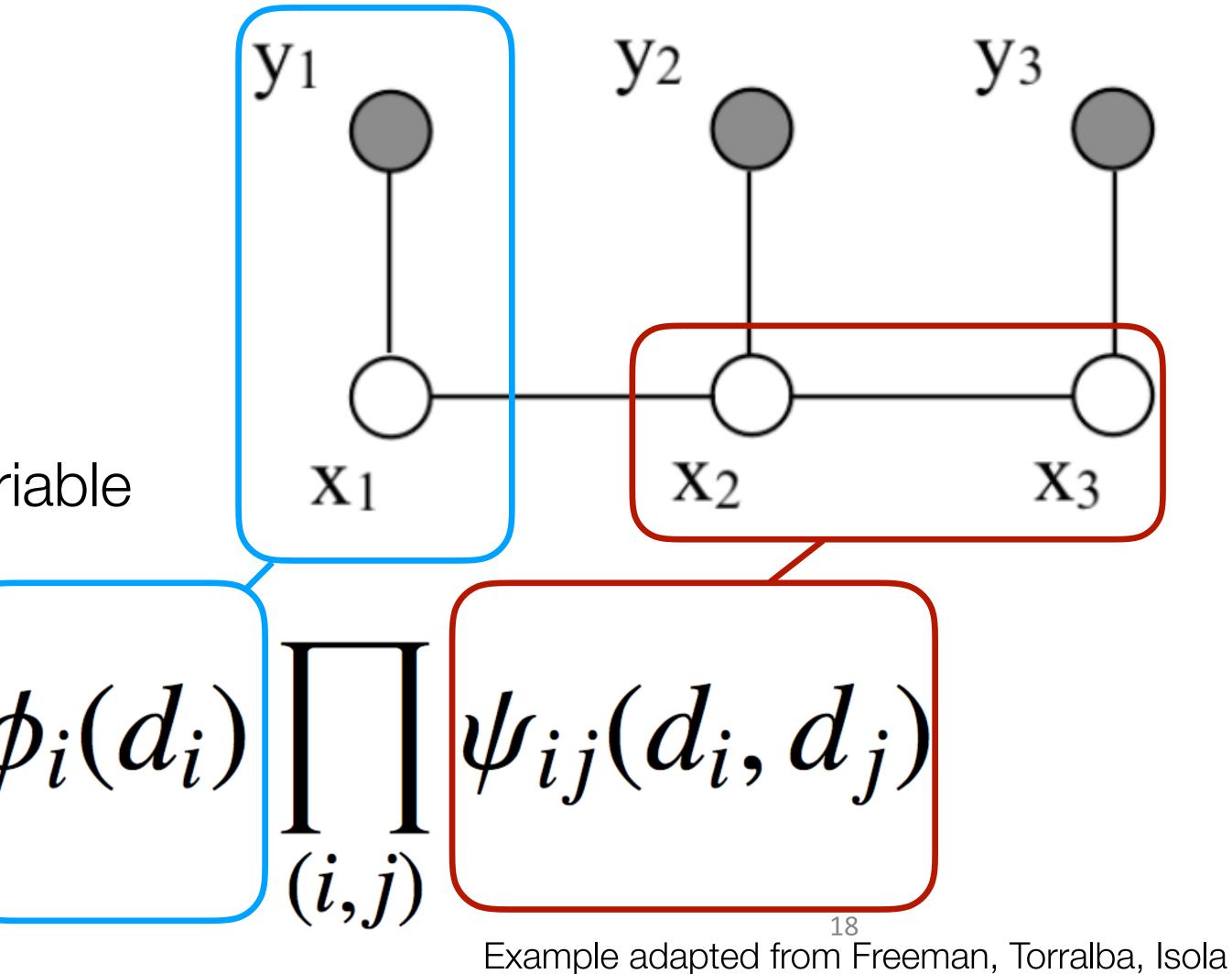
Example adapted from Freeman, Torralba, Isola

Probabilistic graphical models

Graph structure:

- Open circles for latent variables x_i - d_i in our problem
- Filled circle for observations y_i
 - Pixels in our problem
- Edges between interacting variables
 - In general, graph cliques for 3+ variable interactions

