Lecture 16: Image formation

Announcements: coronavirus edition

- Coming to class is optional now!
- - May stream in future
- Project proposal due
- PS7 out tonight
- PS4 grades out

• Will post lecture recordings after class

- Camera models
- Projection equations

Today

This section of the course: physical models

The structure of ambient light

Ρ

X, Y, Z) Eye position

Angle

P(θ, φ, X, Y, Z)

P (θ, φ, λ, t, X, Y, Z) Wavelength, time

"The complete set of all convergence points constitutes the permanent possibilities of vision." Gibson 9

P (θ, ϕ , λ , t, X, Y, Z)

Measuring the Plenoptic function

10 Source: Freeman, Torralba, Isola

Image formation

Let's design a camera - Idea 1: put a piece of film in front of an object - Do we get a reasonable image? – No. This is a bad camera.

Add a barrier to block off most of the rays This reduces blurring - The opening known as the aperture – How does this transform the image?

scene to strike each point of the paper.

Source: Freeman, Torralba, Isola

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html

Shrinking the aperture

2 mm

0.6mm

- - Less light gets through
 - *Diffraction* effects...

1 mm

0.35 mm

• Why not make the aperture as small as possible?

Shrinking the aperture

0.6mm

0.15 mm

1 mm

0.35 mm

Adding a lens

A lens focuses light onto the film - There is a specific distance at which objects are "in focus" • other points project to a "circle of confusion" in the image

- Changing the shape of the lens changes this distance

The eye

The human eye is a camera

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
 What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Eyes in nature: eyespots to pinhole camera

http://upload.wikimedia.org/wikipedia/commons/6/6d/Mantis_shrimp.jpg

Fifth row: 1 Great horned owl. 2 Mountain lion. 3 Boa constrictor. 4 Pufferfish. 5 African crested crane.

http://www.telegraph.co.uk/news/earth/earthpicturegalleries/7598120/Animal-eyes-quiz-Can-you-work-out-which-creatures-these-are-from-their-eyes.html?image=25 <u>ge=25</u> 25 Source: N. Snavely

- Top row: 1 Bengal tiger. 2 Asian elephant. 3 Zebra. 4 Chimpanzee. 5 Flamingo.
- Second row: 1 Domestic cat. 2 Hairless sphynx cat. 3 Grey wolf. 4 Booted eagle. 5 Iguana.
- Fourth row: 1 Lioness. 2 Bearded dragon (a type of lizard). 3 Leaf-tailed gecko. 4 Macaroni penguin. 5

Accidental pinhole camera

Source: Freeman, Torralba, Isola

Window turned into a pinhole

View outside

Window open

Window turned into a pinhole

Source: Freeman, Torralba, Isola

See Zomet, A.; Nayar, S.K. CVPR 2006 for a detailed analysis.

Source: Freeman, Torralba, Isola

Source: Freeman, Torralba, Isola

Mixed accidental pinhole and anti-pinhole cameras

Mixed accidental pinhole and anti-pinhole cameras

Source: Freeman, Torralba, Isola

Mixed accidental pinhole and anti-pinhole cameras

Room with a window

41

Source: Freeman, Torralba, Isola

Mixed accidental pinhole and anti-pinhole cameras

Body as the occluder

View outside the window

Source: Freeman, Torralba, Isola

Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

What have we lost?

- Angles
- Distances (lengths) \bullet

Slide by A. Efros Figures © Stephen E. Palmer, 2002

Projection

Projection

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Geometric Model: A Pinhole Camera

Principal point

Source: N. Snavely Figure credit: Peter Hedman

Modeling projection

• The coordinate system

- We use the pinhole model as an approximation
- Put the optical center (aka Center of Projection, or COP) at the origin
- Put the Image Plane (aka Projection Plane) in front of the COP
- The camera looks down the *positive* z-axis, and the y-axis points down
 - we like this if we want right-handed-coordinates
 - other versions are possible (e.g., OpenGL)

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles ____

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z}, f)$$

 We get the projection by throwing out the last coordinate:

$$(x, y, z) \to (f\frac{x}{z}, f\frac{y}{z})$$

51 Source: N. Snavely

Perspective projection

Similar triangles: y / f = Y / Z

y = f Y/Z

How can we represent this more compactly?

Source: Freeman, Torralba, Isola

Homogeneous coordinates for affine transformations

Trick: add one more coordinate: $(x, y) \Rightarrow \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

homogeneous image coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Translation

Solution: homogeneous coordinates to the rescue

Affine transformations

$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \text{ any transformation represented by a 3x3}$

matrix with last row [001] we call an *affine*

Source: N. Shavely

Basic affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D *in-plane* rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
Shear

Source: N. Shavely

Modeling projection

- Is this a linear transformation?
 - no—division by z is nonlinear

Homogeneous coordinates to the rescue!

