THM: Take any network of ideal voltage and current sources and resistors. Take any 2 points in the network and connect wires to them→device. Then the i-v characteristic of this device is the same as that of its: Thevenin equivalent: Norton equivalent:

- 1. Exception: Pure non-zero current source has no Thevenin equivalent. Exception: Pure non-zero voltage source has no Norton equivalent.
- 2. Why? $V = V_{OC} + IR_{INT} \Leftrightarrow I = V/R_{INT} I_{SC}$: Connect up I source, solve node equations $\rightarrow V$ depends on I by linear+constant function.
- 3. So what? If you don't care about any *internal* voltages or current, replace circuit with its Thevenin/Norton equivalent simplifies analysis.
- 4. Modelling: We'll use these to *model* batteries & amplifier outputs.
- 5. How to compute? Do any 2 (easiest 2) of the following 3 things:
 - a. **Open-circuit voltage** V_{OC} : Simply measure voltage with I = 0.
 - b. Short-circuit current I_{SC} : Clamp a short across the terminals V = 0 and measure the current flowing *out of* the "+" terminal.
 - c. Internal resistance R_{INT} : First set all independent sources to zero (voltage sources \rightarrow shorts; current sources \rightarrow open (gaps)) and measure or compute the resistance between the terminals.

Then: $V_{THEVENIN} = V_{OC}$; $I_{NORTON} = I_{SC}$; $R_{INT} = V_{OC}/I_{SC}$.

EX#1: Compute the Thevenin and Norton equivalents of the **voltage divider**: $V_{OC}: V_{OC} = V_S \frac{R_1}{R_1 + R_2}$ $I_{SC}: I_{SC} = V_S/R_2$ $R_{INT}: R_{INT} = R_1 || R_2$ **Thevenin equivalent**: $V_S R_2 R_1$ $V_R R_1 V$ $R_1 R_2 - V_R R_1$ $V_R R_1 V$ $V_R R_1 V R_1 V R_1 V R_1 V$ $V_R R_1 V R_1$

EX#2: Compute the Thevenin and Norton equivalents of the circuit shown:

 V_{OC} : Node equation at $X \to \frac{X-50}{10} + \frac{X-10}{10+20} = 1.5 \to X = 51.25V$. Voltage divider (look carefully) $\to V_{OC} = \frac{20}{20+10}(51.25-10) = 27.5V$.

 I_{SC} : Node $\rightarrow \frac{X-50}{10} + \frac{X-10}{10+0} = 1.5 \rightarrow X = 37.5V \rightarrow I_{SC} = \frac{37.5-10}{10} = 2.75A.$

 R_{INT} : Set current source $\rightarrow 0 \Leftrightarrow$ open; voltage sources $\rightarrow 0 \Leftrightarrow$ short: $R_{INT} = 20 ||(10 + 10) = 10\Omega$. Check: $\frac{V_{OC}}{I_{SC}} = \frac{27.5V}{2.75A} = 10\Omega = R_{INT}$.

Applications of Thevenin and Norton Equivalents:

- 1. A battery or stereo output can be modelled by its Thevenin equivalent: The ideal output voltage V_{OC} with an **internal resistance** R_{INT} .
- **EX:** You test a 1.5V battery with a voltmeter and get 1.5V. But when you put it in a flashlight, it doesn't work! Now voltmeter reads 0.5V! Why?

Sol'n: Connect load \rightarrow voltage division between R_{INT} and R_L . Bulb: 5 Ω . Get $0.5 = (1.5) \frac{5}{5+R_L} \rightarrow R_L = 10\Omega$ =internal resistance of battery.

Ideal: $R_{INPUT} \to \infty$ (draws no current); $R_{OUTPUT} = 0$ (R_{INT} of output).

2. Maximum Power Transfer⇔Load Matching:

Given: Fixed Theoremin equivalent V_{OC} and R_{INT} of stereo amplifier output. **Want: Variable** R_L (speaker). What R_L maximizes power dissipated in *load*? **Note:** $(R_L=0) \rightarrow I_L^2 R_L=0; (R_L \rightarrow \infty) \rightarrow V_L^2/R_L=0$. Want intermediate R_L .

- Sol'n: Power dissipated in load= $I_L^2 R_L = (\frac{V_{OC}}{R_{INT}+R_L})^2 R_L$. Minimize wrt R_L : $\frac{d}{dR_L}[(\frac{V_{OC}}{R_{INT}+R_L})^2 R_L] = 0 \rightarrow R_L = R_{INT}$: Match load to source.
 - **EX:** Stereo has $R_{INT} = 8\Omega \rightarrow \text{use } 8\Omega$ speakers, not (say) 16 Ω speakers. Mechanical Analogue: shifting gears in car or bicycle.

3. Circuit with *nonlinear* device: Thevenin of circuit "seen" by device.

EX: See Problem Set #5. Try solving that *without* Thevenin equivalent!