$$P(d \mid I) = k \prod_{i} q$$

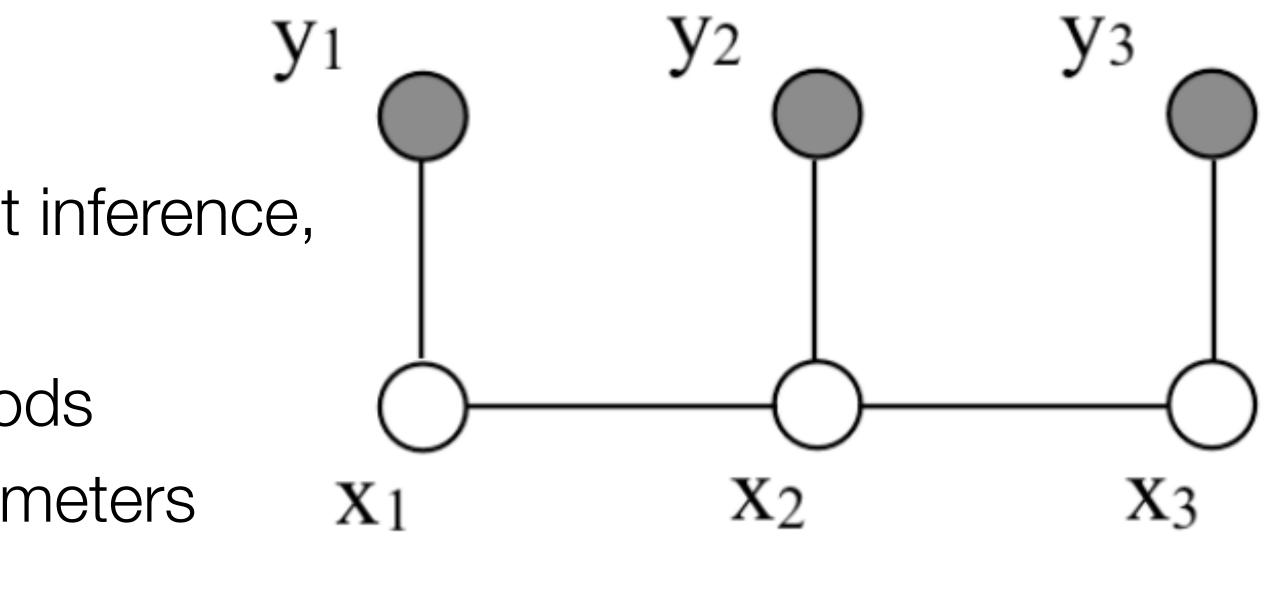


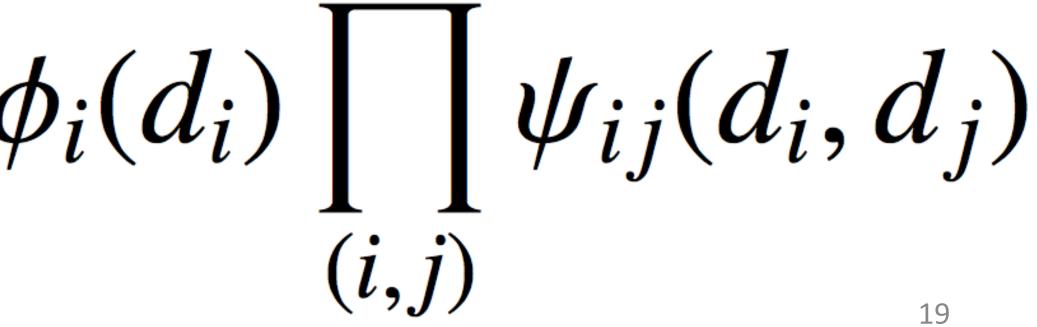
Probabilistic graphical models

Why formulate it this way?

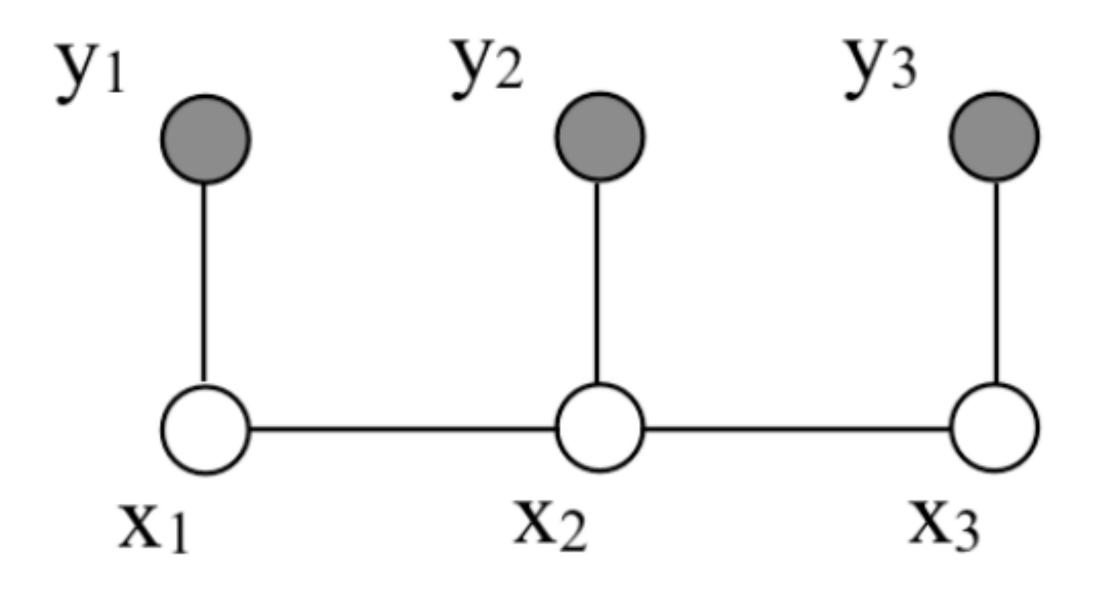
- Exploit sparse graph structure for fast inference, usually using dynamic programming
- Can use probabilistic inference methods
- Provides framework for learning parameters

