Lecture 10:;
INtroduction to scene understanding



Announcements

e PS1 grades out
e Please check your grade!
e Regrade requests via Gradescope
e Submit requests by next Tues.
e PS5 out
e |ore coding than usual



Image contains Photoshopped sign 3 Source: Torralba, Freeman, Isola
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A view of a park on a nice spring day
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loday

History

Scene recognition

Pixel labeling problems
Simple object detection model



Why do we care about recognition”

Perception of function: We can perceive the 3D shape, texture, material
properties, without knowing about objects. But, the concept of category
encapsulates also information about what can we do with those objects.

“We therefore include the perception of function as a proper —indeed, crucial- subject for vision science”’,
from Vision Science, chapter 9, Palmer.

11 Source: Torralba, Freeman, Isola



The perception of function

* Direct perception (affordances): Gibson

Flat surface
Horizontal

| Sittable

Knee-high

upon

- Mediated perception (Categorization)

Flat surface
Horizontal
Knee-high

' Chair

| Sittable

upon
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Direct perception

Some aspects of an object function can be perceived directly

Functional form: Some forms clearly indicate to a function (“sittable-upon?,
container, cutting device, ...)

Sittable-upon gittaple-upon It does not seem easy
to sit-upon this...

Sittable-upon

13 Source: Torralba, Freeman, Isola



Limits to direct

Objects with similar structure but different func-
tions. Mailboxes afford letter mailing, whereas trash cans do not,
even though they have many similar physical features, suf‘h as
size, location, and presence ol an opening large enough to msert

letters and medium-sized packages.

Figure 9.1.2
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perception

Source: Torralba, Freeman, Isola



Object categories aren't everything
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http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html

Object categories aren't everything

A picture is worth a 1000 words...
Or just 107

sky

street lamp

m Source: A. Efros



Visual challenges with categories

Chair

* A lot of categories are
functional

» Categories are 3D, but
Images are 2D

» World is highly varied

train Source: A. Efros



What labels? Recognizing exact instances?

A Beljing City Transit Bus #17, serial number 432537

18 Source: A. Efros


http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html

Need more general (useful) information

-

wmaaw

What can we say the very
first time we see this thing?

Functional:

® A large vehicle that may be moving fast, probably to the right, and will Kill you If you stand
N Iits way.

® However, at specified places, it will allow you to enter it and transport you quickly over
arge distances.

Communicational:
® bus, autobus, Aewdopseio, dnibus, aBTOdYC, 72354, etc.

19 Source: A. Efros


http://people.w3.org/rishida/photos/html/slides/0311-beijing1_031111_035240+8_beijing_e031124.jpg.html

Recognizing objects: is it really so hard”

Find the chair in this image Output of normalized correlation

'8 =7 NI

20 Source: A. Torralba



Recognizing objects: is it really so hard”

Find the chair in this image

Not so great!

21 Source: A. Torralba



implify the problem: Blocks world
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3D, compositional models

Binford and generalized cylinders

a) b) C)

Object Recognition in the Geometric Era: a Retrospective. Joseph L. Mundy. 2006

23

Recognition by components

()
L)

e e ———

Recognition-by-Components: A Theory of Human Image Understanding.

Psychological Review, 1987.

Irving Biederman

Source:; Torralba, Freeman, Isola



Part based models

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER
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among all outputs

Receptive fields

Input image pyramid Extracted window Corrected lighting Histogram equalized . ‘
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Preprocessing Neural network

Rowley, Baluja, and Kanade: Neural Network-Based Face Detection (PAMI, January 1998)
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Neural Network-Based Face Detector
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ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

1 . M i I I i O n S Of eﬁi C i e nt fe at U reS Rapid Object Detection using a Boosted Cascade of Simple

Features
Paul Viola Michael Jones
: .: viola@merl.com mjones@crl.dec.com
E Mitsubishi Electric Research Labs Compaq CRL
I] 201 Broadway, 8th FLL One Cambridge Center
Cambridge, MA 02139 Cambridge, MA 02142
Abstract tected at 15 frames per second on a conventional 700 MHz
S : Intel Pentium III. In other face detection systems, auxiliary
This paper describes a machine learning approach for vi- information, such as image differences in video sequences,
sual object detection which is capable of processing images or pixel color in color images, have been used to achieve
.:| extremely rapidly and achieving high detection rates. This high frame rates. Our system achieves high frame rates
work is distinguished by three key contributions. The first working only with the information present in a single grey
is the introduction of a new image representation called the scale image. These alternative sources of information can
“Integral Image” which allows the features used by our de- also be integrated with our system to achieve even higher
tector to be computed very quickly. The second is a learning frame rates.
-:. algorithm, based on AdaBoost, which selects a small num- There are three main contributions of our object detec-
ber of critical visual features from a larger set and yields tion framework. We will introduce each of these ideas
E extremely efficient classifiers[6]. The third contribution is briefly below and then describe them in detail in subsequent
I:| a method for combining increasingly more complex classi- sections.
fiersin a “cascade” which allows bc
image to be quickly discarded while

tation on promising object-like regic
viewed as an object specific focus-

2.Boosted feature selection bl

Ject of interest. In the domain of fa
yields detection rates comparable t
tems. Used in real-time applicatio

