Signals: Voltages or currents that varies with time.
Examples: Audio signals include speech and music.
Musical notes (middle C is a 254 Hz sinusoid), octaves.
Periodic: $x(t)$ has period $T \leftrightarrow x(t)=x(t+T)$ repeats every T.
Examples: Musical tones; EKGs (heart); 60 Hz wall sockets.
Then: Periodic signals can be decomposed into sinusoids:
Periodic signal=sum of sinusoids at frequencies which are integer multiples of the fundamental frequency $=\frac{1}{T} \mathrm{~Hz} \sim$ prism. Have frequency content. See Fourier series handout for details.

Circuits: Components connected together in a network.
Components: Resistors, inductors, capacitors, sources.
Examples: Op-amps modelled using dependent sources.
Systems: Use of a circuit to process signals to do something.
Filters: Circuits that affect the frequency content of a signal.
EX \#1: Low-pass filters to reduce noise in sensor signals;
EX \#2: Bass and treble controls or graphic equalizers;
EX \#3: Dolby noise reduction; preemphasis and deemphasis.
Sinusoid: Signal having form $x(t)=A \cos (\omega t+\theta)$ where:
Amplitude: $\mathrm{A}=\left(\right.$ usual) amplitude; $2 \mathrm{~A}=$ peak-to-peak amplitude $A_{p p}$;
Amplitude: $\frac{A}{\sqrt{2}} \approx 0.707 A=r m s$ amplitude $A_{r m s} ; 20 \log _{10} A_{r m s}=d B V$. Why? $A_{p p}$ easy to measure on scope; $A_{r m s}$ for AC power (see later). $A_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} A^{2} \cos ^{2}(\omega t+\theta) d t}=\frac{A}{\sqrt{2}}$ if $\omega \neq 0 . \omega=0 \rightarrow \mathrm{DC}$ value.

Frequency: $\omega=$ circular frequency in $\frac{\text { radians }}{\text { second }}$;
Frequency: $\omega=2 \pi f$ where $f=$ frequency in Hertz ($\left.\frac{\text { cycles }}{\text { second }}\right)$.
Period: $T=\frac{1}{f}=\frac{2 \pi}{\omega}$. Sinusoid repeats every $T: x(t)=x(t+T)$.
Phase: $\theta=$ phase (shift) in radians or degrees. 1 radian $=\frac{180}{\pi} \approx 57.3^{\circ}$.
Example: Voltage in wall socket: $v(t)=170 \cos (377 t+\theta)$ for some θ. Amplitude: $A_{\text {usual }}=170$ volts; $A_{p p}=340$ volts; $A_{r m s}=120$ volts. Frequency: $T=\frac{1}{60}$ seconds; $f=60 \mathrm{~Hz} ; \omega=377 \frac{\text { radians }}{\text { second }}$. where: Approximating $170 \approx 120 \sqrt{2}$ and $377 \approx 2 \pi 60$ (quite close).