$$P(d \mid I) = k \prod_{i} q$$

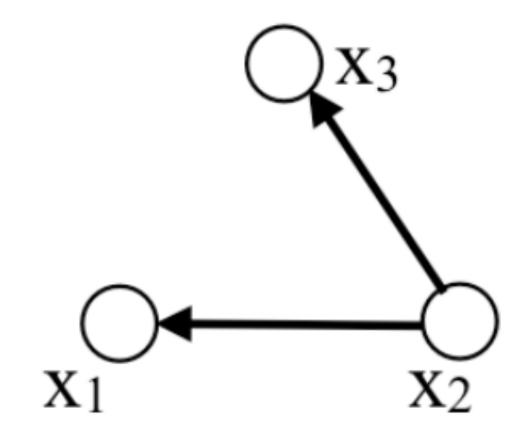




Probabilistic graphical models



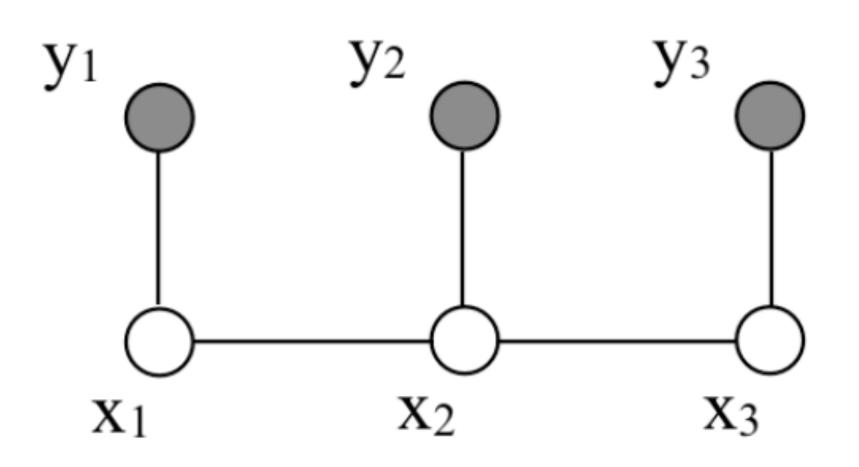
Undirected graphical model. Also known as Markov Random Field (MRF).



 $P(x_1, x_2, x_3) = P(x_2)P(x_1|x_2)P(x_3|x_2)$

Directed graphical model Also know as Bayesian network (Not covered in this course)

Marginalization



What's the marginal distribution for x_1 ? i.e. what's the probability of x_1 being in a particular state? $P(x_1|\vec{y}) = \sum P(x_1, x_2, x_3|\vec{y})$ x_2 x_3

• But this is expensive: $O(|L|^N)$ • Exploit graph structure!

Marginalization

$$P(x_{1}|\vec{y}) = \frac{1}{P(\vec{y})} \sum_{x_{2}} \sum_{x_{3}} \phi_{12}(x_{1}, x_{1})$$

$$= \frac{1}{P(\vec{y})} \psi_{1}(y_{1}, x_{1}) \sum_{x_{2}} \phi_{12}$$

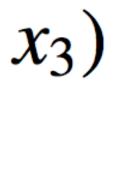
$$= \frac{1}{P(\vec{y})} \psi_{1}(y_{1}, x_{1}) \sum_{x_{2}} \phi_{12}$$

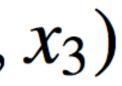
$$= \frac{1}{P(\vec{y})} \psi_{1}(y_{1}, x_{1}) m_{21}(x_{1})$$

$(x_2)\phi_{23}(x_2, x_3)\psi_1(y_1, x_1)\psi_2(y_2, x_2)\psi_3(y_3, x_3)$

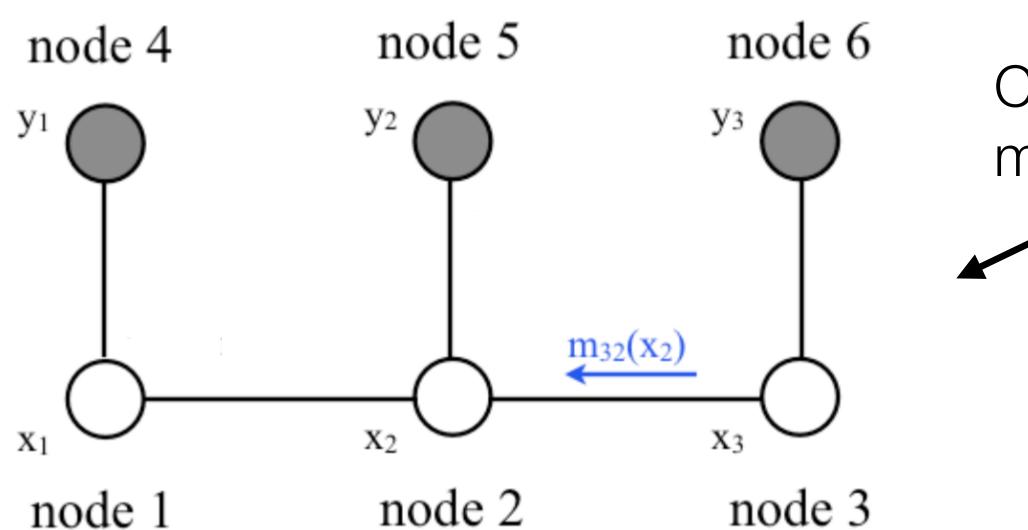
 $_{2}(x_{1}, x_{2})\psi_{2}(y_{2}, x_{2})\sum \phi_{23}(x_{2}, x_{3})\psi_{3}(y_{3}, x_{3})$ x_3