3. Computational cascade e

1. Introduction

This paper brings together new alg
construct a framework for robust anc
detection. This framework is demo
T motivated by, the task of face dete

T ,.v-*""'Further we have constructed a frontal face |
P . J,I achieves detection and false positivi
fOCQSSIgg ' alent to the best published results [

F T face detection system is most cle:
previous approaches in its ability tc

rapidly. Operating on 384 by 288 pi>

26 Source: Torralba, Freeman, Isola



Histograms of oriented gradients (HOG

Histograms of Oriented Gradients for Human Detection

1. Bin gradients from 8x8 pixel neighborhoods into 9 orientations

2. Linear SVM

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de 1’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill.Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction

Detecting humans in images is a challenging task owing
to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on the MIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1* and 2™ order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholded gradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method

This section gives an overview of our feature extraction
chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or

1
e —

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

27 Source: Torralba, Freeman, Isola



[“HOGgles”, Vondrick et al. , ICCV 2013]

Source: Torralba, Freeman, Isola



[“HOGgles”, Vondrick et al. , ICCV 2013]

Source: Torralba, Freeman, Isola



ImageNet classification and Neural nets

14,197,122 images, 21841 synsets indexed

IMSAGENET

Explore Download Challenges Publications CoolStuff About

Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.

What do these images have in common? Find out!
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Scene recognition
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Scene recognition problem

*Auditorium’”

Your next problem set!




Source: A. QOliva

plaCeS .

1. Take all scene words
from a dictionary

\ \WordNet

LN Ny chttonary

A lexical database for the English language

WordNet® is an online lexical
reference system whose design is
inspired by current
psycholinguistic theories of
human lexical memory.

33

2. Download images
and clean the categories

Google

Image Search

l> Bing
flickr

/Zhou, Lapedriza, Xiao, Oliva, Torralba (NIPS 2014)



Places ia) Overview Z Demo s22 Explore ® Challenge & Download

All

abbey

airfield

airport terminal
alcove

alley

amphitheater
amusement arcade
amusement park airplane cabin airplane cabin
apartment building - outdoor
aquarium

aqueduct

arcade

arch

airplane cabin airplane cabin airplane cabin

Source: Torralba, Freeman, Isola 34



Scene recognition with CNN

= “Auditorium’

PS5: implement this in Py Torch



Object recognition: what objects are in the image?

‘Birds”

Source: Torralba, Freeman, Isola



Semantic segmentation

(Colors represent categories)

General technique: predict something at every pixel!

Source: Torralba, Freeman, Isola



ldea #1: Independently classify windows



Training data

X Y
N “Bird”
,

N “Bird”
,

I(Skyﬂ

What's the object class of the center pixel?

I\

K-way classification problem

Solve with K-dimensional softmax regression:

f@IX%

%K

Source: Torralba, Freeman, Isola



ldea #2: rully convolutional networks



Fully Convolutional Networks

Fully Convolutional Networks for Semantic Segmentation
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Jonathan Long*

Evan Shelhamer*

Trevor Darrell

UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. QOur key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30,3,9,31, 17,15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

* Authors contributed equally

Source: Torralba, Freeman, Isola
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 1 7], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear



Fully Convolutional Networks
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Fully Convolutional Networks
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ldea #3: Dilated convolutions



Dilated convolutions

5%5 7x7
3x3 al|l0|b|0]|c
0/]0|0|10|0
O|d|O0O|e|O0|f =
0/]0|0|10|0
g | O|h|O] i

25 coefficients
9 degrees of freedom

49 coefficients
18 degrees of freedom

[Yu and Koltun 2016, https://arxiv.org/pdf/1511.07122.pdf]

Source: Isola, Torralba, Freeman



(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F7 1s produced from Fy by a 1-dilated convolution; each element in F7
has a receptive field of 3 x 3. (b) F3 1s produced from F7 by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (¢) F3 1s produced from F5 by a 4-dilated convolution; each
element in F3 has a receptive field of 15X 15. The number of parameters associated with each layer
1s 1dentical. The receptive field grows exponentially while the number of parameters grows linearly.

[Yu and Koltun 2016, https://arxiv.org/pdf/1511.07122.pdf]

Source: Isola, Torralba, Freeman



Fully convolutional network
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Apply CNN convolutionally



Fully convolutional network

Output still usually notegiven at full-resolution



ldea #4: Skip connections



Encoder-decoder architectures

Skip connections

Decoder

Convolutions Deconvolutions

50 Source: Torralba, Freeman, Isola



Encoder-decoder architectures

Deconvolution (a.k.a. “upconvolution”
or “transposed convolution”)

/ same shape. Concatenate them!

