Lecture 16: Image formation



Announcements: coronavirus edition

e (Coming to class is optional now!

o Wil post lecture recordings after class
— May stream In future

® Project proposal due

o PSS/ out tonight
e PS4 grades out




loday

e [nis section of the course: physical models
e Camera models
e Projection equations



1 he structure of ambient lignt
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Source: Freeman, Torralba, Isola



1 he structure of ambient lignt

4 )
- <./
.”/I,f/"

NN Y
=M ///{Z, , '

<

5
Source: Freeman, Torralba, Isola



1he Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

P ( X, Y, Z)
Eye position

Source: Freeman, Torralba, Isola



1he Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

P (6, ¢, X, Y, Z)
Angle

Source: Freeman, Torralba, Isola



1he Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

P(GD (|)7 }\9 t! X5 Y! Z)
Wavelength, time

Source: Freeman, Torralba, Isola



1he Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

P(GD (|)7 }\9 t! X5 Y! Z)

“The complete set of all convergence points constitutes the permanent possibilities

R 9
of vision.” Gibson Source: Freeman, Torralba, Isola



Measuring the Plenoptic function

Why is there no picture appearing on the paper?
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Source: Freeman, Torralba, Isola



Image formation

object film

Let’'s design a camera
— ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?
— No. This Is a bad camera.

Source: N. §rj1avely



Pinhole camera

object barrier film

=

Add a barrier to block off most of the rays
— This reduces blurring
— The opening known as the aperture
— How does this transform the image?

Source: N. éﬁavely



Light rays from many different
parts of the scene strike the same
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The pinhole camera only allows rays from one point in the

scene to strike each point of
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Source: Freeman, Torralba, Isola

the paper.



PINNhole camera

Photograph by Abelardo Morell, 1991
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Source: Freeman, Torralba, Isola



PINNhole camera

Photograph by Abelardo Morell, 1991
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Source: Freeman, Torralba, Isola



PINNhole camera

Photograph by Abelardo Morell, 1991
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Source: Freeman, Torralba, Isola



PINNhole camera

Photograph by Abelardo Morell, 1991
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Source: Freeman, Torralba, Isola



<«— Back wall

of camera
Digital =~
camera
http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html 18

Source: Freeman, Torralba, Isola
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Source: Freeman, Torralba, Isola



Shrinking the aperture

R
S

0.6mm 0.35 mm

* Why not make the aperture as small as possible?
» Less light gets through

 Diffraction efftects...
Source: N. §Ravely



Shrinking the aperture

| mm

().6mm .35 mm
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0.15 mm 0.07 mm Source: N. §rj1avely



Adding a lens

object lens film

confusion”

A lens focuses light onto the film

— There is a specific distance at which objects are “in focus”
* other points project to a “circle of confusion” in the image

— Changing the shape of the lens changes this distance
Source: N. §ﬁavely



Conjunctiva ,
Vitreous humor

. Zonule fibers
Iris

Fovea

Cornea
Visual axis — | Macula
_________________________ lutea
Aqueous Lens Optic axis / Disk
Optic nerve
Retina
Ciliary body Choroid

Sclera

The human eye Is a camera

— IrIS - colored annulus with radial muscles

— Pu pl| = the hole (aperture) whose size is controlled by the iris
— What’s the “film”?

— photoreceptor cells (rods and cones) in the retina
Source: N. S?ﬁavely



Eyes in nature: :
eyespots to pinhole camera

24
http://upload.Wikimedia.org/Wiki@a/commons/6/6d/|\/|antis_shrimp.jpg Source: Freeman, Torralba, Isola




<l

Top row: 1 Bengal tiger. 2 Asian elephant. 3 Zebra. 4 Chimpanzee. 5 Flamingo.

