Lecture 18: Multl-view reconstruction



Announcements

f you have a question: just ask it (or send message
saying that you have a question)

Please send us feedback!

PS8 out: representation learning
Final presentation will take place over video chat.
- We'll send a sign-up sheet next week



loday

® NAINg correspondences
o RANSAC
e Structure from motion




Motivating example: panoramas
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Source: N. Snavely



Warping with a homography

Need correspondences!




Local features: main components

Detection: Identify the interest points

escription: Extract vector feature
escriptor surrounding each interest point.

atching: Determine correspondence ] ) )
. . . X, =X ",....X
etween descriptors in two views 2 | oeeesty

Source: K. Grauman



Which features should we match?

* How does the window change when you shift it”?

* Shifting the window in any direction causes a big
change

N\
N
“flat” region: “edge”: “corner”:
no change in all no change along the significant change in
directions edge direction all directions

Source: S. Seitz, D. Frolova, D. Simakov, N. Snavely



Finding kKeypoints

O = O
|
=
Q= O

Compute difference-of-Gaussians Find local optima in space/
filter (approx. to Laplacian) scale using pyramid



Feature descriptors

We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point,
find similar descriptors between the two images

Source: N. Snavely



Simple idea: normalized image patch

Take 40x40 window around feature
-iInd dominant orientation
e Rotate to horizontal

e Sample 8x8 square window centered at
feature

® [ntensity normalize the window by
subtracting the mean, dividing by the
standard deviation in the window

10
Source: N. Snavely, M. Brown



Scale Invariant Feature Transform

Basic idea: hand-crafted CNN
e [ake 16x16 square window around detected feature
e (Compute edge orientation for each pixel
e (reate histogram of edge orientations

0 27

angle histogram

-

Image gradients
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Source: N. Snavely, D. Lowe



Scale Invariant Feature Transform

Create the descriptor:
e Rotation invariance: rotate by “dominant” orientation
e Spatial invariance: spatial pool to 2x2
e (Compute an orientation histogram for each cell
e 10 cells * 8 orientations = 128 dimensional descriptor

Image gradients Keypoint descriptor
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Source: N. Snavely, D. Lowe



SIFT Invariances
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Source: N. Snavely



Which features match?

Source: N. Snavely



Finding matches

How do we know if two features match?
— Simple approach: are they the nearest neighbor in L, distance, [|f; - f, ||
— (Can give good scores to ambiguous (incorrect) matches

Source: N. Snavely



Finding matches
Add extra tests:

« Ratiodistance =||fy - || /|| f1 - 5’ ||
e f,is best SSD match to fy in I,
e f,' is 2M pest SSD match to f; in |5
* Forward-backward consistency: f; should also be nearest neighbor of 5

Source: N. Snavely



Feature matching example

FROM THE AUTNOER OF UNDFRETANTING &AM

T . i
gr nEae>
SCOii nn-o_sa i

51 feature matches after ratio test
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Source: N. Snavely



Feature matching example

THE COMPLETE
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58 feature matches after ratio test
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Source: N. Snavely



From matches to homography

X1 a b c X1
y; |= |d e Y1
W1 g h | 1
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Source: Torralba, Isola, Freeman



From matches to homograpny

Point In 1st Image
\ Matched point in 2nd

—
minimize J (H') = Z fr(pi) — pill7

7
where fu(p:;) = Hp;/(Hs p;) applies homography

® Plug Into nonlinear least squares solver and solve!
® Can also use robust loss (e.g. L1)
® Can be slow
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Direct linear transform

X1,

Y1
W1

Going to heterogeneous coordinates:

J

X1 =

y1=
Re-arranging the terms:

gXx1X'1 + hysX'1+ixXq = axy + bys+c

gXx1y'1 + hyy'1+ixs = dxq + ey +f

ax4 + by +c

X1

Y1
1

gXxq + hy +i

dX1 + ey; +f

gXq1 + hy +i
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Source: Torralba, Freeman, Isola



Direct linear transform

gx4X'1 + hy x'1+ixs = ax; + by +c

gX1y'1 + hy sy 1+ixy = dxq + ey +f

Re-arranging the terms:

gx¢X'q + hyX'1+ix'y-axq - by4-c =0
gxqy'1 + hyy'q+iy'1-dxq -ey-f=0

In matrix form. Can solve using Singular Value Decomposition (SVD).