Early layers and late layers have

.................... >
I
........................................................... >
|
“Vanilla” encoder-decoder architecture U-Net

Figures from [Isola et al., “Image-to-Imagesiranslation with Conditional Adversarial Networks”, 2017]



Encoder-decoder architectures

SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image
Segmentation

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

B Pooling I Upsampling

B conv + Batch Normalisation + RelLU

Softmax
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Output

Segmentation

k architecture for semantic pixel-wise segmentation
etwork, a corresponding decoder network followed
logically identical to the 13 convolutional layers in the
encoder feature maps to full input resolution feature
ich the decoder upsamples its lower resolution input
X-pooling step of the corresponding encoder to

The upsampled maps are sparse and are then
oposed architecture with the widely adopted FCN
This comparison reveals the memory versus

designed to be efficient both in terms of memory and
trainable parameters than other competing

e also performed a controlled benchmark of SegNet
entation tasks. These quantitative assessments
most efficient inference memory-wise as compared
eb demo at http://mi.eng.cam.ac.uk/projects/segnet/.

2ntation, Indoor Scenes, Road Scenes, Encoder,

and understand the spatial-relationship (context) be-
ent classes such as road and side-walk. In typical road
majority of the pixels belong to large classes such
ilding and hence the network must produce smooth
ns. The engine must also have the ability to delineate
ed on their shape despite their small size. Hence it is
0 retain boundary information in the extracted image
on. From a computational perspective, it is necessary
work to be efficient in terms of both memory and
n time during inference. The ability to train end-to-end
jointly optimise all the weights in the network using
weight update technique such as stochastic gradient

his is primarily because max pooling and sub-sampling reduce
feature map resolution. Our motivation to design SegNet arises
from this need to map low resolution features to input resolution
for pixel-wise classification. This mapping must produce features
which are useful for accurate boundary localization.

Our architecture, SegNet, is designed to be an efficient ar-
chitecture for pixel-wise semantic segmentation. It is primarily
motivated by road scene understanding applications which require
the ability to model appearance (road, building), shape (cars,

e V. Badrinarayanan, A. Kendall, R. Cipolla are with the Machine Intelli-
gence Lab, Department of Engineering, University of Cambridge, UK.
E-mail: vb292,agk34,cipolla@eng.cam.ac.uk

Source: Torralba, Freeman, Isola

D) [17] is an additional benefit since it is more easily
pie. The design of SegNet arose from a need to match these
criteria.

The encoder network in SegNet is topologically identical to
the convolutional layers in VGG16 [I]. We remove the fully
connected layers of VGG16 which makes the SegNet encoder
network significantly smaller and easier to train than many other
recent architectures [2]], [4], [11], [18]. The key component of
SegNet is the decoder network which consists of a hierarchy
of decoders one corresponding to each encoder. Of these, the
appropriate decoders use the max-pooling indices received from
the corresponding encoder to perform non-linear upsampling of
their input feature maps. This idea was inspired from an archi-
tecture designed for unsupervised feature learning [19]. Reusing
max-pooling indices in the decoding process has several practical
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Depth perception
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Vision systems

Two cameras N cameras
One camera

N
v

\
\ \‘

\
A

00 Source: Torralba, Freeman, Isola
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Learning based models

D. Hoiem, A.A. Efros, and M. Hebert, A. Saxena, M. Sun, A. Y. Ng. 2007.
SIGGRAPH 2005. my .= :

Make3D

Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng.
NeurIPS 18 2005.

Karsch et al.

Ladicky et al.

58 Source: Torralba, Freeman, Isola



_} 3D scene understanding
N the deep net era

59 Source: Torralba, Freeman, Isola



N the deep learning era

Ground truth is collected by
using traditional methods

60 Source: Torralba, Freeman, Isola



Datasets

KITTI Cityscapes

Velodyne HDL-64E Laserscanner

Point Gray Flea 2
Video Cameras

“Are we ready for Autonomous Driving? The KIT T1Vision Benchmark Surte”, Geiger et al, CVPR'| 2
"The Cityscapes Dataset for Semantic Urban Scene Understanding’’, Cordts et al.,, CVPR'| 6

61 Source: Torralba, Freeman, Isola



Datasets

Crtyscapes

62 Source: Torralba, Freeman, Isola



Depth estimation

Learner
Objective
scale invariant MSE in log space
Regular old
Hypothesis space — f supervised
inal
Deep Neural Network learning!
N
imi *=argmin Y L(f(x;),y;
Optimizer f g ; (f (i), yi)

