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Lecture 18: Multi-view reconstruction



• If you have a question: just ask it (or send message 
saying that you have a question) 

• Please send us feedback! 

• PS8 out: representation learning 
• Final presentation will take place over video chat. 
- We’ll send a sign-up sheet next week
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Announcements



Today

• Finding correspondences 
• RANSAC 
• Structure from motion
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Motivating example: panoramas

Source: N. Snavely
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Warping with a homography
Need correspondences!
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Local features: main components

1) Detection: Identify the interest points 

2) Description: Extract vector feature 
descriptor surrounding each interest point. 

3) Matching: Determine correspondence 
between descriptors in two views
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Source: K. Grauman
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Which features should we match?

“flat”	region:  
no	change	in	all	
directions

“edge”:			
no	change	along	the	
edge	direction

“corner”: 
significant	change	in	
all	directions

• How does the window change when you shift it? 
• Shifting the window in any direction causes a big 

change

Source:	S.	Seitz,	D.	Frolova,	D.	Simakov,	N.	Snavely
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Finding keypoints

Find local optima in space/
scale using pyramid

Compute difference-of-Gaussians 
filter (approx. to Laplacian)
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Feature descriptors
We	know	how	to	detect	good	points	
Next	question:	How	to	match	them?	

Answer:	Come	up	with	a	descriptor	for	each	point,	
find	similar	descriptors	between	the	two	images

?

Source: N. Snavely
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CSE	576:	Computer	Vision

Take 40x40 window around feature 
• Find dominant orientation 
• Rotate to horizontal 
• Sample 8x8 square window centered at 

feature 
• Intensity normalize the window by 

subtracting the mean, dividing by the 
standard deviation in the window

Simple idea: normalized image patch

8 pixels40 pixels

Source: N. Snavely, M. Brown
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Basic idea: hand-crafted CNN 
• Take 16x16 square window around detected feature 
• Compute edge orientation for each pixel 
• Create histogram of edge orientations

Scale Invariant Feature Transform

Source:	N.	Snavely,	D.	Lowe

0 2π

angle histogram
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Create the descriptor: 
• Rotation invariance: rotate by “dominant” orientation 
• Spatial invariance: spatial pool to 2x2 
• Compute an orientation histogram for each cell 
• 16 cells * 8 orientations = 128 dimensional descriptor 

Scale Invariant Feature Transform

Source: N. Snavely, D. Lowe
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SIFT	invariances

Source: N. Snavely
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Which features match?

Source: N. Snavely
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Finding matches
How do we know if two features match? 

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2 ||  
– Can give good scores to ambiguous (incorrect) matches 

I1 I2

f1 f2

Source: N. Snavely
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f1 f2f2'

Finding matches
Add extra tests: 

• Ratio distance = ||f1 - f2 || / || f1 - f2’ ||  
• f2 is best SSD match to f1 in I2 
• f2’  is  2nd best SSD match to f1 in I2 

• Forward-backward consistency: f1  should also be nearest neighbor of f2

I1 I2 Source: N. Snavely
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Feature matching example

51	feature	matches	after	ratio	test

Source: N. Snavely
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Feature matching example

58	feature	matches	after	ratio	test

Source: N. Snavely
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From matches to homography
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Source: Torralba, Isola, Freeman
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From matches to homography

• Plug into nonlinear least squares solver and solve! 
• Can also use robust loss (e.g. L1) 
• Can be slow

Point in 1st image

J(H) =
X

i

||fH(pi)� p0i||2

fH(pi) = Hpi/(H
T
3 pi)

Matched point in 2nd

where applies homography

minimize
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x1’

y1’
w1

=

x1

y1

1

a b c

d e f
g h i

.

x1’=
ax1 + by1+c
gx1 + hy1+i

y1’=
dx1 + ey1+f
gx1 + hy1+i

gx1x’1 + hy1x’1+ix1 = ax1 + by1+c

gx1y’1 + hy1y’1+ix1 = dx1 + ey1+f

Going to heterogeneous coordinates:

Re-arranging the terms:

Direct linear transform

Source: Torralba, Freeman, Isola
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gx1x’1 + hy1x’1+ix1 = ax1 + by1+c

gx1y’1 + hy1y’1+ix1 = dx1 + ey1+f

Re-arranging the terms:
gx1x’1 + hy1x’1+ix’1 - ax1 - by1- c = 0
gx1y’1 + hy1y’1+iy’1 - dx1 - ey1- f = 0

-x1  -y1  -1  0    0    0    x1x’1   y1x’1    x’1 a  
b  
c 
d  
e  
f 
g  
h  
i

In matrix form. Can solve using Singular Value Decomposition (SVD).

