EECS 210 COMPLEX NOS REPRESENTING SINUSOIDS Winter 2001

Given: Circuit with: resistors, inductors, capacitors, sinusoidal sources.Goal: Compute any voltage or current in the circuit. Know: also sinusoids.Want: Amplitude and phase of the sinusoid for each voltage or current.

EX: Voltage source $5\cos(6t)$ in series with 4Ω resistor and $\frac{1}{2}H$ inductor. **Goal:** Compute the current i(t) which flows through all three devices.

Hard KVL $\rightarrow 5\cos(6t) - 4i - \frac{1}{2}\frac{di}{dt} = 0$. How do we solve this for i(t)? **Way:** Trial solution: $i(t) = A\cos(6t) + B\sin(6t)$. Substitute this in KVL: $5\cos(6t) - 4A\cos(6t) - 4B\sin(6t) + \frac{1}{2}6A\sin(6t) - \frac{1}{2}6B\cos(6t) = 0$. $[5 - 4A - 3B]\cos(6t) + [-4B + 3A]\sin(6t) = 0$. Set t = 0 and $\frac{\pi}{12} \rightarrow 5 = 4A + 3B$ and 0 = 3A - 4B. Solving $\rightarrow A = 0.8$ and B = 0.6. **Soln:** $i(t) = 0.8\cos(6t) + 0.6\sin(6t) = \cos(6t - 37^{\circ})$ using Problem Set #1.

Easy Trial sol'n: $I(t) = Ie^{j6t}$. Substitute in KVL with $5\cos(6t) \to 5e^{j6t}$: **Way:** $5e^{j6t} - 4Ie^{j6t} - \frac{1}{2}6jIe^{j6t} = 0 \to I = 5/(4+j3) = 1e^{-j37^{\circ}}$ (e^{j6t} cancels). $I(t) = 1e^{j(6t-37^{\circ})} \to i(t) = Re[I(t)] = \cos(6t-37^{\circ})$. MUCH easier!

Easier: $I = 5/(4+j6\frac{1}{2}) = 5/(4+j3) = 1e^{-j37^{\circ}} \rightarrow i(t) = \cos(6t-37^{\circ}).$

Q: What does $5e^{j6t}$ voltage source mean? Complex number voltage? A: $5e^{j6t} = 5\cos(6t) + j5\sin(6t) = 2$ voltage sources connected in series. Then: Superposition \rightarrow find response to $5\cos(6t)$ by setting $j5\sin(6t)$ to 0. Means: Set $j = 0 \Leftrightarrow$ take the real part of response (which has form Ie^{j6t}). Here: I(t)=response to $5e^{j6t} \rightarrow Re[I(t)]$ =response to $Re[5e^{j6t}] = 5\cos(6t)$. Also: Im[I(t)]=response to $Im[5e^{j6t}] = 5\sin(6t)$: Solve 2 problems at once!

Phasors: Represent sinusoid $x(t) = M \cos(\omega t + \theta)$ with complex no. $X = Me^{j\theta}$. Note: $x(t) = Re[Xe^{j\omega t}] = Re[Me^{j\theta}e^{j\omega t}] = Re[Me^{j(\omega t+\theta)}] = M \cos(\omega t + \theta)$. EX#1: Simplify $x(t) = 3\cos(\omega t) + 3\cos(\omega t + 120^{\circ}) + 3\cos(\omega t + 240^{\circ})$. Hard: Use cosine addition formula \rightarrow mess. If do it right, get x(t) = 0 (?!) Easy: Phasors: $X = 3e^{j0} + 3e^{j120^{\circ}} + 3e^{j240^{\circ}} = 0 \rightarrow x(t) = Re[Xe^{j\omega t}] = 0$! Why? Draw picture in complex plane: easy to see resultant of these=0! EX#2: Show that $5\cos(\omega t + 53^{\circ}) + \sqrt{2}\cos(\omega t + 45^{\circ}) = 6.4\cos(\omega t + 51^{\circ})$. Soln: $5e^{j53^{\circ}} + \sqrt{2}e^{j45^{\circ}} = (3 + j4) + (1 + j) = (4 + j5) = 6.4e^{j51^{\circ}}$. QED.

