
1

Lecture 18: Multi-view reconstruction

• If you have a question: just ask it (or send message
saying that you have a question)

• Please send us feedback! 

• PS8 out: representation learning
• Final presentation will take place over video chat.
- We’ll send a sign-up sheet next week

2

Announcements

Today

• Finding correspondences
• RANSAC
• Structure from motion

3

Motivating example: panoramas

Source: N. Snavely
4

Warping with a homography
Need correspondences!

5

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature
descriptor surrounding each interest point.

3) Matching: Determine correspondence
between descriptors in two views

],,[)1()1(
11 dxx …=x

],,[)2()2(
12 dxx …=x

Source: K. Grauman
6

Which features should we match?

“flat”	region:  
no	change	in	all	
directions

“edge”:			
no	change	along	the	
edge	direction

“corner”: 
significant	change	in	
all	directions

• How does the window change when you shift it?
• Shifting the window in any direction causes a big

change

Source:	S.	Seitz,	D.	Frolova,	D.	Simakov,	N.	Snavely
7

Finding keypoints

Find local optima in space/
scale using pyramid

Compute difference-of-Gaussians
filter (approx. to Laplacian)

8

Feature descriptors
We	know	how	to	detect	good	points	
Next	question:	How	to	match	them?	

Answer:	Come	up	with	a	descriptor	for	each	point,	
find	similar	descriptors	between	the	two	images

?

Source: N. Snavely
9

CSE	576:	Computer	Vision

Take 40x40 window around feature
• Find dominant orientation
• Rotate to horizontal
• Sample 8x8 square window centered at

feature
• Intensity normalize the window by

subtracting the mean, dividing by the
standard deviation in the window

Simple idea: normalized image patch

8 pixels40 pixels

Source: N. Snavely, M. Brown
10

Basic idea: hand-crafted CNN
• Take 16x16 square window around detected feature
• Compute edge orientation for each pixel
• Create histogram of edge orientations

Scale Invariant Feature Transform

Source:	N.	Snavely,	D.	Lowe

0 2π

angle histogram

11

Create the descriptor:
• Rotation invariance: rotate by “dominant” orientation
• Spatial invariance: spatial pool to 2x2
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Scale Invariant Feature Transform

Source: N. Snavely, D. Lowe
12

SIFT	invariances

Source: N. Snavely
13

Which features match?

Source: N. Snavely
14

Finding matches
How do we know if two features match?

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2 ||
– Can give good scores to ambiguous (incorrect) matches

I1 I2

f1 f2

Source: N. Snavely
15

f1 f2f2'

Finding matches
Add extra tests:

• Ratio distance = ||f1 - f2 || / || f1 - f2’ ||
• f2 is best SSD match to f1 in I2
• f2’ is 2nd best SSD match to f1 in I2

• Forward-backward consistency: f1 should also be nearest neighbor of f2

I1 I2 Source: N. Snavely
16

Feature matching example

51	feature	matches	after	ratio	test

Source: N. Snavely
17

Feature matching example

58	feature	matches	after	ratio	test

Source: N. Snavely
18

From matches to homography

x1’

y1’
w1

=

x1

y1

1

a b c

d e f
g h i

.

(x1,y1)
(x’1,y’1)

Source: Torralba, Isola, Freeman
19

20

From matches to homography

• Plug into nonlinear least squares solver and solve!
• Can also use robust loss (e.g. L1)
• Can be slow

Point in 1st image

J(H) =
X

i

||fH(pi)� p0i||2

fH(pi) = Hpi/(H
T
3 pi)

Matched point in 2nd

where applies homography

minimize

21

x1’

y1’
w1

=

x1

y1

1

a b c

d e f
g h i

.

x1’=
ax1 + by1+c
gx1 + hy1+i

y1’=
dx1 + ey1+f
gx1 + hy1+i

gx1x’1 + hy1x’1+ix1 = ax1 + by1+c

gx1y’1 + hy1y’1+ix1 = dx1 + ey1+f

Going to heterogeneous coordinates:

Re-arranging the terms:

Direct linear transform

Source: Torralba, Freeman, Isola

22

gx1x’1 + hy1x’1+ix1 = ax1 + by1+c

gx1y’1 + hy1y’1+ix1 = dx1 + ey1+f

Re-arranging the terms:
gx1x’1 + hy1x’1+ix’1 - ax1 - by1- c = 0
gx1y’1 + hy1y’1+iy’1 - dx1 - ey1- f = 0

-x1 -y1 -1 0 0 0 x1x’1 y1x’1 x’1 a  
b  
c 
d  
e  
f 
g  
h  
i

In matrix form. Can solve using Singular Value Decomposition (SVD).

