EECS 210 COMPLEX NOS REPRESENTING SINUSOIDS Winter 2001
Given: Circuit with: resistors, inductors, capacitors, sinusoidal sources.
Goal: Compute any voltage or current in the circuit. Know: also sinusoids. Want: Amplitude and phase of the sinusoid for each voltage or current.

EX: Voltage source $5 \cos (6 t)$ in series with 4Ω resistor and $\frac{1}{2} H$ inductor.
Goal: Compute the current $i(t)$ which flows through all three devices.
Hard KVL $\rightarrow 5 \cos (6 t)-4 i-\frac{1}{2} \frac{d i}{d t}=0$. How do we solve this for $i(t)$?
Way: Trial solution: $i(t)=A \cos (6 t)+B \sin (6 t)$. Substitute this in KVL: $5 \cos (6 t)-4 A \cos (6 t)-4 B \sin (6 t)+\frac{1}{2} 6 A \sin (6 t)-\frac{1}{2} 6 B \cos (6 t)=0$. $[5-4 A-3 B] \cos (6 t)+[-4 B+3 A] \sin (6 t)=0$. Set $t=0$ and $\frac{\pi}{12} \rightarrow$ $5=4 A+3 B$ and $0=3 A-4 B$. Solving $\rightarrow A=0.8$ and $B=0.6$.
Soln: $i(t)=0.8 \cos (6 t)+0.6 \sin (6 t)=\cos \left(6 t-37^{\circ}\right)$ using Problem Set \#1.
Easy Trial sol'n: $I(t)=I e^{j 6 t}$. Substitute in KVL with $5 \cos (6 t) \rightarrow 5 e^{j 6 t}$:
Way: $5 e^{j 6 t}-4 I e^{j 6 t}-\frac{1}{2} 6 j I e^{j 6 t}=0 \rightarrow I=5 /(4+j 3)=1 e^{-j 37^{\circ}}$ ($e^{j 6 t}$ cancels). $I(t)=1 e^{j\left(6 t-37^{\circ}\right)} \rightarrow i(t)=\operatorname{Re}[I(t)]=\cos \left(6 t-37^{\circ}\right)$. MUCH easier!

Easier: $I=5 /\left(4+j 6 \frac{1}{2}\right)=5 /(4+j 3)=1 e^{-j 37^{\circ}} \rightarrow i(t)=\cos \left(6 t-37^{\circ}\right)$.
Q: What does $5 e^{j 6 t}$ voltage source mean? Complex number voltage?
A: $5 e^{j 6 t}=5 \cos (6 t)+j 5 \sin (6 t)=2$ voltage sources connected in series.
Then: Superposition \rightarrow find response to $5 \cos (6 t)$ by setting $j 5 \sin (6 t)$ to 0 .
Means: Set $j=0 \Leftrightarrow$ take the real part of response (which has form $I e^{j 6 t}$).
Here: $I(t)=$ response to $5 e^{j 6 t} \rightarrow R e[I(t)]=$ response to $\operatorname{Re}\left[5 e^{j 6 t}\right]=5 \cos (6 t)$.
Also: $\operatorname{Im}[I(t)]=$ response to $\operatorname{Im}\left[5 e^{j 6 t}\right]=5 \sin (6 t)$: Solve 2 problems at once!
Phasors: Represent sinusoid $x(t)=M \cos (\omega t+\theta)$ with complex no. $X=M e^{j \theta}$.
Note: $x(t)=\operatorname{Re}\left[X e^{j \omega t}\right]=\operatorname{Re}\left[M e^{j \theta} e^{j \omega t}\right]=\operatorname{Re}\left[M e^{j(\omega t+\theta)}\right]=M \cos (\omega t+\theta)$.
EX\#1: Simplify $x(t)=3 \cos (\omega t)+3 \cos \left(\omega t+120^{\circ}\right)+3 \cos \left(\omega t+240^{\circ}\right)$.
Hard: Use cosine addition formula \rightarrow mess. If do it right, get $x(t)=0$ (?!)
Easy: Phasors: $X=3 e^{j 0}+3 e^{j 120^{\circ}}+3 e^{j 240^{\circ}}=0 \rightarrow x(t)=R e\left[X e^{j \omega t}\right]=0$!
Why? Draw picture in complex plane: easy to see resultant of these $=0$!
EX\#2: Show that $5 \cos \left(\omega t+53^{\circ}\right)+\sqrt{2} \cos \left(\omega t+45^{\circ}\right)=6.4 \cos \left(\omega t+51^{\circ}\right)$.
Soln: $5 e^{j 53^{\circ}}+\sqrt{2} e^{j 45^{\circ}}=(3+j 4)+(1+j)=(4+j 5)=6.4 e^{j 51^{\circ}}$. QED.
Note: $e^{ \pm j \pi}=-1 . j=e^{j \pi / 2}$ and $-j=e^{j 3 \pi / 2} \Leftrightarrow \cos \left(\omega t \pm 90^{\circ}\right)=\mp \sin (\omega t)$.

