Given: Box containing resistors, inductors, capacitors with voltage and current phasors $v(t)=|V| \cos \left(\omega t+\theta_{v}\right) \Leftrightarrow V=|V| e^{j \theta_{v}} ; \quad i(t)=|I| \cos \left(\omega t+\theta_{i}\right) \Leftrightarrow I=|I| e^{j \theta_{i}}$.
Power: $p(t)=i(t) v(t)=|V||I| \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{i}\right)$. Cosine addition formula: $p(t)=\frac{1}{2}|V||I| \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2}|V||I| \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)=$ average + fluctuating power.
Note: Compare to resistor: $p(t)=i(t)^{2} R=|I|^{2} R \cos ^{2}(\omega t)=\frac{1}{2}|I|^{2} R(1+\cos (2 \omega t))$.
AVERAGE POWER: $\bar{p}=\frac{1}{2}|V||I| \cos \left(\theta_{v}-\theta_{i}\right)=\frac{1}{2} R E\left[V I^{*}\right]$.
$\bar{p}=R E\left[V_{r m s} I_{r m s}^{*}\right]=\left|V_{r m s}\right|\left|I_{r m s}\right| \cos \left(\theta_{v}-\theta_{i}\right)$, where $V_{r m s}=\frac{V}{\sqrt{2}}, I_{r m s}=\frac{I}{\sqrt{2}}$.
$\bar{p}=\frac{1}{2}|I|^{2} R E[Z]=\frac{1}{2}|V|^{2} R E[Y]$ where $Z=\frac{V}{I}$ and admittance $Y=\frac{I}{V}$ for the box.
EXAMPLE: Sinusoidal voltage source with phasor $V_{r m s}=120 v$ at 60 Hz drives a blender: 30Ω resistor in series with a $\frac{40}{377} H$ inductor. What power is dissipated?
We have $Z=R+j \omega L=30+j(2 \pi 60) \frac{40}{377}=30+j 40 \Omega$ and then
$\bar{p}=\left|V_{r m s}\right|^{2} R E[Y]=(120)^{2} R E\left[\frac{1}{30+j 40}\right]=(120)^{2} R E\left[\frac{30-j 40}{(50)^{2}}\right]=172.8$ Watts.
Note that the voltage and current are $\tan ^{-1}\left(\frac{40}{30}\right)=53^{\circ}$ out of phase.
POWER FACTOR: $p f=\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(53^{\circ}\right)=0.6$ for this example.
SIGNIFICANCE OF POWER FACTOR: $\left|I_{r m s}\right|=\frac{\left|V_{r m s}\right|}{|Z|}=\frac{120}{50}=2.4 \mathrm{Amps}$.
The apparent power delivered by source is $\left|V_{r m s}\right|\left|I_{r m s}\right|=288$ voltamps.
Hence it requires more current than it "should" to deliver 172.8 Watts to the load.

This causes the following problems:

1. Extra current must be generated by the source;
2. Wires must be bigger to carry the extra current without overloading;
3. Losses due to wire resistance dissipating power are greater.
4. Wire resistance \rightarrow voltage drop \rightarrow source voltage must be bigger.

Detroit Edison applies surcharges to industrial users if $p f<0.9$ or so, since it costs them money to build more power lines and supply more power.

What can we, as electrical engineers, do about this? SEE OVER.

MAXIMUM POWER TRANSFER:

Fixed source: Thevenin equivalent voltage phasor V_{s}; impedance Z_{s}. Load: Z_{L}. What should (variable) Z_{L} be to maximize the power dissipated in the load Z_{L} ?

SOLUTION: Let $Z_{s}=R_{s}+j X_{s}$ and $Z_{L}=R_{L}+j X_{L}$ where $X_{i}=$ reactance.

$$
\bar{p}=\frac{1}{2}|I|^{2} R E\left[Z_{L}\right]=\frac{1}{2}\left|\frac{V_{s}}{\left(R_{s}+R_{L}\right)+j\left(X_{s}+X_{L}\right)}\right|^{2} R_{L}=\frac{\left|V_{s}\right|^{2}}{2} \frac{1}{\left(R_{s}+R_{L}\right)^{2}+\left(X_{s}+X_{L}\right)^{2}} R_{L} .
$$

Clearly $X_{L}=-X_{s}$; this is possible since reactance, unlike resistance, can be negative!
The problem is now a purely resistive problem; from before we know $R_{L}=R_{s}$. We can combine $X_{L}=-X_{s}$ and $R_{L}=R_{s}$ into the single equation $Z_{L}=Z_{s}^{*}$.

