1. This is the differential amplifier (page 200 of text).
$V_{O}=\frac{18 k(30 k+20 k)}{30 k(6 k+18 k)}(12 V)-\frac{20 k}{30 k}(24 V)=-1 V \rightarrow i_{L}=\frac{-1 V}{5 k}=-0.2 m A$.
2. $i_{n}=0 \rightarrow V_{o}=V_{n}+(1 m A)(9 k)=9 V$ since $V_{n}=V_{p}=0$.
$-i_{O}=\frac{9 V}{15 k| | 6 k}+1 m A=3.1 m A \rightarrow i_{O}=-3.1 m A$.
3. Thevenin equivalent of input is $V_{T}=v_{g}\left(\frac{4.8}{3.2+4.8}\right)=0.3 V, \quad R_{T}=4.8 k \| 3.2 k=1.92 k \Omega$.

Inverting amplifier $($ text p.196 $) \rightarrow V_{O}=-\frac{30 k+\sigma 170 k}{1.92 k}(0.3 V)=-(26.5625 \sigma+4.6875)$.
This reaches -10 when $\sigma=0.20$. Hence no saturation for $0<\sigma<0.20$.
4. Inverting summer: $v_{o}=-\left(\frac{72 k}{R_{a}} v_{a}+\frac{72 k}{R_{b}} v_{b}+\frac{72 k}{R_{c}} v_{c}+\frac{72 k}{R_{d}} v_{d}\right)=-\left(6 v_{a}+9 v_{b}+4 v_{c}+3 v_{d}\right)$.
$\rightarrow R_{a}=12 k \Omega ; \quad R_{b}=8 k \Omega ; \quad R_{c}=18 k \Omega ; \quad R_{d}=24 k \Omega$.
5a. $P_{16 k \Omega}=\frac{(0.32 V)^{2}}{16 k \Omega}=6.4 \mu W$.(b) $(0.32 \mathrm{~V})\left(\frac{16 k}{48 k+16 k}\right)=0.08 V . P_{16 k \Omega}=\frac{(0.08 V)^{2}}{16 k \Omega}=0.4 \mu W$.
5c. Ratio $=\frac{6.4 \mu W}{0.4 \mu W}=16$. (d) This circuit isolates the weak 320 mV source from the load. The op-amp supplies current and voltage so that its output follows the input.
6. Noninverting amp with input $v_{g} \frac{5.6 k}{2.4 k+5.6 k}=0.7 v_{g}$ and gain $1+\frac{75 k}{15 k}=6$.

Without saturation, $v_{o}(t)=6(0.7) 10 \sin (\pi / 3) t=42 \sin (\pi / 3) t$ for $t>0$.
With saturation at $\pm 21 V$, the sine wave clips at $\pm 21 V$.
7a. $i_{n}=0 \rightarrow v=v_{p}=v_{n}=v_{o}\left(\frac{R}{R+R}\right)=\frac{v_{o}}{2} \rightarrow v_{o}=2 v$.
$i_{p}=0 \rightarrow v_{o}=v-i R$. Combining these $\rightarrow 2 v=v-i R \rightarrow v=-i R$. QED.
7 b . But this relation only holds as long as the op-amp doesn't saturate, i.e., $\left|v_{o}\right|<15 \mathrm{~V}$. So the circuit acts like a negative resistor only over a limited range of v and i.