\ @ Second row: 1 Domestic cat. 2 Hairless sphynx cat. 3 Grey wolf. 4 Booted eagle. 5 Iguana.
= Third row: 1 Macaw. 2 Jaguar. 3 Rabbit. 4 Cheetah 5 Horse.
Fourth row: 1 Lioness. 2 Bearded dragon (a type of lizard). 3 Leaf-tailed gecko. 4 Macaroni penguin. 5

y
J/ » Sy -'L;l'

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-their-eyes.html?image=25 o5
Source: N. Snavely



http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-their-eyes.html?image=25

Source: Freeman, Torralba, Isola



Source: Freeman, Torralba, Isola



Source: Freeman, Torralba, Isola



Accidental pinhole camera

Source: Freeman, Torralba, Isola









Window turned into a pinhole View outside

. r -

.
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Source: Freeman, Torralba, Isola









Window open Window turned into a pinhole
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Source: Freeman, Torralba, Isola






“Accidental pinhole camera

R e
AL

See Zomet, A.; Nayar, S.K. CVPR 20006 for a detailed analysis. Y Source: Freeman. Torralba. lsol



Pinhole and Anti-pinhole cameras

‘Ati- nhole

pinhole

Intensity Intensity

location locatio
38

Adam L. COhen, 1982 Source: Freeman, Torralba, Isola



Mixed accidental pinhole and




Mixed accidental pinhole and
anti-pinhole cameras
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Source: Freeman, Torralba, Isola



Mixed accidental pinhole and
anti-pinhole cameras

Room with a window Person in front of the window Difference image
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Source: Freeman, Torralba, Isola



Mixed accidental pinhole and
anti-pinhole cameras

Body as the occluder View outside the window
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Source: Freeman, Torralba, Isola



Looking for a small accidental occluder
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Source: Freeman, Torralba, Isola



Looking for a small accidental occluder

Body as the occluder Hand as the occluder View outside the window

e r—

‘Q\‘_,_"' .
T ——

e e
—_— P
B, Ty

= g
1)
e Ty
ll
il

44

Source: Freeman, Torralba, Isola



Dimensionality Reduction Machine (3D to 2D)

3D WOI’/O' 20) image

Point of observation

What have we lost?
* Angles
» Distances (lengths)

Slide by A. Efros
Figures © Stephen E. Palmer, 2002



Projection

-\
COOIOPtica”"usions.com

46 Source: N. Snavely



Projection

:

- (oolOpticallllusions.com:

47 Source: N. Snavely



Muller-Lyer lllusion

http://www.michaelbach.de/ot/sze _muelue/index.html

Source: N. §ﬁavely



Geometric Model: A Pinhole Camera

: : 49
Source: N. Snavely Figure credit: Peter Hedman



Modeling projection

_ Center of Projection (COP) (X, y’, f)
* The coordinate system

— We use the pinhole model as an approximation

— Put the optical center (aka Center of Projection,
or COP) at the origin

— Put the Image Plane (aka Projection Plane) in f
front Of the COP ................... k"““

— The camera looks down the positive z-axis, and X
the y-axis points down ‘
- we like this if we want right-handed-coordinates Y Image Plane

* other versions are possible (e.g., OpenGL)

Source: N. Snavely



Modeling projection

Center of Projection (COP) (X', y’, )
« Projection equations I el
— Compute intersection with PP of ray from |
(x,y,2z) to COP
— Derived using similar triangles
LYy o/ fo
(ajvyvz)_)(f_7f_7f) g
s < X

— We get the projection by throwing out the
last coordinate: v Image Plane

(@y,2) = (f=, /)

Source: N. Snavely
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(0,0,0)

Perspective projection

y ?

«~—— >
- Z

Similar triangles: y/f=Y /Z

y=1Y/Z

How can we represent this more compactly”?

Source: Freeman, Torralba, Isola



Homogeneous coordinates for affine transformations

A%y, W)
yv /

Trick: add one more coordinate: /___homogeneous plane

.
(z,y) = | ¥y
1
- N
homogeneous image
coordinates
y

Converting from homogeneous coordinates

L

y | = (z/w,y/w)