 0    0    0  -x1  -y1  -1   x1y’1   y1y’1    y’1

0  
0=

Direct linear transform

Fast to solve (but not using “right” loss function). Uses an algebraic trick.

Often used in practice for initial solutions!

Source: Torralba, Freeman, Isola



Outliers
outliers

inliers
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Source: N. Snavely



Robustness

• Let’s consider the problem of linear regression 

• How can we fix this?

Problem: Fit a line to these data points Least squares fit
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Source: N. Snavely



Counting inliers

25 Source: N. Snavely



Counting inliers
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Inliers: 3
Source: N. Snavely



Counting inliers
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Inliers: 20
Source: N. Snavely
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• M. A. Fischler, R. C. 
Bolles. Random Sample 
Consensus: A Paradigm 
for Model Fitting with 
Applications to Image 
Analysis and Automated 
Cartography. Comm. of 
the ACM, Vol 24, pp 
381-395, 1981.



RANSAC: random sample consensus

RANSAC loop (for N iterations): 
• Select four feature pairs (at random) 
• Compute homography H 
• Count inliers where ||pi’ - H pi|| < ε 

Afterwards: 
• Choose largest set of inliers 
• Recompute H using only those inliers (often 

using high-quality nonlinear least squares)
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Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

3 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

4 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

9 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

8 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Use biggest set of inliers 
• Do least-square fit

Source: Torralba, Freeman, Isola



Warping with a homography
1. Compute features using SIFT

2. Match features

3. Compute homography using RANSAC
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Source: N. Snavely



Estimating 3D structure
• Given many images, how can we  

a) figure out where they were all taken from? 
b) build a 3D model of the scene? 

This is the structure from motion problem
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Source: N. Snavely



Structure	from	motion

• Input: images with points in correspondence      	 pi,j  = (ui,j,vi,j)


• Output

• structure: 3D location xi for each point pi

• motion: camera parameters Rj , tj possibly Kj 

• Objective function: minimize reprojection error


Reconstruction	(side) (top)
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Source: N. Snavely



Camera calibration & triangulation

• Suppose we know 3D points 
– And have matches between these points and an image 
– Computing camera parameters similar to homography estimation 

• Suppose we have know camera parameters, each of 
which observes a point 
– How can we compute the 3D location of that point? 

• Seems like a chicken-and-egg problem, but in SfM we can 
solve both at once
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Source: N. Snavely



Feature	detection
Detect	features	using	SIFT	[Lowe,	IJCV	2004]
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Source: N. Snavely



Feature	detection
Detect	features	using	SIFT	[Lowe,	IJCV	2004]
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Source: N. Snavely



Feature	matching
Match	features	between	each	pair	of	images
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Source: N. Snavely



Feature	matching
Refine	matching	using	RANSAC	to	estimate	fundamental	matrix	
between	each	pair
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Source: N. Snavely



Correspondence	estimation

• Link	up	pairwise	matches	to	form	connected	components	of	
matches	across	several	images

Image	1 Image	2 Image	3 Image	4

44
Source: N. Snavely



Image	connectivity	graph
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Source: N. Snavely



Structure	from	motion

Camera	1

Camera	2

Camera	3
R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize
g(R, T, X)

p1,1
p1,2

p1,3

non-linear	least	squares

46
Source: N. Snavely



Structure	from	motion

• Minimize	sum	of	squared	reprojection	errors:	

• Minimizing	this	function	is	called	bundle	adjustment	
– Optimized	using	non-linear	least	squares,		 	
	 e.g.	Levenberg-Marquardt

predicted		
image	location

observed	
image	location

indicator	variable:	
is	point	i	visible	in	image	j	?
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Source: N. Snavely
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Multi-view stereo

Source: N. Snavely

We have the camera pose. Estimate depth using stereo!



Source: N. Snavely



Source: N. Snavely