 $_{2}(x_{1}, x_{2})\psi_{2}(y_{2}, x_{2})m_{32}(x_{2})$





Message passing



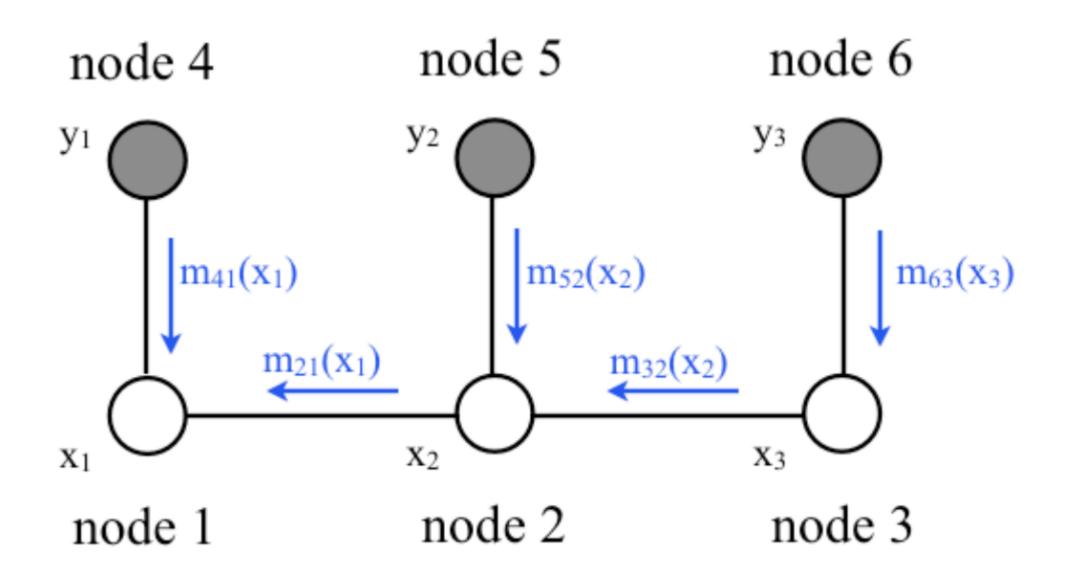
 $= \frac{1}{P(\vec{v})}\psi_1(y_1, x_1) \sum \phi_{12}(x_1, x_2)\psi_2(y_2, x_2)m_{32}(x_2)$ x_2 $= \frac{1}{P(\vec{y})} \psi_1(y_1, x_1) m_{21}(x_1)$

Can think of "local evidence" message passing

Message that node x₃ sends to node x₂

Message that x₂ sends to x₁

Message passing



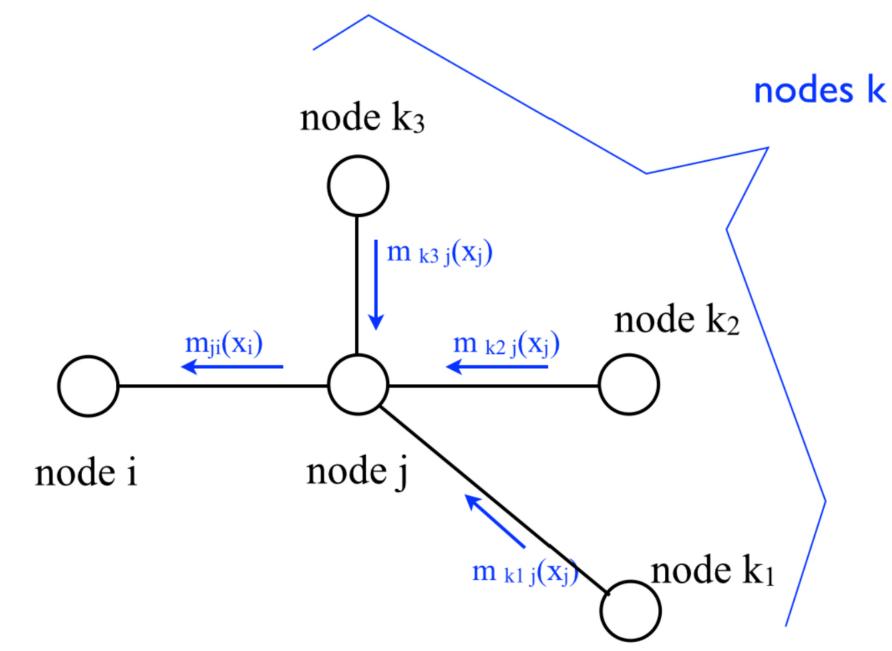
- Message **m**_{ij} is the sum over all states of all nodes in the subtree leaving node i at node j
- It summarizes what this node "believes". • E.g. if you have label x_2 , what's the probability of my subgraph?
- Shared computation! E.g. could reuse m_{32} to help estimate $p(x_2 | y)$.

