1a. Using the $1^{\text {st }}$ trig identity and assuming $C>0$, we have
$C \cos (\omega t-D)=C(\cos D) \cos (\omega t)+C(\sin D) \sin (\omega t)=A \cos (\omega t)+B \sin (\omega t)$
where $A=C \cos D$ and $B=C \sin D \Leftrightarrow C=\sqrt{A^{2}+B^{2}}$ and $\tan D=B / A$. QED.
Use this to relate the sin-and-cosine and phase-shifted-cosine forms of Fourier series.
1b. See overleaf. Amplitude is clearly $5=\sqrt{3^{2}+4^{2}}$ and phase is $-53.13^{\circ}=-\tan ^{-1}\left(\frac{4}{3}\right)$.
To estimate phase from plot, note the cosine is delayed by about $\left(\frac{1}{7}\right)^{t h}$ of a period.
2a. Using the $2^{\text {nd }}$ trig identity, $\frac{1}{2} \cos (2 \pi 27 t)+\frac{1}{2} \cos (2 \pi 28 t)=\cos (2 \pi 0.5 t) \cos (2 \pi 27.5 t)$, which is a sinusoid at 27.5 Hertz whose amplitude varies sinusoidally at 0.5 Hertz. This sounds like a beat: a tone that gets louder and softer sinusoidally in time. Note the period of the amplitude is 1 sec , not 2 sec , since amplitude >0 always.
2 b . See overleaf. This should have tipped you off to the answer to (a).
3. This is $\sin (2 \pi t)-\frac{1}{2} \sin (4 \pi t)+\frac{1}{3} \sin (6 \pi t)-\frac{1}{4} \sin (8 \pi t)+\ldots$ Note $\sin (2 \pi k t)$ is k Hertz. For the 3 plots, see overleaf. Clearly converging to a sawtooth waveform.

4a. $x(t)=1+\frac{4}{\pi} \sin (\pi t)+\frac{4}{3 \pi} \sin (3 \pi t)+\frac{4}{5 \pi} \sin (5 \pi t)+\frac{4}{7 \pi} \sin (7 \pi t)$ using $\omega_{o}=\frac{2 \pi}{T}=\frac{2 \pi}{2}=\pi$ and $a_{o}=\frac{1}{2} \int_{0}^{2} x(t) d t=1$ and $a_{n}=\frac{2}{2} \int_{0}^{2} x(t) \cos (2 \pi n t / 2) d t=\int_{0}^{1} 2 \cos (\pi n t) d t=0$ and $b_{n}=\frac{2}{2} \int_{0}^{2} x(t) \sin (2 \pi n t / 2) d t=\int_{0}^{1} 2 \sin (\pi n t) d t=\frac{2}{n \pi}(1-\cos (n \pi))= \begin{cases}\frac{4}{\pi n} & \text { if } \mathrm{n} \text { odd; } \\ 0 & \text { if } \mathrm{n} \text { even }\end{cases}$
4b. Filtered $x(t)=1+\frac{4}{\pi} \sin (\pi t)+\frac{4}{3 \pi} \sin (3 \pi t)+\frac{4}{5 \pi} \sin (5 \pi t)$. This is plotted overleaf. Note $\omega=5 \pi \Leftrightarrow \mathrm{f}=2.5 \mathrm{~Hz}$ and $\omega=7 \pi \Leftrightarrow \mathrm{f}=3.5 \mathrm{~Hz}$. The filter smoothed edges of $s(t)$.
5. T is the least common multiple of $\mathrm{T} 1=1 / \mathrm{f} 1$ and $\mathrm{T} 2=1 / \mathrm{f} 2$. Let $\mathrm{f}=1 / \mathrm{T}$.
$\mathrm{T}=\mathrm{n} 1 / \mathrm{f} 1=\mathrm{n} 2 / \mathrm{f} 2 \rightarrow(\mathrm{f})(\mathrm{n} 1)=\mathrm{f} 1$ and $(\mathrm{f})(\mathrm{n} 2)=\mathrm{f} 2 \rightarrow \mathrm{f}=$ greatest common divisor of $\mathrm{f} 1, \mathrm{f} 2$.
Key \#6: $\mathrm{f}=7=$ greatest common divisor of 770 and $1477 \rightarrow \mathrm{~T}=1 / 7 \mathrm{sec}$.
Key \#7: $\mathrm{f}=3=$ greatest common divisor of 852 and $1209 \rightarrow \mathrm{~T}=1 / 3 \mathrm{sec}$.
Key \#8: $\mathrm{f}=4=$ greatest common divisor of 852 and $1336 \rightarrow \mathrm{~T}=1 / 4 \mathrm{sec}$.

