1a. Let $Z=R_{L} \| \frac{1}{j \omega C}=\frac{R_{L} /(j \omega C)}{R_{L}+1 /(j \omega C)}=R_{L} /\left(1+j \omega R_{L} C\right)$.
$H(j \omega)=\frac{V_{O}}{V_{I}}=\frac{Z}{Z+R}=R_{L} /\left(R_{L}+R\left(1+j \omega R_{L} C\right)\right)=\frac{1}{R C} /\left(j \omega+\frac{R+R_{L}}{R R_{L} C}\right)$. 1-pole filter.
1b,c. Maximum $|H(j \omega)|=\frac{R_{L}}{R+R_{L}}$ at DC $(\omega=0)$. Check: Capacitor=open circuit at DC.
1 d . $|H(j \omega)|$ down by $\frac{1}{\sqrt{2}}=3 \mathrm{~dB}$ at pole frequency $\omega_{c}=\frac{R+R_{L}}{R R_{L} C}$.
2a,b. (a) $f=\frac{160,000}{2 \pi}=25.46 \mathrm{kHz}$. (b) $160,000=\frac{1}{R C} \rightarrow R=250 \Omega$.
2c. Using 1d, $\omega_{c}=\frac{R+R_{L}}{R R_{L} C}=\frac{1.08}{R C} \rightarrow \frac{R+R_{L}}{R_{L}}=1.08 \rightarrow R_{L}=\frac{R}{0.08}=3125 \Omega$.
2d. Using 1c, $H(j 0)=\frac{R_{L}}{R+R_{L}}=\frac{1}{1.08}=0.926$. Note we don't need values of R or R_{L}.
3a. $\omega_{o}=\frac{1}{\sqrt{L C}}=\sqrt{\frac{10^{3} 10^{12}}{312 \cdot 1.25}}=1.6 \times 10^{6} \frac{\mathrm{rad}}{\mathrm{sec}} . \quad f_{o}=\frac{\omega_{o}}{2 \pi}=254.8 \mathrm{kHz}$.
3b,e. $Q=\frac{\omega_{o} L}{R}=\frac{1.6 \cdot 312 \cdot 1000}{(50+12.5) k \Omega}=8$. Bandwidth $=\beta=\frac{\omega_{o}}{Q}=\frac{1.6 \times 10^{6}}{8}=200 k \frac{\mathrm{rad}}{\sec }=31.83 \mathrm{kHz}$.
3 c, d. $f_{c 1}=f_{o}-\frac{\beta}{2}=254.8-\frac{31.83}{2}=238.9 \mathrm{kHz} . \quad f_{c 2}=f_{o}+\frac{\beta}{2}=254.8+\frac{31.83}{2}=270.7 \mathrm{kHz}$. NOTE: Using formulae on p. $720-722$, get 239.2 kHz and 271.0 kHz (close despite low Q).

4a. $2 \pi(20 k H z)=\omega_{o}=\frac{1}{\sqrt{L C}} \rightarrow L=\frac{10^{9} / 10^{6}}{20(2 \pi(20))^{2}}=3.17 \mathrm{mH}$.
4a. $5=Q=\frac{\omega_{o} L}{R}=\frac{40 \pi 3.17}{R} \rightarrow R=\frac{40 \pi 3.17}{5}=79.58 \Omega$.
4 d . Bandwidth $=\beta=\frac{f_{o}}{Q}=\frac{20}{5}=4 k H z$. Note Q is dimensionless, so use Hz throughout.
4b,c. $f_{c 1}=f_{o}-\frac{\beta}{2}=20-\frac{4}{2}=18 k H z . \quad f_{c 2}=f+o+\frac{\beta}{2}=20+\frac{4}{2}=22 k H z$.
NOTE: Using formulae on p. $720-722$ (ugh), get 18.1 kHz and 22.1 kHz (close despite low Q).
5. Bode magnitude plot starts off level, so no zero at DC $(\omega=0)$.

Up 3 dB (from 1 to 4 dB) at $\omega=1$, so this is a zero frequency.
Levels off at 20 dB , and is down 3 dB (at 17 dB) at $\omega=10 \rightarrow$ pole frequency.
Down $3 \mathrm{~dB}($ at 17 dB$)$ at $\omega=100 \rightarrow$ pole frequency. No further slope changes.
$H(j \omega)=K \frac{j \omega+1}{(j \omega+10)(j \omega+100)} . \quad H(j 0)=1=K \frac{1}{(10)(100)} \rightarrow K=1000$.
6a. High-pass filter $\rightarrow H(j 0)=0, H(j \infty)=1$. See what circuit looks like at these.
$\omega=0: \mathrm{L} \rightarrow$ short, $\mathrm{C} \rightarrow$ open circuit. But circuit $\rightarrow \times$, so can't tell (yet).
$\omega \rightarrow \infty: \mathrm{L} \rightarrow$ open, $\mathrm{C} \rightarrow$ short. Now circuit $\rightarrow \|$, so input=top,output=bottom (or vice-versa).
6 b . Taking the top half of the circuit, and taking Thevenin equivalent of its left half, get $H(j \omega)=(j \omega)^{3} /\left[\left(j \omega+\frac{R}{L}\right)\left(-2 \omega^{2}+j \omega \frac{1}{R C}+\frac{1}{L C}\right]\right.$ for arbitrary R,L,C.
Plugging in $\rightarrow H(j \omega)=\frac{(j \omega)^{3} / 2}{(j \omega+a)\left(-\omega^{2}+j \omega a+a^{2}\right)}$ where $a=3.456 \times 10^{8}=55 \mathrm{MHz}$.
Zeros: 3 at origin. Poles: $-a,-a \frac{1 \pm \sqrt{3}}{2}$. See overleaf for more details.

VOTE: BELOW I USE SEjM (MAKES THUGS A LITTLENEATER)
(a) kNOW FIROM DESCRIPTION IT'SA HIGH-PASS FILTER, SO TRANSFER FUNCTION $\rightarrow 0$ AT LONFREQS. AND $\rightarrow 1$ AT HIGH FREAK.

AT HIGHFREQS: $L \rightarrow O P E N$ SHORT

$$
\begin{aligned}
& \therefore \frac{Y(S)}{U(s)}=\frac{s^{3}}{(s+R / L)\left(2 s^{2}+5 \frac{1}{R c}+\frac{1}{L C}\right)} \\
& \left.(c) R=150, L=0.434 \times 10^{-6}, c=9.65 \times 10^{-12}-\sqrt{5 C}\right) \\
& s^{3} \\
& \left(5+3.456 \times 10^{8}\right)\left(25^{2}+6.91 \times 10^{8} s+2.388 \times 10^{17}\right) \\
& s^{3}
\end{aligned}
$$

WANT XFER FUNCTION TO BE ! OOVINSLY INPUT $=$ TOP OUTPUT $=$ BOTTOM (OR VICE-VERSA)

150 , FOR ANY orientation!

