HOW TO GET POWER: Read The Prince by N. Machiavelli.
HOW TO DEFINE IT: Power(watts) is energy(joules) per unit time(seconds).
To move charge q "upward" across potential difference v takes energy $E=v q$.
A charge q "falling" from higher to lower potential gains energy $E=v q$.
This energy has to be dissipated somewhere.
If this happens continuously in time, as with current (flowing charge),
$\operatorname{Power}($ watts $)=\frac{d E}{d t}=\frac{d}{d t}(v q)=v \frac{d q}{d t}=v i=($ volts $)(\mathrm{amps})$.
If potential difference caused by resistor for which $v=i R$, Power $=v i=i^{2} R=v^{2} / R$.
Note this is always non-negative. Makes sense: resistors dissipate power (get warm).

Instantaneous and Average Power for Sinusoidal Voltages and Currents

Now let $v(t)=V_{0} \cos (\omega t+\phi)$ for any $\omega \neq 0, V_{0}, \phi$.
DEF: Instantaneous power dissipated $=p(t)=v(t) i(t)=i^{2}(t) R=v^{2}(t) / R$.
Here $p(t)=\frac{1}{R} V_{0}^{2} \cos ^{2}(\omega t+\phi)=\frac{1}{R} V_{0}^{2} \frac{1}{2}(1+\cos (2 \omega t+2 \phi))$.
This is a sinusoid+constant, and the frequency of the sinusoid has doubled.
DEF: Average power dissipated $=\bar{p}=\frac{1}{P} \int_{t_{0}}^{t_{0}+P} p(t) d t$ where $P=\frac{2 \pi}{\omega}=$ period. Here
$\bar{p}=\frac{1}{P} \int_{t_{0}}^{t_{0}+P} \frac{1}{R} V_{0}^{2} \frac{1}{2}(1+\cos (2 \omega t+2 \phi)) d t=\frac{V_{0}^{2}}{2 R}+\frac{V_{0}^{2}}{2 R} \frac{1}{P} \int_{t_{0}}^{t_{0}+P} \cos (2 \omega t+2 \phi) d t=\frac{V_{0}^{2}}{2 R}$.
IN WORDS: the average value of a constant is the constant (here $\frac{V_{0}^{2}}{2 R}$);
the average value of a sinusoid over an integer number of periods is zero.

RMS (Root Mean Square) Voltage and Current

Being lazy, we would like to use the same formulae $v i=i^{2} R=v^{2} / R$ for both constant v and i and sinusoidal v and i.
We can do this by defining the rms voltage to be $V_{r m s}=\frac{V_{0}}{\sqrt{2}}$,
so that $V_{r m s}$ is the peak value of voltage divided by $\sqrt{2}$.
Average power dissipated is $\bar{p}=\frac{V_{r m s}^{2}}{R}=\frac{V_{0}^{2}}{2 R}$ which agrees with the correct answer.
Similarly, we define the rms current to be $I_{r m s}=I_{0} / \sqrt{2}$ where $I_{0}=\frac{V_{0}}{R}$,
so that $I_{r m s}$ is the peak value of current divided by $\sqrt{2}$.
Average power dissipated is $\bar{p}=I_{r m s}^{2} R=I_{0}^{2} R / 2=\frac{V_{0}^{2}}{2 R}$, again correct.
EXAMPLE: A wall socket puts out about $v(t)=170 \cos (2 \pi 60 t)$ volts.
$V_{r m s}=\frac{170}{\sqrt{2}}=120$ volts, which sounds familiar.
But the peak voltage at the wall socket is 170 volts!