=X -Y1 -10 0 O X1X,1

0 0 O -xq4 -yq -1 Xqy';

—

Y1X 1

Y1Y 1

—

X,1

Y1

0| Q@ ™0 QO T

R

0

O -

—

Fast to solve (but not using “right” loss function). Uses an algebraic trick.

Often used in practice for initial solutions!
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Source: Torralba, Freeman, Isola



Outliers

outliers
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inliers
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Source: N. Snavely



Robustness

o Let’s consider the problem of linear regression

Problem: Fit a line to these data points

« How can we fix this?

2

Least squares fit
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Source: N. Snavely



Counting inliers

Source: N. Snavely



Counting inliers

Inliers: 3

Source: N. Snavely



Counting inliers

Inliers: 20

Source: N. Snavely
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Applications to Image
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Martin A. Fischler and Robert C. Bolles
SRI International

A new paradigm, Random Sample Consensus
(ansac), for fitting a model to experimental dats is
mtroduced. mANSAC Is capable of Interpreting/
smoothing data contalning a significant percentage of
gross errors, and is thus sdeally sulted for applications
in automated image analysis where interpretation is
hased oo the data provided by error-prone feature
detectors, A major portion of this paper describes the
application of wansac to the Location Determination
Problem (LDPE Given an image depicting a set of
landmarks with known locations, determine that point
in space from which the Image was obtaised. In
response 10 8 KANSAC roguirement, new results are
derived on the minimum number of laadmarks secded
to obtain a sobation, and algorithms are presented for
computmg these minimum-landmark solutions in ¢losed
form, These reselts provide the basis for an automatic
system that can solve the LDF wader diMicsdt viewing
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and amalysix conditions, Implementation details and
computational exumples are also presented

Key Waoreds and Phrases: model fitting, scene
analysis, camers calibeation, image matching, locaton
determination, autessatod cartography.

CR Cstegoriesc 360, 361,371, 50,81, 8.2

L. Istroduction

We introduce a new parsdigm, Random Sample
Consensus (RANSAC), for ftting a model 10 experimental
data; and illustrate ss use in scene analysss and auto.
mated cartography. The application discussed, the loca
twon determanation problem (LDP), is treated at a level
beyond that of & mere example of the use of the xaNsAc
paradigm; mew basic fimdings concerning the condstions
under which the LDP can be solved are peesented and
a comprehensive approach to the solution of this problem
that we anticipate will have nearderm peactical appls-
catsons is described.

To a large extent, scene analysis (and, ia fact, scsence
in gemeral) s concerned with the wterpretation of seased
data in terms of a set of predefined models. Comceptually,
interpretation wnvolves two distnct activitses: First, there
15 the problem of finding the best match betwess 1he
data and one of the available models (the clesafication
problem); Second, there is the peoblem of compating the
best values for the free parameters of the selecied model
(the parameter estissation problem) Is practxce, these
1wo problems are not independent—& solution 10 the
parameter estimation problem is often required to solve
the chassificatson problem

Classical techniques for parameter estimation, such
as Jewst squares, optimize (according to a specified ob
jective function) the fie of a functional description
(model) o all of the presented data. These technigues
have no internal mechanssms for detecting and repecting
pross errore. They are averaging techaques that rely on
the assumption (the smoothing sssemption) that the
maximem expected deviatiom of any datum from the
assumed model 1 a direct function of the size of the data
set. and thus regardless of the size of the data set, there
will always be encugh good values to smooth owt any
gross deviations

In many practical parameter estimation problems the
smoothing assumption does not hold: 1.¢, the data con-
tain uncompensated gross errors. To deal with thas situ-
ation, several heunstics have been peoposed The tech-
nique usually employed is some variation of first using
all the data to derive the model parameters, then locating
the datum that is farthest from agreement with 1he
instantizled moedel, assaming that it ix & gross error,
dedeting il, and Merating this process wnlil cither the
maximum deviation is less then some preset threshold oe
until there is 0 loager sufficent data o procead

