University of Michigan
EECS 504: Foundations of Computer Vision
Winter 2020. Instructor: Andrew Owens.

Problem Set 8: Representation Learning

Posted: Tuesday, March 17, 2020 Due: Tuesday, March 24, 2020

For Problem 8.1, please submit your solution to Canvas as a notebook file (.ipynb),
containing the visualizations that we requested. Your .ipynb notebook should be named as
<unique name> <umid>.ipynb. Example: adam_01100001.ipynb. Also, please remember to
put your name and unique name in the first text block of the notebook.

The starter code can be found at:
https://drive.google.com/open?id=1dnFT5uNCcyk7c3Nr3qcZbibkxpdJZnCs

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 8.1 Autoencoders (4 pts)

We'll start by implementing a simple self-supervised learning method: an autoencoder. The
autoencoder is composed of an encoder and a decoder. The encoder often compresses the
original data with a funnel-like architecture, i.e., it throws away redundant information by
reducing the layer sizes gradually. The final output size of the encoder is a bottleneck that is
much smaller than the size of the original data. The decoder will use this limited amount of
information to reconstruct the original data. If the reconstruction is successful, the encoder
has arguably captured a useful, concise representation of the original data.

Such representations could help with downstream tasks such as object recognition, semantic
segmentation, etc. Here, to test the usefulness of the representation, we’ll train the encoders
on the STL-10 dataset, which is designed to evaluate unsupervised learning algorithms. This
dataset contains 100,000 unlabeled images, 5,000 labeled training images, and 8,000 labeled test
images. To keep training time short, we’ll use 10,000 unlabeled images to learn representations.
Then, given this learned representations, we’ll train a linear classifier on the 5,000 training
images. The accuracy is then measured on the test set. If the learned representations are
useful, we should obtain a performance improvement over only using the small, labeled training
set.

1. We will build a small convolutional autoencoder (2 pts) and train it on the STL-10 dataset
(0.5 pt).

2. With the trained autoencoder, we freeze the parameter of the encoder and train a linear
classifier on the autoencoder representations, i.e., the output of the encoder. You will compare

https://umich.instructure.com/courses/357653
https://drive.google.com/open?id=1dnFT5uNCcyk7c3Nr3qcZbibkxpdJZnCs
http://ai.stanford.edu/~acoates/stl10/

bird | dog | bird | horse | cat | truck | monkey | deer
| dog | ship | airplane | horse | airplane | ship | monkey | horse
| deer | horse | car | car | bird | bird | horse | car
| bird | ship | dog | bird | dog | dog | airplane | airplane
| airplane | bird | cat | horse | monkey | car | bird | cat

| bird | horse | bird | cat | monkey | deer | cat | airplane
| horse | monkey | horse | dog | ship | airplane | horse | bird
| cat | horse | ship | car | car | truck | truck | dog

Figure 1: Sample images from STL-10 dataset.

the accuracy of the linear classifier with two other linear classifiers. One is trained together
with the encoder and the other one is trained on top of a randomly initialized encoder. Confirm
that the unsupervised pretraining improves the classification accuracy compared to the random
baseline. (1.5 pts)

List of functions/classes to implement:
1. class Encoder (1 pt)

2. class Decoder (1 pt)

def train_ae (0.5 pt)

- W

def train classfier (1 pt)

5. Report results at the end of the notebook (0.5 pt)

Problem 8.2 Contrastive Multiview Coding (6 pts)

Contrastive learning is an approach to self-supervised learning [1, 2, 3] that avoids the need
to explicitly generating images. Here, we’ll implement a recent contrastive learning method,
Contrastive Multiview Coding (CMC) [2]. We’ll learn a vector representation for images: in
this representation, two artificially corrupted versions of a given image should have a large dot

L: Luminance Az green to red B: blue to yellow Original RGB image

J

Figure 2: Lab channels.

product, while dot products of two different images should have a small dot product. In CMC,
these corruptions are views of an image that contain complementary information. For example,
in this problem set, our views will be luminance (i.e. grayscale intensity) and chromaticity (i.e.
color) in the Lab color space. A good representation should create similar vectors for these two
views (i.e. that have a large dot product), and they should therefore contain the information
that is shared between the views. We’ll minimize the loss:

v ho (v, v3)]

=-—E k1 [log .
contrast Towl,.., k+1
{Ul Vg Vg } Z]il he(v%7 U])

(1)

where v; and vy are two different views of the data, k£ is the number of negative samples.
The function hy measures the similarity between the representations of the two views, and is
implemented using a neural network:

fo, (v1) - fo, (v2) 1) 7 ©)

ho(vi,v2) = exp (-

1 for ()l - 1fo, (v2)ll - 7

and fp, and fp, are encoders for extracting representations from view 1 and view 2, respectively.
The constant 7 is the temperature hyperparameter for controlling the range of the numbers

that are exponentiated.

Vi,Va and EV2,V1

We will minimize a symmetric objective function that sums £} « contrast » 1€+
_ Vl,VQ V27V1
L (‘/Yl’ VYQ) - ‘Ccontrast + ‘Ccontrast ' (3)

By minimizing the above loss function, we learn representations from view 1 and view 2 such
that the hg will give high scores for views of the same sample (positive pairs) while assigning
low scores for views coming from different samples.

To represent our views, we’ll use the luminance channel and chrominance channels of the Lab
color space. Like the familiar RGB images, Lab images also contain 3 channels. The first
channel contain brightness (luminance) information of the image while the other two channels
contain color (chrominance) information. We visualize the three channels of a Lab image in
Figure 2.

1. We will implement CMC loss functions and train two encoders. Finally, we will train a
linear classifier on top of the CMC representation to classify the test data. There should be a

significant performance improvement, compared to the autoencoder representations. (6 pts)

List of functions/classes to implement:

1. class EncoderCMC (1 pt)

2. class CMCScore (3 pts)
3. class SoftmaxLoss (0.5 pt)
4. train_cmc (1 pt)

5. Report classifier accuracy at the end of the notebook. (0.5 pt)

References

[1] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[2] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv
preprint arXiw:1906.05849, 2019.

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

