Lecture 16: Image formation
Announcements: coronavirus edition

• Coming to class is optional now!
• Will post lecture recordings after class
 – May stream in future
• Project proposal due
• PS7 out tonight
• PS4 grades out
Today

• This section of the course: physical models
• Camera models
• Projection equations
The structure of ambient light

Source: Freeman, Torralba, Isola
The structure of ambient light

Source: Freeman, Torralba, Isola
The Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

$$P(X, Y, Z)$$

Eye position

Source: Freeman, Torralba, Isola
The Plenoptic Function

Adelson & Bergen, 91

The intensity P can be parameterized as:

$$P(\theta, \phi, X, Y, Z)$$

Angle

Source: Freeman, Torralba, Isola
The intensity P can be parameterized as:

$$P(\theta, \phi, \lambda, t, X, Y, Z)$$

Wavelength, time
The intensity P can be parameterized as:

$$P(\theta, \phi, \lambda, t, X, Y, Z)$$

"The complete set of all convergence points constitutes the permanent possibilities of vision." Gibson

Source: Freeman, Torralba, Isola
Measuring the Plenoptic function

Why is there no picture appearing on the paper?

Source: Freeman, Torralba, Isola
Let’s design a camera
- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
- No. This is a bad camera.

Source: N. Snavely
Pinhole camera

Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Source: N. Snavely
The pinhole camera only allows rays from one point in the scene to strike each point of the paper.
Pinhole camera

Photograph by Abelardo Morell, 1991

Source: Freeman, Torralba, Isola
Pinhole camera

Photograph by Abelardo Morell, 1991

Source: Freeman, Torralba, Isola
Pinhole camera

Photograph by Abelardo Morell, 1991
Pinhole camera

Photograph by Abelardo Morell, 1991

Source: Freeman, Torralba, Isola
http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html

Source: Freeman, Torralba, Isola
Source: Freeman, Torralba, Isola
Shrinking the aperture

• Why not make the aperture as small as possible?
 • Less light gets through
 • *Diffraction* effects...
Shrinking the aperture

Source: N. Snavely
A lens focuses light onto the film

- There is a specific distance at which objects are “in focus”
 - other points project to a “circle of confusion” in the image
- Changing the shape of the lens changes this distance
The human eye is a camera

- **Iris** - colored annulus with radial muscles
- **Pupil** - the hole (aperture) whose size is controlled by the iris
 - What’s the “film”?
 - photoreceptor cells (rods and cones) in the **retina**

Source: N. Snavely
Eyes in nature: eyespots to pinhole camera

http://upload.wikimedia.org/wikipedia/commons/6/6d/Mantis_shrimp.jpg

Source: Freeman, Torralba, Isola
Top row: 1 Bengal tiger. 2 Asian elephant. 3 Zebra. 4 Chimpanzee. 5 Flamingo.
Second row: 1 Domestic cat. 2 Hairless sphynx cat. 3 Grey wolf. 4 Booted eagle. 5 Iguana.
Third row: 1 Macaw. 2 Jaguar. 3 Rabbit. 4 Cheetah 5 Horse.
Fourth row: 1 Lioness. 2 Bearded dragon (a type of lizard). 3 Leaf-tailed gecko. 4 Macaroni penguin. 5 Alligator.
Fifth row: 1 Great horned owl. 2 Mountain lion. 3 Boa constrictor. 4 Pufferfish. 5 African crested crane.
Shadows?
Accidental pinhole camera

Source: Freeman, Torralba, Isola
Window turned into a pinhole View outside

Source: Freeman, Torralba, Isola
Window open

Window turned into a pinhole

Source: Freeman, Torralba, Isola
Accidental pinhole camera

Pinhole and Anti-pinhole cameras

Adam L. Cohen, 1982

Source: Freeman, Torralba, Isola
Mixed accidental pinhole and anti-pinhole cameras
Mixed accidental pinhole and anti-pinhole cameras

Source: Freeman, Torralba, Isola
Mixed accidental pinhole and anti-pinhole cameras

Room with a window

Person in front of the window

Difference image

Mixed accidental pinhole and anti-pinhole cameras

Room with a window

Person in front of the window

Difference image

Source: Freeman, Torralba, Isola
Mixed accidental pinhole and anti-pinhole cameras

