THM: Take any network of ideal voltage and current sources and resistors. Take any 2 points in the network and connect wires to them \rightarrow device. Then the i-v characteristic of this device is the same as that of its:

Thevenin equivalent:

Norton equivalent:

1. Exception: Pure non-zero current source has no Thevenin equivalent. Exception: Pure non-zero voltage source has no Norton equivalent.
2. Why? $V=V_{O C}+I R_{I N T} \Leftrightarrow I=V / R_{I N T}-I_{S C}$: Connect up I source, solve node equations $\rightarrow V$ depends on I by linear+constant function.
3. So what? If you don't care about any internal voltages or current, replace circuit with its Thevenin/Norton equivalent simplifies analysis.
4. Modelling: We'll use these to model batteries \& amplifier outputs.
5. How to compute? Do any 2 (easiest 2) of the following 3 things:
a. Open-circuit voltage $V_{O C}$: Simply measure voltage with $I=0$.
b. Short-circuit current $I_{S C}$: Clamp a short across the terminals $V=0$ and measure the current flowing out of the " + " terminal.
c. Internal resistance $R_{I N T}$: First set all independent sources to zero (voltage sources \rightarrow shorts; current sources \rightarrow open (gaps)) and measure or compute the resistance between the terminals.
Then: $V_{\text {THEVENIN }}=V_{O C} ; \quad I_{\text {NORTON }}=I_{S C} ; \quad R_{I N T}=V_{O C} / I_{S C}$.
EX\#1: Compute the Thevenin and Norton equivalents of the voltage divider:
$V_{O C}: V_{O C}=V_{S} \frac{R_{1}}{R_{1}+R_{2}}$
$I_{S C}: I_{S C}=V_{S} / R_{2}$
$R_{I N T}: R_{I N T}=R_{1} \| R_{2}$
Thevenin equivalent:

EX\#2: Compute the Thevenin and Norton equivalents of the circuit shown:

$V_{O C}$: Node equation at $X \rightarrow \frac{X-50}{10}+\frac{X-10}{10+20}=1.5 \rightarrow X=51.25 \mathrm{~V}$.
Voltage divider (look carefully) $\rightarrow V_{O C}=\frac{20}{20+10}(51.25-10)=27.5 \mathrm{~V}$.
$I_{S C}:$ Node $\rightarrow \frac{X-50}{10}+\frac{X-10}{10+0}=1.5 \rightarrow X=37.5 \mathrm{~V} \rightarrow I_{S C}=\frac{37.5-10}{10}=2.75 \mathrm{~A}$.
$R_{I N T}$: Set current source $\rightarrow 0 \Leftrightarrow$ open; voltage sources $\rightarrow 0 \Leftrightarrow$ short:
$R_{I N T}=20 \|(10+10)=10 \Omega$. Check: $\frac{V_{O C}}{I_{S C}}=\frac{27.5 \mathrm{~V}}{2.75 \mathrm{~A}}=10 \Omega=R_{I N T}$.

Applications of Thevenin and Norton Equivalents:

1. A battery or stereo output can be modelled by its Thevenin equivalent: The ideal output voltage $V_{O C}$ with an internal resistance $R_{I N T}$.
EX: You test a 1.5 V battery with a voltmeter and get 1.5 V . But when you put it in a flashlight, it doesn't work! Now voltmeter reads 0.5 V ! Why?
Sol'n: Connect load \rightarrow voltage division between $R_{I N T}$ and R_{L}. Bulb: 5Ω. Get $0.5=(1.5) \frac{5}{5+R_{L}} \rightarrow R_{L}=10 \Omega=$ internal resistance of battery.
Ideal: $R_{\text {INPUT }} \rightarrow \infty$ (draws no current); $R_{\text {OUTPUT }}=0 \quad\left(R_{I N T}\right.$ of output).

2. Maximum Power Transfer \Leftrightarrow Load Matching:

Given: Fixed Thevenin equivalent $V_{O C}$ and $R_{I N T}$ of stereo amplifier output.
Want: Variable R_{L} (speaker). What R_{L} maximizes power dissipated in load? Note: $\left(R_{L}=0\right) \rightarrow I_{L}^{2} R_{L}=0 ;\left(R_{L} \rightarrow \infty\right) \rightarrow V_{L}^{2} / R_{L}=0$. Want intermediate R_{L}. Sol'n: Power dissipated in load $=I_{L}^{2} R_{L}=\left(\frac{V_{O C}}{R_{I N T}+R_{L}}\right)^{2} R_{L}$. Minimize wrt R_{L} : $\frac{d}{d R_{L}}\left[\left(\frac{V_{O C}}{R_{I N T}+R_{L}}\right)^{2} R_{L}\right]=0 \rightarrow R_{L}=R_{I N T}$: Match load to source.
EX: Stereo has $R_{I N T}=8 \Omega \rightarrow$ use 8Ω speakers, not (say) 16Ω speakers. Mechanical Analogue: shifting gears in car or bicycle.
3. Circuit with nonlinear device: Thevenin of circuit "seen" by device. EX: See Problem Set \#5. Try solving that without Thevenin equivalent!