It can casily be shown (hat a sisgle gross enoe
("potsoned pount™), mixed in with 2 set ol good data, can

Communicasons Jars 19%)
of Youme 24
the ACM Nurher 6
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RANSAC: random sample consensus

RANSAC loop (for N iterations):
e Select four feature pairs (at random)
e Compute homography H
e Count inliers where ||p, - Hp,|| < ¢
Afterwards:
e Choose largest set of inliers

e Recompute H using only those inliers (often
using high-quality nonlinear least squares)

29

Source: Torralba, Freeman, Isola



Simple example: fit a line

» Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

00O O
oL O O

30

Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
* Fitline
e Count inliers

3 mlier O

O O

~O O
O
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
* Fitline
e Count inliers

4 1nlier O
—(
o O O
O
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
* Fitline
e Count inliers

O mlier
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
* Fitline
e Count inliers

8 mlier
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Source: Torralba, Freeman, Isola



Simple example: fit a line

» Use biggest set of inliers
* Do least-square fit
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Source: Torralba, Freeman, Isola



Warping with a homography

1. Compute features usin

2. Match tfeatures|
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Source: N. Snavely




Estimating 3D structure

* (Glven many images, how can we

a) figure out where they were all taken from?
o) build a 3D model of the scene”

This Is the structure from motion problem

37
Source: N. Snavely



Structure from motion
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Reconstruction (side) (top)
« Input: Images with points in correspondence pii = Uj;V;)
* Qutput
 structure: 3D location x; for each point p,
» motion: camera parameters R;, t; possibly K,
* Objective function: minimize reprojection error
38

Source: N. Snavely



Camera calibration & triangulation

* Suppose we know 3D points
— And have matches between these points and an image
— Computing camera parameters similar to homography estimation

* SUPPOSse we have know camera parameters, each of
which observes a point

— How can we compute the 3D location of that point”?

* Seems like a chicken-and-egg problem, but in SfM we can
solve both at once

Source: N. Snavely



Feature detection

ing SIFT [Lowe, 1JCV 2004]

Detect features us

40

Source: N. Snavely



Feature detection

Detect features using SIFT [Lowe, 1JCV 2004]
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Source: N. Snavely



Feature matching

Match features between each pair of images
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Source: N. Snavely



Feature matching

Refine matching using RANSAC to estimate fundamental matrix
between each pair
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Source: N. Snavely



Correspondence estimation

* Link up pairwise matches to form connected components of
matches across several images

Image 1 Image 2 Image 3 Image 4
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Source: N. Snavely



Image connectivity graph
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N. Snavely

Source



Structure from motion

minimize

o(R, T, X)

non-linear least squares

-

Camera 3

Camera 2 v, R3’ t3

Ryt 46

Camera l

Ryt

Source: N. Snavely



Structure from motion

* Minimize sum of squared reprojection errors:

gX,R,T) = ZZWU |P(x;, R 4 - [ﬁiﬂ”z

i=1j=1——

pred/cted observed
1, image location image location
indicator variable:
Is point j visible in image j ?

* Minimizing this function is called bundle adjustment

— Optimized using non-linear least squares,
e.g. Levenberg-Marquardt

Source: N. Snavely



Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz
University of Washington

SIGGRAPH 2006

Richard Szeliski
Microsoft Research
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Multi-view stereo

flickr-

Home The Tour Sign Up Explore

seamh Photos Groups People
Istatue of liberty

o Full text £ Tags only

0 We found 80,865 results matching statue and of and liberty.

View: Most relevant « Most recent + Most interesting Show: Details * Thumbnalis

From Marion Doss

From mbell1875

From sbcreate11

From philecle

From bcoatmgg

LL..
From sigardiner From sjgardiner From elesa.ah

We have the camera pose. Estimate depth using stereo!

Source: N. Snavely
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