Body as the occluder

View outside the window

Source: Freeman, Torralba, Isola
Looking for a small accidental occluder

Source: Freeman, Torralba, Isola
Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window

Source: Freeman, Torralba, Isola
Dimensionality Reduction Machine (3D to 2D)

What have we lost?
- Angles
- Distances (lengths)
Projection

Source: N. Snavely
Projection

Source: N. Snavely
Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Source: N. Shavely
Geometric Model: A Pinhole Camera

Source: N. Snavely Figure credit: Peter Hedman
Modeling projection

• The coordinate system
 – We use the pinhole model as an approximation
 – Put the optical center (aka Center of Projection, or COP) at the origin
 – Put the Image Plane (aka Projection Plane) in front of the COP
 – The camera looks down the positive z-axis, and the y-axis points down
 • we like this if we want right-handed-coordinates
 • other versions are possible (e.g., OpenGL)

Source: N. Snavely
Modeling projection

- Projection equations
 - Compute intersection with PP of ray from (x, y, z) to COP
 - Derived using similar triangles
 \[
 (x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z}, f \right)
 \]
 - We get the projection by throwing out the last coordinate:
 \[
 (x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
 \]

Source: N. Snavely
Perspective projection

Similar triangles: \(\frac{y}{f} = \frac{Y}{Z} \)

\[y = f \frac{Y}{Z} \]

How can we represent this more compactly?

Source: Freeman, Torralba, Isola
Homogeneous coordinates for affine transformations

Trick: add one more coordinate:

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

homogeneous image coordinates

Converting \textit{from} homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

Source: N. Snavely
Translation

- Solution: homogeneous coordinates to the rescue

\[
T = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix} =
\begin{bmatrix}
x + t_x \\
y + t_y \\
1
\end{bmatrix}
\]

Source: N. Snavely
Affine transformations

\[T = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \]

any transformation represented by a 3x3 matrix with last row \([0 \ 0 \ 1]\) we call an affine

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

Source: N. Snavely
Basic affine transformations

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Translate

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
 \cos\theta & -\sin\theta & 0 \\
 \sin\theta & \cos\theta & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

2D in-plane rotation

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
 1 & s_{h_x} & 0 \\
 s_{h_y} & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Shear

Source: N. Snavely
Modeling projection

• Is this a linear transformation?
 • no—division by z is nonlinear

Homogeneous coordinates to the rescue!

\[
(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \text{homogeneous image coordinates}
\]

\[
(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \text{homogeneous scene coordinates}
\]

Converting \textit{from} homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

\[
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]

Source: N. Snavely
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/f & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
z/f \\
1
\end{bmatrix} \Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**
- (Can also represent as a 4x4 matrix – OpenGL does something like this)
Perspective Projection

How does scaling the projection matrix change the transformation?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/f & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z/f \\
1 \\
\end{bmatrix}
\Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]

Scale by \(f \):

\[
\begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
fx \\
f'y \\
z \\
1 \\
\end{bmatrix}
\Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]

Scaling a projection matrix produces an equivalent projection matrix!

Source: N. Snavely
Orthographic projection

• Special case of perspective projection
 – Distance from the COP to the PP is infinite
 – Good approximation for telephoto optics
 – Also called “parallel projection”: \((x, y, z) \rightarrow (x, y)\)
 – What's the projection matrix?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\Rightarrow
(x, y)
\]
Orthographic projection
Perspective projection

Source: N. Snavely
Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes)
 - But plane through focal point projects to line

Source: N. Snavely
Projection properties

• Parallel lines converge at a vanishing point
 – Each direction in space has its own vanishing point
 – But lines parallel to the image plane remain parallel
Camera parameters

• How can we model the geometry of a camera?

Three important coordinate systems:
1. *World* coordinates
2. *Camera* coordinates
3. *Image* coordinates

How do we project a given world point \((x, y, z)\) to an image point?

