DEF: Node: A point to which two or more components are connected.

DEF: Ground: Reference node to which all other nodes are compared with regard to voltage. Think of it as "sea level" for node voltages.

DEF: Node voltage: Potential difference between the node and ground. **KVL:** Satisfied since KVL states that node voltages are path-independent.

Note: Node analysis works for *non*-planar circuits (unlike mesh eqns).

PROCEDURE FOR WRITING NODE EQUATIONS:

- 1. Select the *ground node*.

 Usually this is the node that has the most components connected to it.

 Often circuits are drawn so this node is at bottom; don't count on it!
- 2. Define node voltages $\{V_1, V_2 \dots V_N\}$ at the other nodes.
- 3. Write **KCL** at each node: sum of currents leaving the node is zero. Do for each node except ground; Currents in terms of node voltages.
- 4. Each voltage source not connected to ground is regarded as a *supernode*: Write KCL for supernode, not the nodes voltage source connects.
- 5. Dependent sources: Express indpt variables in terms of node voltages.
- 6. Solve the linear system of equations for the unknown node voltages. Compute other voltages and currents of interest from node voltages.

SIMPLE EXAMPLE

- ullet Define ground as the node at the bottom of the diagram above.
- \bullet Define node V as the node at upper right of the diagram above.
- Write KCL at node V: Sum of currents leaving the node is zero: $(V-72)/3+(V/6)+9=0 \rightarrow V=30.$
- Compute other voltages and currents and check conservation of power:

ELEMENT	VOLTAGE	CURRENT	\mathbf{POWER}
${f 72V}$:	72(source)	42/3 = 14	(72)(14) = 1008
3Ω :	72 - 30 = 42	42/3 = 14	(42)(14) = 588
6Ω :	30 (node)	30/6 = 5	(30)(05) = 150
$9\mathrm{A}$:	30 (node)	9 (source)	(30)(09) = 270

- Power conserved: 1008 = 588 + 150 + 270 checks.
- Note that the 9 A current source dissipates power (not unusual).

COMPLEX EXAMPLE

Note: This example contains all four types of sources. Shows: supernodes; and dealing with dependent sources depending on voltage and current.

- Define ground as the node at the bottom of the diagram above.
- Define node V as the node at middle top of the diagram above.
- Write KCL at the *supernode*=dependent (on $4i_1$) voltage source: $(V-36)/3 + V/6 21 + (V+4i_1)/4 + 2v_1 = 0$
- Express indpt variables v_1 and i_1 in terms of node voltage V: $v_1 = V 36$; $i_1 = -(V + 4i_1)/4 \rightarrow i_1 = -V/8$
- Substitute these into the supernode equation for V: $(V-36)/3 + V/6 21 + (V-\frac{4}{8}V)/4 + 2(V-36) = 0$
- Solve one equation in one unknown for V: $V[(1/3) + (1/6) + (1/8) + 2] = 36/3 + 21 + 2(36) \rightarrow V = 40.$
- Compute indpt voltages and currents from V = 40: $v_1 = V - 36 = 40 - 36 = 4$; $i_1 = -V/8 = -40/8 = -5$
- Compute current through dependent (on $4i_1$) voltage source: $i_{4i_1} = 2v_1 i_1 = 2(4) (-5) = 13$
- Compute other voltages and currents and check conservation of power:

ELEMENT	VOLTAGE	CURRENT	\mathbf{POWER}
$36\mathrm{V}$:	36(source)	4/3 = 1.33	(36)(1.33) = 48
3Ω :	40 - 36 = 4	4/3 = 1.33	(4)(1.33) = 5.33
6Ω :	40 (node)	40/6 = 6.67	(40)(6.67) = 266.67
21 A:	40 (node)	21 (source)	(40)(21) = 840
${f 4i_1}:$	4(-5) = -20	$i_{4i_1} = 13$	(20)(13) = 260
4Ω :	-4(-5) = 20	$i_1 = -5$	(20)(5) = 100
$2\mathbf{v_1}:$	-4(-5) = 20	$2v_1 = 8$	(20)(8) = 160

- Power conserved: 840 = 48 + 5.33 + 266.67 + 260 + 100 + 160 checks.
- Note that three out of the four sources dissipate power (unusual).