Source: N. Shavely



Translation

» Solution: homogeneous coordinates to the rescue

1 0 ¢,
I'=10 1 ¢,
0 0 1
|_1 0 tTW|_.LW |_L tq,w
o 1 ¢, y | = | Yyt
oo v ][] [T

Source: N. Snavely



Affine transformations

1 0 ¢,
T=|0 1 t, _
any transformation
0 0 1 « represented by a 3x3

matrix with lastrow [0 O 1
| we call an affine

a b c
d e f
0 0 1

Source: N. Shavely



Basic affine transformations

1 0 ¢ X s. 0 Offx
Y=10 1 ¢y yi =10 s, Ofy
] 0 0 1|1 ] 0 0 1|1
Translate Scale
x'l [cos® —smB Offx x'l [ 1 sh, Offx
y'|=1|snB cosO Of|y y'|=|sh, 1 Ofly
] 0 0 111 1 0 0 1|1
2D in-plane rotation Shear

Source: N. Snavely



Modeling projection

e |s this a linear transformation?

* no—division by z is nonlinear

Homogeneous coordinates to the rescue!

(z,y) = | v

homogeneous image
coordinates

Converting from homogeneous coordinates

y | = (z/w,y/w)

(z,y,2) =

homogeneous scene
coordinates

S N e 8

X
Y
z

1

= (z/w,y/w, z/w)

Source: N. Shavely



Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

10 o o] | "z
01 0 o |V =1y | = (f2, 1)
0o 0 1/f 0 { z/f < &

divide by third coordinate

This is known as perspective projection

» The matrix is the projection matrix
» (Can also represent as a 4x4 matrix — OpenGL does something like
this)

Source: N. Snavely



Perspective Projection

How does scaling the projection matrix change the transformation?

10 0 o] T[a°
01 0 o |V =1y | = (f=, 1)
0 0 1/f 0] i z/f] < &
0 0 0] || Tfa
Scale by f; [O f 0 O_‘ z _ lfyl — (ff’fg)
0 0 1 OJ | z S

Scaling a projection matrix produces an equivalent projection matrix!

Source: N. Snavely



Orthographic projection

* Special case of perspective projection

— Good approximation for telephoto optics
— Also called “parallel projection”. (x, vy, z) = (X, y)
— What'’s the projection matrix?

= (2,¥)
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Source: N. Snavely
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N. Snavely
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Perspective projection
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Source: N. Snavely



Projection properties

- Many-to-one: any points along same ray map to same
point In Image

» Points — points

» Lines — lines (collinearity is preserved)
— But line through focal point projects to a point

» Planes — planes (or half-planes)
— But plane through focal point projects to line

Source: N. Shavely



Projection properties

- Parallel lines converge at a vanishing point
— Each direction in space has its own vanishin

point

— But lines parallel to the image plane remain paralle
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Camera parameters

* How can we model the geometry of a camera?

Camera W

vv

Three important coordinate systems:
1. World coordinates

2. Camera coordinates

3. Image coordinates
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How do we project a given world point (X, y, z) to an image point? Source: N. Shavely



Coordinate frames

M K
Pi
] Q !
Z pg yi
t D H
I ‘ ] !
|
World coordinates Camera coordinates Image coordinates

Source: N.b%navely
Figure credit: Peter Hedman



Camera parameters

To project a point (x, y, 2) in world coordinates into a camera
* First transform (x, y, z) into camera coordinates

* Need to know
— Camera position (in world coordinates)
— Camera orientation (in world coordinates)

* Then project into the image plane to get image (pixel)
coordinates
— Need to know camera Intrinsics

Source: N. Snavely



Camera parameters

A camera Is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane

- focal length 1, principal point (c,, c,), pixel aspect size a
* Dblue parameters are called “extrinsics,” red are “intrinsics”

Projection equation - | /

ST SR I , .
X = [SYy| = [* * * 7| = IIX Y (mm ?JC)
S | kR ok k]
- The projection matrix models the cumulative effect of all
parameters

. _ _ identity matrix
» Useful to decompose into a series of operations /
f s c| |1 0 0 O

T=1{0 af ¢| |0 1 0 0 —2{3><3 03O><1- _(I)3><3 T3O><1_
) 0 1||o 0 1 of L713 XS

intrinsics projection rotation translation
» The definitions of these parameters are not completely standardized

— especially intrinsics—varies from one book to another Source: N. Snavely



Projection matrix

Source: N. Snavely



Extrinsics

* How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -c

Source: N. Snavely



Extrinsics

* How do we get the camera to “canonical form”™?
— (Center of projection at the origin, x-axis points right, y-axis

points up, z-axis points backwards)

Step 1: Translate by -c

How do we represent
translation as a
matrix multiplication?