Belief propagation

- Estimate all marginals $p(x_i | y)$ at once! [Pearl 1982]
- Given a tree-structured graph, send messages in topological order

Sending message from j to i:

- 1. Multiply all incoming messages (except for the one from i)
- 2. Multiply the pairwise compatibility
- 3. Marginalize over x_i

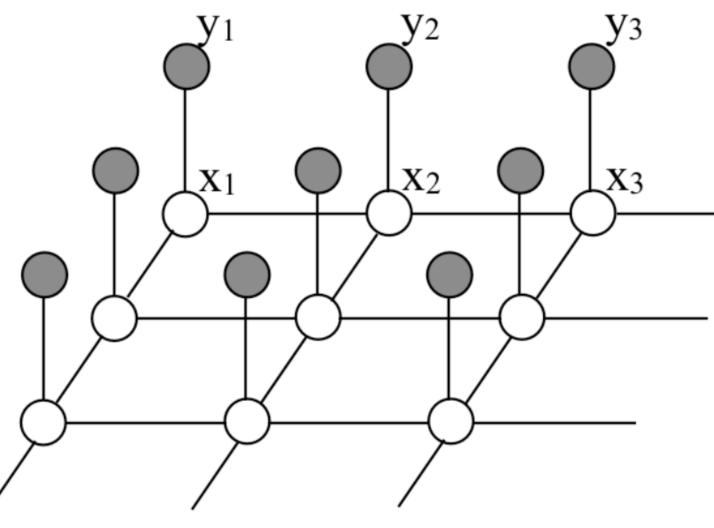


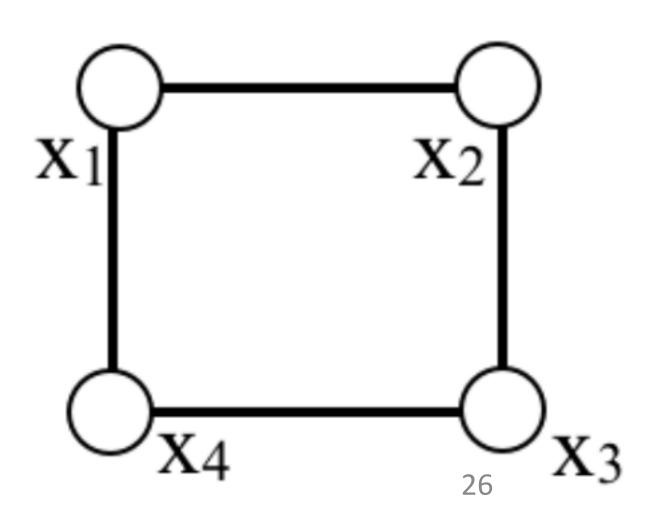
$$m_{ji}(x_i) = \sum_{x_j} \psi_{ij}(x_i, x_j) \prod_{k \in \eta(j) \setminus i} m_{kj}(x_i, x_j) \prod_{k \in \eta(j) \setminus i} m_{kj}(x_j, x_j)$$

General graphs

- Vision problems often are often on grid graphs
- Pretend the graph is tree-structured and do belief propagation iteratively!
- Can also have consistency with N > 2 variables
 - But complexity is exponential in N!
- Loopy belief propagation:
 - 1. Initialize all messages to 1
 - 2. Walk through the edges in an arbitrary order (e.g. random)
 - 3. Apply the messages updates

- grid graphs I and do belief
- > 2 variables V!





Often want to find the labels that jointly maximize probability:

$\begin{array}{c} \operatorname{argmax} \\ x_1, x_2, x_3 \end{array} P($

 $k \in \eta(j) \setminus i$

This is called *maximum a posteriori* estimation (MAP estimation).

Marginal: $P(x_1|\vec{y}) = \sum P(x_1, x_2, x_3|\vec{y})$ $x_2 \quad x_3$ $m_{ji}(x_i) = \sum \psi_{ij}(x_i, x_j) \qquad \qquad m_{kj}(x_j)$