 0 0 0 -x1 -y1 -1 x1y’1 y1y’1 y’1

0  
0=

Direct linear transform

Fast to solve (but not using “right” loss function). Uses an algebraic trick.

Often used in practice for initial solutions!

Source: Torralba, Freeman, Isola

Outliers
outliers

inliers

23
Source: N. Snavely

Robustness

• Let’s consider the problem of linear regression

• How can we fix this?

Problem: Fit a line to these data points Least squares fit

24
Source: N. Snavely

Counting inliers

25 Source: N. Snavely

Counting inliers

26

Inliers: 3
Source: N. Snavely

Counting inliers

27

Inliers: 20
Source: N. Snavely

28

• M. A. Fischler, R. C.
Bolles. Random Sample
Consensus: A Paradigm
for Model Fitting with
Applications to Image
Analysis and Automated
Cartography. Comm. of
the ACM, Vol 24, pp
381-395, 1981.

RANSAC: random sample consensus

RANSAC loop (for N iterations):
• Select four feature pairs (at random)
• Compute homography H
• Count inliers where ||pi’ - H pi|| < ε

Afterwards:
• Choose largest set of inliers
• Recompute H using only those inliers (often

using high-quality nonlinear least squares)
29

Source: Torralba, Freeman, Isola

30

Simple example: fit a line

• Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs

Source: Torralba, Freeman, Isola

31

Simple example: fit a line

• Pick 2 points
• Fit line
• Count inliers

3 inlier

Source: Torralba, Freeman, Isola

32

Simple example: fit a line

• Pick 2 points
• Fit line
• Count inliers

4 inlier

Source: Torralba, Freeman, Isola

33

Simple example: fit a line

• Pick 2 points
• Fit line
• Count inliers

9 inlier

Source: Torralba, Freeman, Isola

34

Simple example: fit a line

• Pick 2 points
• Fit line
• Count inliers

8 inlier

Source: Torralba, Freeman, Isola

35

Simple example: fit a line

• Use biggest set of inliers
• Do least-square fit

Source: Torralba, Freeman, Isola

Warping with a homography
1. Compute features using SIFT

2. Match features

3. Compute homography using RANSAC

36
Source: N. Snavely

Estimating 3D structure
• Given many images, how can we

a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is the structure from motion problem
37

Source: N. Snavely

Structure	from	motion

• Input: images with points in correspondence 	 pi,j = (ui,j,vi,j)

• Output

• structure: 3D location xi for each point pi

• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction	(side) (top)

38
Source: N. Snavely

Camera calibration & triangulation

• Suppose we know 3D points
– And have matches between these points and an image
– Computing camera parameters similar to homography estimation

• Suppose we have know camera parameters, each of
which observes a point
– How can we compute the 3D location of that point?

• Seems like a chicken-and-egg problem, but in SfM we can
solve both at once

39
Source: N. Snavely

Feature	detection
Detect	features	using	SIFT	[Lowe,	IJCV	2004]

40
Source: N. Snavely

Feature	detection
Detect	features	using	SIFT	[Lowe,	IJCV	2004]

41
Source: N. Snavely

Feature	matching
Match	features	between	each	pair	of	images

42
Source: N. Snavely

Feature	matching
Refine	matching	using	RANSAC	to	estimate	fundamental	matrix	
between	each	pair

43
Source: N. Snavely

Correspondence	estimation

• Link	up	pairwise	matches	to	form	connected	components	of	
matches	across	several	images

Image	1 Image	2 Image	3 Image	4

44
Source: N. Snavely

Image	connectivity	graph

45
Source: N. Snavely

Structure	from	motion

Camera	1

Camera	2

Camera	3
R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize
g(R, T, X)

p1,1
p1,2

p1,3

non-linear	least	squares

46
Source: N. Snavely

Structure	from	motion

• Minimize	sum	of	squared	reprojection	errors:	

• Minimizing	this	function	is	called	bundle	adjustment	
– Optimized	using	non-linear	least	squares,		 	
	 e.g.	Levenberg-Marquardt

predicted		
image	location

observed	
image	location

indicator	variable:	
is	point	i	visible	in	image	j	?

47
Source: N. Snavely

48

49

50

Multi-view stereo

Source: N. Snavely

We have the camera pose. Estimate depth using stereo!

Source: N. Snavely

Source: N. Snavely