Note:
$$e^{\pm j\pi} = -1$$
. $j = e^{j\pi/2}$ and $-j = e^{j3\pi/2} \Leftrightarrow \cos(\omega t \pm 90^\circ) = \mp \sin(\omega t)$.

EECS 210 PHASORS, IMPEDANCE AND ADMITTANCE Winter 2001

Idea: Suppose voltage across and current through device are both sinusoids. **What:** *Gain* and *phase shift* in going from current to voltage (and vice-versa).

Phasors: $i(t) = I_o \cos(\omega t) \Leftrightarrow I = I_o \text{ and } v(t) = V_o \cos(\omega t + \theta) \Leftrightarrow V = V_o e^{j\theta}$. **DEF: Impedance** $Z = \frac{V}{I} = \frac{V_o}{I_o} e^{j\theta}$; **Admittance** $Y = \frac{1}{Z} = \frac{I}{V} = \frac{I_o}{V_o} e^{-j\theta}$. **Point:** Can apply circuit analysis techniques to Z and Y, not just R and G. **Note:** $e^{j\omega t}$ cancels throughout–don't even bother writing it at all!

Device name :	Resistor	Inductor	Capacitor
Itsformula :	v(t) = Ri(t)	$v(t) = L \frac{di}{dt}$	$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$
$\mathbf{Current}\mathbf{i}(\mathbf{t}):$	$I_o \cos(\omega t)$	$I_o \cos(\omega t)$	$I_o \cos(\omega t)$
$\mathbf{Voltage}\mathbf{v}(\mathbf{t}):$	$RI_o\cos(\omega t)$	$-\omega LI_o \sin(\omega t)$	$\frac{I_o}{\omega C}\sin(\omega t)$
$\mathbf{Gain}; \mathbf{phase}:$	R; 0	$\omega L; +90^{o}$	$\frac{1}{\omega C}; -90^{\circ}$
$\mathbf{Impedance}\mathbf{Z}:$	R	$j\omega L$	$rac{1}{j\omega C}=rac{-j}{\omega C}$
$\mathbf{Admittance}\mathbf{Y}:$	$\frac{1}{R}$	$\frac{1}{j\omega L} = \frac{-j}{\omega L}$	$j\omega C$
\mathbf{Z} at $\mathbf{DC}(\omega = 0)$:	R	0	∞

DEF: Z = R + jX where R=resistance and X=reactance (in Ω). $G \neq 1/R$. **DEF:** Y = G + jB where G=conductance and B=susceptance. $B \neq 1/X$. **Note:** Impedances in series add; admittances in parallel add. $Z_1 || Z_2 = \frac{Z_1 Z_2}{Z_1 + Z_2}$. **EX:** Capacitors in parallel: $Y = j\omega C_1 + \ldots + j\omega C_N = j\omega (C_1 + \ldots + C_N)$.

• **Phasors** are complex nos. that represent voltages, currents and sources.

• **Impedances** are nos. that represent resistors, inductors, capacitors.

• Circuit analysis includes KVL, KCL, node eqns, Thevenin/Norton.

EX: Illustrate various circuit techniques in the phasor domain:

1. Take **Thevenin equivalent** of everything left of the 2H inductor:

2. Now use **voltage divider** to compute voltage across 2H inductor: $V_L = -\frac{3}{17} \left[\frac{j2}{j2 + (4-j6/17)} \right] = \frac{-j6}{68 + j28} = \frac{6e^{-j90^{\circ}}}{75e^{j20^{\circ}}} = 0.080e^{-j110^{\circ}}.$ 3. Convert from phasor to time domain: $v(t) = 0.080 \cos(t - 110^{\circ}).$