Idea: Suppose voltage across and current through device are both sinusoids. What: Gain and phase shift in going from current to voltage (and vice-versa).

Phasors: $i(t)=I_{o} \cos (\omega t) \Leftrightarrow I=I_{o}$ and $v(t)=V_{o} \cos (\omega t+\theta) \Leftrightarrow V=V_{o} e^{j \theta}$.
DEF: Impedance $Z=\frac{V}{I}=\frac{V_{o}}{I_{o}} e^{j \theta}$; Admittance $Y=\frac{1}{Z}=\frac{I}{V}=\frac{I_{o}}{V_{o}} e^{-j \theta}$.
Point: Can apply circuit analysis techniques to Z and Y , not just R and G . Note: $e^{j \omega t}$ cancels throughout-don't even bother writing it at all!

Device name:	Resistor	Inductor	Capacitor
Itsformula :	$v(t)=R i(t)$	$v(t)=L \frac{d i}{d t}$	$v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau$
Currenti(t):	$I_{o} \cos (\omega t)$	$I_{o} \cos (\omega t)$	$I_{o} \cos (\omega t)$
Voltage $(\mathbf{t}):$	$R I_{o} \cos (\omega t)$	$-\omega L I_{o} \sin (\omega t)$	$\frac{I_{o}}{\omega C} \sin (\omega t)$
Gain; phase :	$R ; 0$	$\omega L ; \quad+90^{\circ}$	$\frac{1}{\omega C} ;-90^{\circ}$
Impedance Z :	R	$j \omega L$	$\frac{1}{j \omega C}=\frac{-j}{\omega C}$
Admittance $\mathbf{Y}:$	$\frac{1}{R}$	$\frac{1}{j \omega L}=\frac{-j}{\omega L}$	$j \omega C$
Z at $\mathbf{D C}(\omega=\mathbf{0}):$	R	0	∞

DEF: $Z=R+j X$ where $\mathrm{R}=$ resistance and $\mathrm{X}=$ reactance (in Ω). $G \neq 1 / R$. DEF: $Y=G+j B$ where $\mathrm{G}=$ conductance and $\mathrm{B}=$ susceptance. $B \neq 1 / X$.
Note: Impedances in series add; admittances in parallel add. $Z_{1} \| Z_{2}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$.
EX: Capacitors in parallel: $Y=j \omega C_{1}+\ldots+j \omega C_{N}=j \omega\left(C_{1}+\ldots+C_{N}\right)$.

- Phasors are complex nos. that represent voltages, currents and sources.
- Impedances are nos. that represent resistors, inductors, capacitors.
- Circuit analysis includes KVL, KCL, node eqns, Thevenin/Norton.

EX: Illustrate various circuit techniques in the phasor domain:

1. Take Thevenin equivalent of everything left of the 2 H inductor:

2. Now use voltage divider to compute voltage across 2 H inductor: $V_{L}=-\frac{3}{17}\left[\frac{j 2}{j 2+(4-j 6 / 17)}\right]=\frac{-j 6}{68+j 28}=\frac{6 e^{-j 90^{\circ}}}{75 e^{j 20^{\circ}}}=0.080 e^{-j 110^{\circ}}$.
3. Convert from phasor to time domain: $v(t)=0.080 \cos \left(t-110^{\circ}\right)$.