Source: N. Snavely
Coordinate frames

World coordinates

Camera coordinates

Image coordinates

Figure credit: Peter Hedman

Source: N. Snavely
Camera parameters

To project a point \((x, y, z)\) in \textit{world} coordinates into a camera

• First transform \((x, y, z)\) into \textit{camera} coordinates

• Need to know
 – Camera position (in world coordinates)
 – Camera orientation (in world coordinates)

• Then project into the image plane to get \textit{image (pixel) coordinates}
 – Need to know camera \textit{intrinsics}

Source: N. Snavely
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (c_x, c_y), pixel aspect size α
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x} = \begin{bmatrix}
sx \\
sy \\
s
\end{bmatrix} \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix} = \Pi \mathbf{x} = \mathbf{y'} = (x'_c, y'_c)
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\Pi = \begin{bmatrix}
f & s & c_x \\
0 & \alpha f & c_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
R_{3 \times 3} & O_{3 \times 1} \\
O_{1 \times 3} & 0 \\
O_{1 \times 3} & 0
\end{bmatrix}
$$

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another

Source: N. Snavely
Projection matrix

\[\Pi q = (x, y, z, 1) \]

Source: N. Snavely
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-c$

Source: N. Snavely
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-\mathbf{c}\)

How do we represent translation as a matrix multiplication?

\[
T = \begin{bmatrix}
I_{3 \times 3} & -\mathbf{c} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-c$
Step 2: Rotate by R

$R = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix}$

3x3 rotation matrix

Source: N. Snavely
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-c$
Step 2: Rotate by R

\[R = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} \]

(with extra row/column of $[0 \ 0 \ 0 \ 1]$)

Source: N. Snavely
Perspective projection

\[
\begin{bmatrix}
f & 0 & c_x \\
0 & f & c_y \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[\mathbf{K} \] (intrinsics) (converts from 3D rays in camera coordinate system to pixel coordinates)

in general, \(\mathbf{K} = \)

\[
\begin{bmatrix}
f & s & c_x \\
0 & \alpha f & c_y \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\(\alpha \): aspect ratio (1 unless pixels are not square)

\(S \): skew (0 unless pixels are shaped like rhombi/parallelograms)

\((c_x, c_y) \): principal point \(((w/2, h/2)\) unless optical axis doesn’t intersect projection plane at image center)
Typical intrinsics matrix

\[
K = \begin{bmatrix}
f & 0 & c_x \\
0 & f & c_y \\
0 & 0 & 1
\end{bmatrix}
\]

- **2D affine transform** corresponding to a scale by \(f \) (focal length) and a translation by \((c_x, c_y)\) (principal point)
- Maps 3D rays to 2D pixels

Source: N. Snavely
Focal length

• Can think of as “zoom”

• Also related to *field of view*
Wide angle Standard Telephoto

Source: N. Snavely
Projection matrix

\[
\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}
\]

Intrinsic

This part converts 3D points in world coordinates to 3D rays in the camera’s coordinate system. There are 6 parameters represented (3 for position/translation, 3 for rotation).

\(K\) matrix converts 3D rays in the camera’s coordinate system to 2D image points in image (pixel) coordinates.

Source: N. Snavely
Projection matrix

\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[\Pi = K \begin{bmatrix} R & -Rc \end{bmatrix} \]

(sometimes called t)

Source: N. Snavely
Projection matrix

\[0\]

Source: N. Snavely
Perspective distortion

• Problem for architectural photography: converging verticals

Source: F. Durand
Perspective distortion

• Problem for architectural photography: converging verticals

 - Tilting the camera upwards results in converging verticals
 - Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building
 - Shifting the lens upwards results in a picture of the entire subject

• Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens
Perspective distortion

• What does a sphere project to?
Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Source: N. Snavely
Modeling distortion

\[(\tilde{x}, \tilde{y}, \tilde{z}) \]

Project to “normalized” image coordinates

\[x'_n = \frac{\tilde{x}}{\tilde{z}} \]
\[y'_n = \frac{\tilde{y}}{\tilde{z}} \]

\[r^2 = x'_n^2 + y'_n^2 \]

Apply radial distortion

\[x'_d = x'_n(1 + \kappa_1 r^2 + \kappa_2 r^4) \]
\[y'_d = y'_n(1 + \kappa_1 r^2 + \kappa_2 r^4) \]

Apply focal length translate image center

\[x' = f x'_d + x_c \]
\[y' = f y'_d + y_c \]

• To model lens distortion
 – Use above projection operation instead of standard projection matrix multiplication

Source: N. Snavely
Correcting radial distortion

from Helmut Dersch
Next lecture: More geometry!