1. In \#1a, referring to loops in circuit. In \#1b, referring to nodes in circuit.

1a. Left:36-36=0; Middle:36+18+(-54)=0; Right:-(-54) $+30-84=0$; Upper: $48-30-18=0$.
1b. Left: $12+(-4)+8=16$; Middle: $(-4)+(-10)+14=0$; Right: $22-10=12$.
1c. In alphabet order: $(48)(12)+(18)(-4)-(30)(-10)+(36)(16)-(36)(8)-(-54)(14)-(84)(22)=0$. All of these check out, so the circuit is valid. Note signs are for power dissipated.
2. KCL holds at lower left node; can't write KVL anywhere, so circuit is valid.

Power supplied:100V: -(100)(5)=-500W (so dissipated); 60V: (60)(5)=300W. $20 A \|-25 A=-5 A$ consistent with other $5 \mathrm{~A} ; 60-100=-40 \mathrm{~V}$. Get $5 A \downarrow \|-40 V_{-}^{+}$.

3b. $v_{g}=(1.6 A)(90 \Omega)=144 V . v_{30 \Omega}=(1.6 A)(30 \Omega)=48 V . v_{\text {source }}=144+48=192 \mathrm{~V}$.
3a. $i_{a}=192 \mathrm{~V} / 80 \Omega=2.4 A$. $i_{g}=i_{a}+1.6 A=2.4+1.6=4 A$. In $\# 3 \mathrm{c}$, all powers in watts.
3c. $P_{80 \Omega}=(2.4)^{2}(80)=460.8 . \quad P_{30 \Omega}=(1.6)^{2}(30)=76.8 . \quad P_{90 \Omega}=(1.6)^{2}(90)=230.4$. $P_{\text {source }}=(192 V)(4 A)=768$ supplied. $460.8+76.8+230.4=768$ checks.

4a,b. Straightforward way: $50-4\left(i_{a}+i_{b}\right)-20 i_{a}=0$ and $50-4\left(i_{a}+i_{b}\right)-80 i_{b}=0$. Solving 2 equations in 2 unknowns $\rightarrow i_{a}=2 A, i_{b}=\frac{1}{2} A$. Clever but easier way: $20 \Omega, 80 \Omega$ same voltage $\rightarrow i_{a}=4 i_{b} \rightarrow 50-4\left(5 i_{b}\right)-80 i_{b}=0 \rightarrow i_{b}=\frac{1}{2} A, i_{a}=2 A$.
4c. $v_{o}=(80 \Omega) i_{b}=40 \mathrm{~V}$. OR: $v_{o}=50 \mathrm{~V}-(4 \Omega)\left(i_{a}+i_{b}\right)=50 \mathrm{~V}-(4 \Omega)\left(2 A+\frac{1}{2} A\right)=40 \mathrm{~V}$.
4d. $P_{4 \Omega}=\left(i_{a}+i_{b}\right)^{2}(4 \Omega)=25 W . P_{20 \Omega}=i_{a}^{2}(20 \Omega)=80 W . P_{80 \Omega}=i_{b}^{2}(80 \Omega)=20 W$.
4e. $P_{50 \mathrm{~V}}=(50 \mathrm{~V})\left(i_{a}+i_{b}\right)=125 \mathrm{~W}$ supplied. $125=25+80+20$ checks.
5. Has to be current source i_{s} and resistor R in parallel (in series \rightarrow constant current). $i_{t}=v_{t} / R-i_{s}$ (Norton equivalent circuit: $i_{s} \uparrow| | R$).
From data: $i_{t}=0 \rightarrow 50=R i_{s}$ and $3=(65 V) / R-i_{s} \rightarrow R=5 \Omega, i_{s}=10 A$.
6a. $R_{a b}=2 \Omega+12 \Omega \| 24 \Omega+6 \Omega=16 \Omega$. In $\# 6$ b, everything is in $k \Omega$:
6b. $20 \| 30| | 24: G_{e q}=1 / 20+1 / 30+1 / 24=(6+4+5) / 120=1 / 8 \rightarrow R_{e q}=8+7=15$. $R_{a b}=15| | 30| | 15: G_{a b}=1 / 15+1 / 30+1 / 15=(2+1+2) / 30=1 / 6 \rightarrow R_{a b}=6 k \Omega$.
7. Connect a $1 A$ current source as suggested. $1 A$ splits into 3 equal currents $@ \frac{1}{3} A$, each of which in turn splits into 2 equal currents @ $\frac{1}{6} A$, which then recombine similarly. Using KVL, the voltage is $(1 \Omega)\left(\frac{1}{3} A\right)+(1 \Omega)\left(\frac{1}{6} A\right)+(1 \Omega)\left(\frac{1}{3} A\right)=\frac{5}{6} V \rightarrow \frac{5}{6} \Omega$.