SGD

63 Source: Torralba, Freeman, Isola



Depth estimation

Teacher

SGD

_/_;f//

Student

64 Source: Torralba, Freeman, Isola



Depth estimation

Input Image

=

065

[

Result of

Predicted depth map

‘ @'v I

—igen et al., NIPS, 2014]

Source: Torralba, Freeman, Isola



Regression problem

Estimate log depth instead of depth (matches human capabilities better).
Defining y; the ground truth depth on pixel i, and y~; its estimated depth:

1 n
Standard L2 error: DLz(y, y*) — — Z (lOg Y — lOg yi*)z

& =1

- [ i

Scale invariant error: DSI(y9 y*) —r Z (lOg yi _ l()g yi>l< -+ a(y, y*))

& =1

with - (Y, y*) = - i (logy; — log y¥)
’ " ] ]

j=1
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Training:

* Training loss: Mixture of both error measures (best \lambda=0.5):

Standard L2 error: Scale invariant error:

J = AD (v, y*) + (1 = H)Dg(y, y*)

Depth contains missing values. Only evaluate on valid pixels.

67 Source: Torralba, Freeman, Isola



Results (best)

Input Prediction Ground truth
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Results worst)

bkl & ] 1 || ' ’)Jlu’ 1”11“\
ey lll " l\l ‘(_

Prediction Ground truth
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Results

Prediction Ground-truth
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Intuitive physics

[“Learning to See Physics via Visual De-animation”, Wu et al., NIPS 2017]

71 Source: Torralba, Freeman, Isola



Intuitive physics

physical world physical world
% % A5
tN t t

visual data visual data

[“Learning to See Physics via Visual De-animation”, Wu et al., NIPS 2017]
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Semantic segmentation

"A bunch of bird stuft”

Source: Torralba, Freeman, Isola



Object detection

Classification and localization

—ach bounding box Is:
[X,y,w,N]

Challenge: unbounded numlber of detections, possibly multiple detections per pixel

- Source: Torralba, Freeman, Isola



PASCAL Visual Object Challenge

N “Mg

a2\

' . personTrunc

personFrontPersonTruncDifficult

A%
L -

..n'a : "' .“' : ,
. r."'.’r’ person

carRightTr

3
-'0.l Feoninnc chair personTrunc .. hairTruncDifficult - - o -pif
personTrunc Pl Liva TS ychair runcumcult, cna

oo ot T i Ty ff,, personLeftTrunc

'Ul nAan IIMII .

personTrunc

chair” runcDifficult chairTiuncDifficult

(N )
I.

personTrunc

s (u]] ;LeftTrunc
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Searching for objects

Scanning window approach
& Image pyramids

76 Source: Torralba, Freeman, Isola



Image pyramids

rr Source: Torralba, Freeman, Isola



The Gaussian pyramid

S12x512 256><256 128><128 64x64 32x32
| : ' a & €

(original 1mage)

/8 Source: Torralba, Freeman, Isola



Could detect on each level of Gaussian pyramid...

Gaussian image pyramid Feature pyramid

predict

predict

[Lin et al., “Feature Pyramid Networks for Object Detection”, 2017]
79 Source: Torralba, Freeman, Isola



Image and features pyramids

ConvNet architectures build:

E?ch poo:cing reduces the resolution by  Multiscale feature hierarchies, but
a factor of 2

e * each layer builds a different representation
VGGnet e first layers are low level, while

* |ast layers are high level.

A feature pyramid requires a uniform
. representations across scales.
/ D=512
D=409% D=409 D=1000
: | | | ( | ]
224x224 112x112 o x50 28x28 14x74 FC FC FC + Softmax
NN \ \ \

30 Source: Torralba, Freeman, Isola




Image and features pyramids

Image pyramid

Encoder-decoder architecture (U-Net)

// / @ predlct Feature pyramid
> predict
predict

/ > predict

81 Source: Torralba, Freeman, Isola




Searching for objects

Scanning window approach

. Selective search
& Image pyramids

Input image Candidate bounding boxes
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Selective search

Stage 1: generate candidate bounding boxes

o - \ ,_[\ — ‘_
\ | b
; I. ' ,
' g J
— = -
: = = I —
Input image Edge detection Bounding box proposal
g . . Zitnick and Dollar, "Edge Boxes...”, 2014
Stage 2: apply classifier to each candidate bounding box | J |
Model False Positives Training Examples
SVM Search for — Add to training 5*-‘
Object hypotheses (Histogram Intersection fms = , Tmmes’
S Il Dirricult negatives G
—

{ - ) '
- i = . ! 3
—i= L s -4
‘.' =il if overlap with
‘ | LSSl positive 20-50%
| P C ‘wlH
- T T T
: Retrain

Source: Torralba, Freeman, Isola 83  [Uijlings et al., "Selective Search for Object Recognition”, 2013]



Next time: More object detection