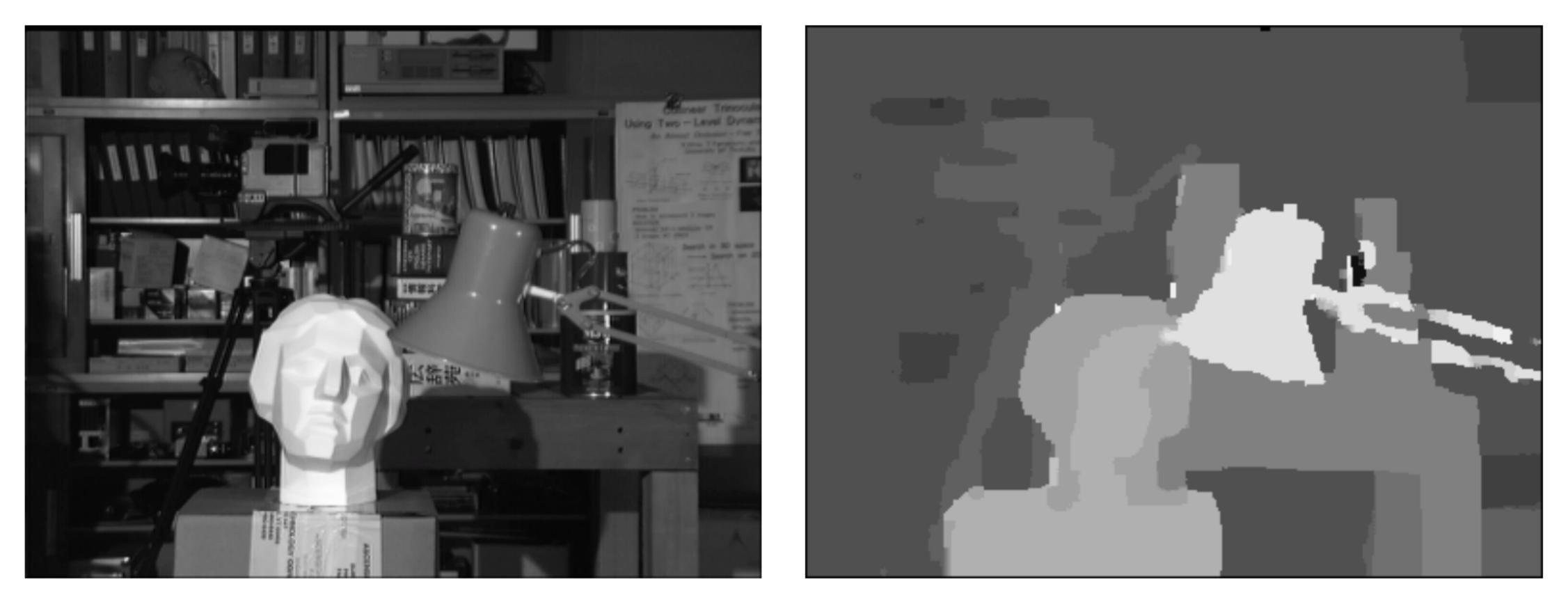
 x_j

Finding best labels

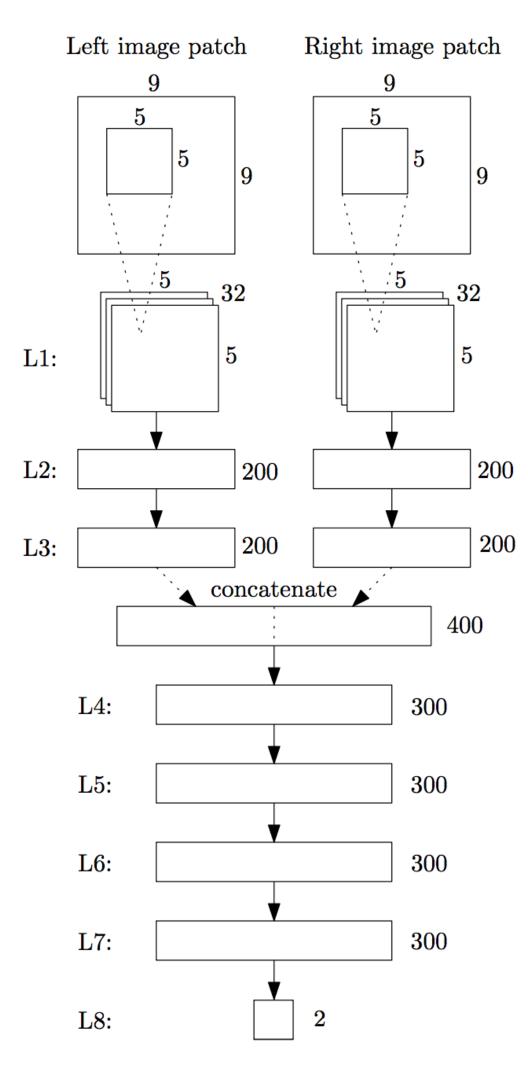
$$(x_1, x_2, x_3 | \vec{y})$$

"Max marginal" instead: $b(x_1 \mid \vec{y}) = \max_{x_2, x_3} P(x_1, x_2, x_3 \mid \vec{y})$ $m_{ji}(x_i) = \max_{x_j} \psi_{ij}(x_i, x_j) \prod_{i=1}^{n} m_{kj}(x_j)$ $k \in \eta(j) \setminus i$

Application to stereo



[Felzenzwalb & Huttenlocher, "Efficient Belief Propagation for Early Vision", 2006]