CORRECTION OF POWER FACTOR:

FACT: Almost all loads "look inductive": voltage leads current.
This is because so many loads include coils (motors, speakers) which can be modelled as an inductor (the coil) in series with a resistor (coil resistance).
IDEA $\# \mathbf{1}$: Connect a capacitor C in series with the load:
Choose C so that $j \omega L+\frac{1}{j \omega C}=0 \rightarrow C=\frac{1}{\omega^{2} L}$.
Then $Z=R+j \omega L+\frac{1}{j \omega C}=R$ and the power factor is now 1 .
EXAMPLE: For above example we want $C=1 /\left[(377)^{2} \frac{40}{377}\right]=67 \mu F$.
PROBLEM: The power dissipated is now $\frac{(120)^{2}}{30}=480$ Watts since the current has jumped from $\left|I_{r m s}\right|=2.4 \mathrm{Amp}$ to $\left|I_{r m s}\right|=4 \mathrm{Amp}$.

CONCLUSION: If load is driven by a current source, do this.
The current remains constant, so the power dissipated does not increase.
ASIDE: In fact this is a resonant series $R L C$ circuit, which is interesting in its own right and will be studied later.

IDEA \#2: Connect a capacitor C in parallel with the load:
Then $\bar{p}=\left|V_{r m s}\right|^{2} R E[Y]=\left|V_{r m s}\right|^{2} R E\left[Y_{\text {load }}+j \omega C\right]=\left|V_{r m s}\right|^{2} R E\left[Y_{\text {load }}\right]=$ same.
Since $Y_{l o a d}=\frac{1}{R+j \omega L}=\frac{R-j \omega L}{R^{2}+(\omega L)^{2}}$, we want $\frac{-j \omega L}{R^{2}+(\omega L)^{2}}+j \omega C=0 \rightarrow C=\frac{L}{R^{2}+(\omega L)^{2}}$.
Then total load $Y=\frac{R}{R^{2}+(\omega L)^{2}}$ is real $\rightarrow p f=1 \rightarrow \bar{p}=\left|V_{r m s}\right|^{2} \frac{R}{R^{2}+(\omega L)^{2}}=$ same.
The capacitor draws additional current at a different phase to make the total current drawn from the voltage source be in phase with the voltage.
EXAMPLE: Continuing the above example, $C=\frac{40 / 377}{(30)^{2}+(40)^{2}}=42.4 \mu \mathrm{~F}$.
The current is now $I_{r m s}=V_{r m s} Y=120\left[\frac{1}{30+j 40}+j(2 \pi)(60)\left(42.4 \times 10^{-6}\right)\right]$ $=2.4 e^{-j 53^{\circ}}+j 1.92=1.44+j 0 \mathrm{Amp} \rightarrow$ in phase with voltage 120 v .

Power dissipated is $V_{r m s} I_{r m s}=(120 v)(1.44 A m p)=172.8$ Watts.
Since $V_{r m s}$ and $I_{r m s}$ are in phase, we just multiply them to get power:
Apparent power (in voltamps) and power dissipated (in watts) are equal since $p f=1$.
CONCLUSION: If load is driven by a voltage source, do this.
The voltage remains constant, so the power dissipated does not increase.
COMPLEX POWER: We can write $S=V_{r m s} I_{r m s}^{*}=|S| e^{j \theta}=P+j Q$ where
$S=$ complex power and $|S|=$ apparent power (in voltamps);
$P=|S| \cos (\theta)=$ power dissipated (in watts);
$Q=|S| \sin (\theta)=$ reactive power (in vars [VoltAmpsReactive]).
Correcting the power factor to 1 is equivalent to making $Q=0$.