I35 —c

00 0 1

Source: N. Snavely



Extrinsics

* How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right,
y-axis points up, z-axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by R

Z ul
" >
R = v’
v
/ w
X 3x3 rotation matrix

Source: N. Snavely



Extrinsics

* How do we get the camera to “canonical form™?

— (Center of projection at the origin, x-axis points right,
y-axis points up, z-axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by R

1

(with extra row/column of [0 0 0 1])

Source: N. Snavely



Perspective projection

K (converts from 3D rays in camera
coordinate system to pixel

(intrinsics) coordinates)
f s cy
_ o (Upper
In general, K=10 af Cy triangular

0 0 1 matrix)

( Y: aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)

Source: N. Snavely (Cx, Cy): principal point ((w/2,h/2) unless optical axis doesn’t intersect projection plane at image ceniter)



Typical intrinsics matrix

f 0 cs
K=10 f ¢
0 0 1

» 2D affine transform corresponding to a scale by f (focal
length) and a translation by (cy, ¢,) (principal point)

* Maps 3D rays to 2D pixels

Source: N. Snavely



Focal length

e Can think of as “zoom”

24mm

5 -t e 5
' f."‘.- . : .:- - . ”A‘:’. ")#, =
N ‘WJ’ ‘s T2
- ¥ s -t y V’_‘."‘w/ ""f;z
L5 "' . g b <

200mm
 Also related to field of view

76
Source: N. Snavely



Wide angle Standard Telephoto

77
Source: N. Snavely



http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Source: N. Snavely



Projection matrix

1 .0 0
II=K [0 10
0 0 1

INtriNnsics

\ projection

o O O

_ 0 i
R o ng 3 —C
0
- 0O 0 0 1 0O 0 0O
~ rotation - translation

1

The K matrix converts 3D rays
In the camera’s coordinate
system to 2D image points In
image (pixel) coordinates.

|

This part converts 3D points in
world coordinates to 3D rays in the
camera’s coordinate system. There
are 6 parameters represented (3 for
position/translation, 3 for rotation).

Source: N. Snavely



Projection matrix

I =K

INtriNnsics

\

1 0 0
0 1 0
0 0 1

projection

o O O
|

R

110 0

rotat

01T
0 || 1343 —cC
0

0 1 0O 0 0O 1

ion - translation

|

|—RC

|
(sometimes called t)

—Rc

Source: N. Snavely



Projection matrix

Source: N. Snavely



Perspective distortion

» Problem for architectural photography:
converging verticals

82
Source: F. Durand



Perspective distortion

» Problem for architectural photography Converglng

vertic N N
Tilting the camera Keeping the camera level,
upwards results in with an ordinary lens,
converging verticals captures only the bottom

portion of the building

Shifting the lens
upwards results in a
picture of the entire
subject

» Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Source: F. Durand


http://en.wikipedia.org/wiki/Perspective_correction_lens

Perspective distortion

» What does a sphere project to?

84
Source: N. Snavely



Distortion

No distortion Pin cushion Barrel

» Radial distortion of the image
— Caused by imperfect lenses

— Deviations are most noticeable for rays that pass through the
edge of the lens

Source: N. Snavely
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Source: N. Snavely



Modeling distortion

(Z,9,2)
Project v = Z/Z
to “normalized” / R
image coordinates  Yn — y/z
2= a4y
Apply radial distortion =/, = /(1 4 k17?4 kor?)
vy = Yn(1+ w17° + ror®)
/] /
Apply focal length = frgt T
translate image center ¢/ = fy! 4+ gy,

* To model lens distortion
— Use above projection operation instead of standard projection matrix multiplication

Source: N. Snavely



Correcting radial distortion

from Helmut Dersch

38


http://www.path.unimelb.edu.au/~dersch/architect/arch.html

Next lecture: More geometry!