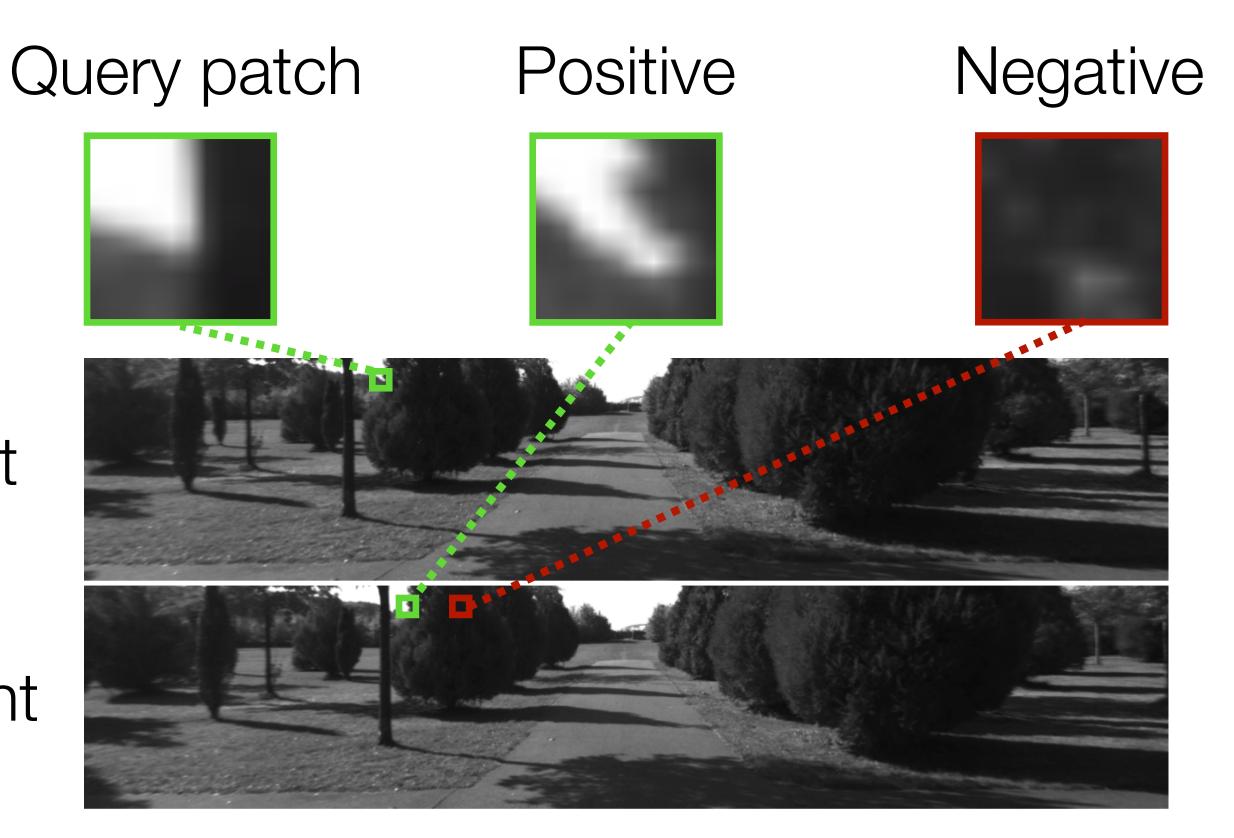


Left

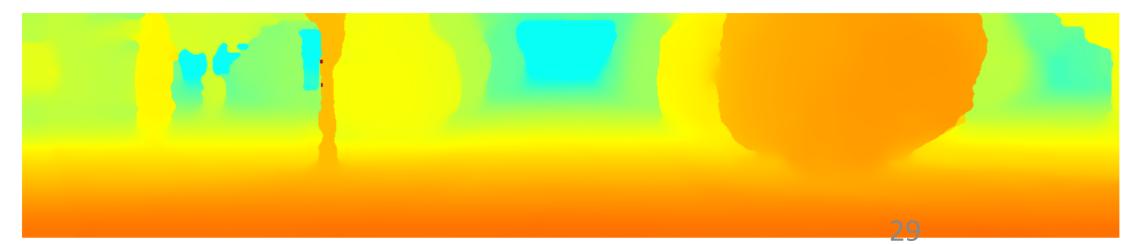
Right

[Zbontar & LeCun, 2015]