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} =$

This is known as **perspective projection**

- The matrix is the projection matrix
- this)

$$= \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

divide by third coordinate

(Can also represent as a 4x4 matrix – OpenGL does something like

Perspective Projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Scale by f:
$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling a projection matrix produces an equivalent projection matrix!

How does scaling the projection matrix change the transformation?

$$= \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

$$= \begin{bmatrix} fx\\ fy\\ z \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

ction nfinite

tics ⁄, z) → (x,

Orthographic projection

61 Source: N. Snavely

Perspective projection

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes) But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But lines parallel to the image plane remain parallel

a vanishing point ts own vanishing point e plane remain parallel

Camera parameters

How can we model the geometry of a camera?

Three important coordinate systems:

- World coordinates
- *Camera* coordinates 2.
- Image coordinates З.

How do we project a given world point (x, y, z) to an image point?

"The World"

World coordinates

Camera coordinates

Image coordinates

Source: N. Snavely Figure credit: Peter Hedman

Camera parameters

- First transform (x, y, z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane to get *image (pixel)* coordinates
 - Need to know camera *intrinsics*

To project a point (x, y, z) in world coordinates into a camera

Camera parameters

A camera is described by several parameters

- Rotation R of the image plane \bullet
- focal length f, principal point (c_x, c_y), pixel aspect size α
- \bullet

Projection equation

$$\mathbf{x} = \begin{bmatrix} sx \\ sy \\ s \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

- The projection matrix models the cumulative effect of all ulletparameters
- Useful to decompose into a series of operations • $\begin{bmatrix} f & s & c_x \\ 0 & \alpha f & c_y \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ intrinsics \end{bmatrix} prc$$

- \bullet
 - especially intrinsics—varies from one book to another

Translation T of the optical center from the origin of world coords blue parameters are called "extrinsics," red are "intrinsics" x' $\neg [X]$

$$\begin{array}{c|c} * & Y \\ * & Z \\ * & 1 \end{array} = \mathbf{\Pi} \mathbf{X}$$

Projection matrix

Extrinsics

 How do we get the camera to "canonical form"? points up, z-axis points backwards)

- (Center of projection at the origin, x-axis points right, y-axis

Step 1: Translate by -c

Extrinsics

 How do we get the camera to "canonical form"? points up, z-axis points backwards)

- (Center of projection at the origin, x-axis points right, y-axis

Step 1: Translate by -c

How do we represent translation as a matrix multiplication?

$$\mathbf{T} = \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{C} \\ 0 & 0 & 0 \end{bmatrix}$$

Extrinsics

y-axis points up, z-axis points backwards)

How do we get the camera to "canonical form"? - (Center of projection at the origin, x-axis points right,

Extrinsics

y-axis points up, z-axis points backwards)

How do we get the camera to "canonical form"? - (Center of projection at the origin, x-axis points right,

Step 1: Translate by -c Step 2: Rotate by **R**

(with extra row/column of [0 0 0 1])

- \mathcal{U} : **aspect ratio** (1 unless pixels are not square)
- S : **skew** (0 unless pixels are shaped like rhombi/parallelograms)

Source: N. Snavely (c_x, c_y) : principal point ((w/2,h/2) unless optical axis doesn't intersect projection plane at image ceriter)

$\begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

(converts from 3D rays in camera (intrinsics) coordinate system to pixel coordinates)

in general, $\mathbf{K} = \begin{bmatrix} f & s & c_x \\ 0 & \alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$ (upper triangular matrix)

Typical intrinsics matrix $\mathbf{K} = \begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix}$

- length) and a translation by (c_x, c_y) (principal point)
- Maps 3D rays to 2D pixels

2D affine transform corresponding to a scale by f (focal

Focal length

Can think of as "zoom"

24mm

200mm Also related to field of view

50mm

Wide angle

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Projection matrix

Projection matrix

Projection matrix

Perspective distortion

 Problem for architectural photography: converging verticals

82

Perspective distortion

 Problem for architectural photography: converging vertic

> Tilting the camera upwards results in converging verticals

Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

Perspective distortion

What does a sphere project to?

Image source: F. Durand

Distortion

No distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - edge of the lens

Pin cushion

Barrel

- Deviations are most noticeable for rays that pass through the

Modeling distortion

 $(\hat{x}, \hat{y}, \hat{z})$ Project to "normalized" image coordinates

Apply radial distortion

Apply focal length translate image center

To model lens distortion

$$\begin{array}{rcl} x'_n &=& \widehat{x}/\widehat{z} \\ y'_n &=& \widehat{y}/\widehat{z} \end{array}$$

$$r^{2} = x'_{n}^{2} + y'_{n}^{2}$$

$$x'_{d} = x'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

$$y'_{d} = y'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

$$\begin{aligned} x' &= fx'_d + x_c \\ y' &= fy'_d + y_c \end{aligned}$$

- Use above projection operation instead of standard projection matrix multiplication

Correcting radial distortion

from <u>Helmut Dersch</u>

Next lecture: More geometry!

