Signals: Voltages or currents that varies with time. Examples: Audio signals include speech and music. Musical notes (middle C is a 254 Hz sinusoid), octaves.

Periodic: x(t) has period $T \leftrightarrow x(t) = x(t+T)$ repeats every T. **Examples:** Musical tones; EKGs (heart); 60 Hz wall sockets. **Then:** Periodic signals can be decomposed into sinusoids:

Periodic signal=sum of sinusoids at frequencies which are integer multiples of the fundamental frequency= $\frac{1}{T}$ Hz~prism. Have **frequency content.** See Fourier series handout for details.

Circuits: Components connected together in a network. **Components:** Resistors, inductors, capacitors, sources. **Examples:** Op-amps modelled using dependent sources.

Systems: Use of a circuit to *process* signals to do something.
Filters: Circuits that affect the frequency content of a signal.
EX #1: Low-pass filters to reduce noise in sensor signals;
EX #2: Bass and treble controls or graphic equalizers;
EX #3: Dolby noise reduction; preemphasis and deemphasis.

Sinusoid: Signal having form $x(t) = A\cos(\omega t + \theta)$ where: Amplitude: A=(usual) amplitude; 2A=peak-to-peak amplitude A_{pp} ; Amplitude: $\frac{A}{\sqrt{2}} \approx 0.707A=rms$ amplitude A_{rms} ; $20\log_{10}A_{rms}=dBV$. Why? A_{pp} easy to measure on scope; A_{rms} for AC power (see later). $A_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} A^{2} \cos^{2}(\omega t + \theta) dt} = \frac{A}{\sqrt{2}}$ if $\omega \neq 0$. $\omega = 0 \rightarrow$ DC value.

Frequency: $\omega = \text{circular frequency in } \frac{radians}{second};$ **Frequency:** $\omega = 2\pi f$ where $f = \text{frequency in Hertz } (\frac{cycles}{second}).$ **Period:** $T = \frac{1}{f} = \frac{2\pi}{\omega}$. Sinusoid repeats every T: x(t) = x(t+T).**Phase:** $\theta = \text{phase (shift) in radians or degrees. 1 radian<math>=\frac{180}{\pi} \approx 57.3^{\circ}.$

Example: Voltage in wall socket: $v(t) = 170 \cos(377t + \theta)$ for some θ . **Amplitude:** $A_{usual} = 170$ volts; $A_{pp} = 340$ volts; $A_{rms} = 120$ volts. **Frequency:** $T = \frac{1}{60}$ seconds; f = 60 Hz; $\omega = 377 \frac{radians}{second}$. where: Approximating $170 \approx 120\sqrt{2}$ and $377 \approx 2\pi60$ (quite close).