Deep learning + MRF refinement

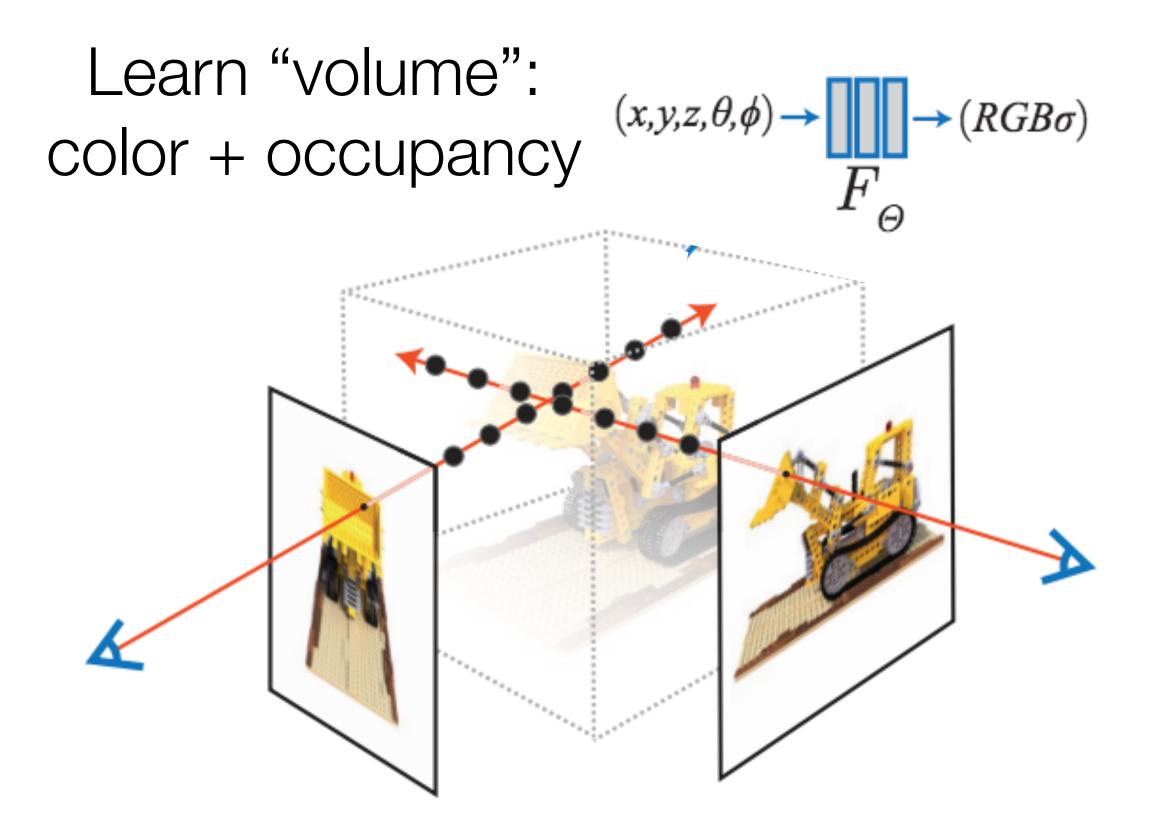


CNN-based matching + MRF refinement

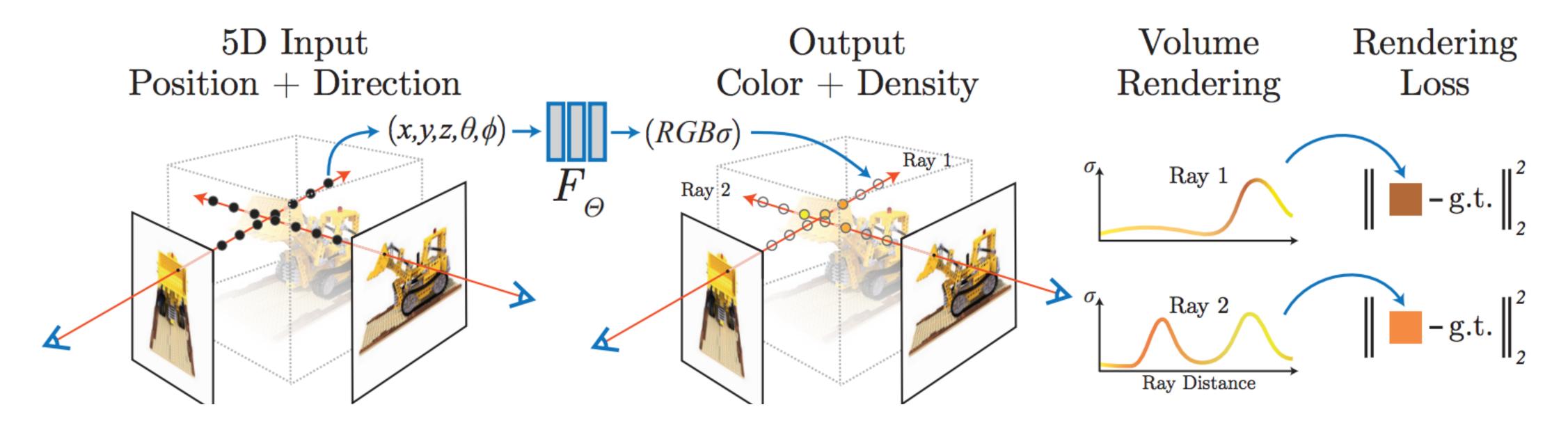


3D scene

[Mildenhall*, Srinivasan*, Tanick*, et al., Neural radiance fields, 2020]



Viewpoints



A good volume should reconstruct the input views

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]

[Mildenhall*, Srinivasan*,³²Tanick*, et al. 2020]

Inserting virtual objects

View synthesis

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]

Next class: motion