DEF: In EECS 210 a capacitor is a device with i-v characteristic $i=C \frac{d v}{d t}$.
Energy: $\begin{gathered}\text { stored } \\ \text { energy }\end{gathered}=\int_{0}^{t} i(\tau) v(\tau) d \tau=\int_{0}^{t} C v(\tau) \frac{d v}{d \tau} d \tau=\int_{0}^{v(t)} C v d v=\frac{1}{2} C v(t)^{2}$.
Series: Capacitors in series: $\frac{1}{C_{E Q}}=\frac{1}{C_{1}}+\ldots+\frac{1}{C_{N}}$. $\mathbf{N}=\mathbf{2}: C_{E Q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$.
Parallel: Capacitors in parallel: $C_{E Q}=C_{1}+\ldots+C_{N}$ (EX: parallel plates).
Derive: $v(t)=v(0)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau ; \quad i(t)=i(0)+\frac{1}{L} \int_{0}^{t} v(\tau) d \tau$. Also useful.
Note: Short capacitor: $-\frac{d v}{d t}$ huge $\rightarrow-i(t)$ huge \rightarrow spark. EX: camera flash.
Thus: Capacitors tend to retard sharp voltage changes. EX: auto ignition. Sinusoid: $v(t)=\cos (\omega t) \rightarrow i(t)=-\omega C \sin (\omega t)$. Gain $=\omega C$; Phase $=90^{\circ}$. $i(t)=\cos (\omega t) \rightarrow v(t)=\frac{1}{\omega C} \sin (\omega t) . \quad$ Gain $=\frac{1}{\omega C} ;$ Phase $=-90^{\circ}$.
Physics: A capacitor stores separated charge; its net charge is zero. $q=C v$. More stored charge \rightarrow bigger electric field \rightarrow bigger potential difference. Time-varying voltage \rightarrow time-varying charge \rightarrow current flow. If voltage and current constant in time, capacitor=open circuit.
EX: Parallel-plate: $C=\frac{A \epsilon}{d}$ ($\epsilon=$ permittivity, $\mathrm{A}=$ area, $\mathrm{d}=$ separation).
Units: Farads=coulombs/volts; Joules=(coulombs) $($ volts $)=($ farads $)(\text { volts })^{2}$.
DEF: In EECS 210 an inductor is a device with i-v characteristic $v=L \frac{d i}{d t}$.
Energy: $\begin{aligned} & \text { stored } \\ & \text { energy }\end{aligned}=\int_{0}^{t} i(\tau) v(\tau) d \tau=\int_{0}^{t} L i(\tau) \frac{d i}{d \tau} d \tau=\int_{0}^{i(t)} L i d i=\frac{1}{2} L i(t)^{2}$.
Parallel: Inductors in parallel: $\frac{1}{L_{E Q}}=\frac{1}{L_{1}}+\ldots+\frac{1}{L_{N}} . \mathbf{N}=\mathbf{2}: L_{E Q}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}$.
Series: Inductors in series: $L_{E Q}=L_{1}+\ldots+L_{N}$ (EX: longer coil (more turns)).
Note: Open inductor: $-\frac{d i}{d t}$ huge $\rightarrow-v(t)$ huge \rightarrow spark. EX: spark plug.
Thus: Inductors tend to retard sharp current changes. EX: "choke" coils. Sinusoid: $i(t)=\cos (\omega t) \rightarrow v(t)=-\omega L \sin (\omega t)$. Gain $=\omega L$; Phase $=90^{\circ}$. $v(t)=\cos (\omega t) \rightarrow i(t)=\frac{1}{\omega L} \sin (\omega t) . \quad$ Gain $=\frac{1}{\omega L} ;$ Phase $=-90^{\circ}$.

Physics: An inductor stores magnetic flux=(magnetic field)(area). $\Phi=L i$. More magnetic flux \rightarrow bigger magnetic field \rightarrow bigger current flow. Time-varying current \rightarrow time-varying flux $\rightarrow \mathrm{emf} \Leftrightarrow$ voltage (Faraday). If voltage and current constant in time, inductor=short circuit.
EX: Coil: $L=N^{2} \frac{A \mu}{d}$ ($\mu=$ permeability, $\mathrm{A}=$ area, $\mathrm{d}=$ length, $\mathrm{N}=\#$ turns $)$.
Units: Henrys=(Ohms)(sec.); Farads=(Mhos)(sec.); Joules=(henrys)(amps) ${ }^{2}$.

Given: A circuit in which a switch is opened or closed at $t=0$.
Where: The circuit includes: inductors; capacitors; resistors; DC sources. Goal: What are the currents and voltages at $t=0^{-} ; \quad t=0^{+} ; \quad t \rightarrow \infty$?
$\mathbf{t}=\mathbf{0}^{+}$: Use following to link voltages and currents at $t=0^{-}$to $t=0^{+}$:

1. Inductor current can't jump: Otherwise $V=L \frac{d i}{d t} \rightarrow \infty$!
2. Capacitor voltage can't jump: Otherwise $I=C \frac{d v}{d t} \rightarrow \infty$!
$\mathbf{t} \rightarrow \infty$: Use following to compute voltages and currents as $t \rightarrow \infty$:
3. Circuit contains only DC (constant) sources \rightarrow inductor=short circuit.
4. Circuit contains only DC (constant) sources \rightarrow capacitor=open circuit.

EX: Electromagnet modelled
by $10 H$ in series with 4Ω
(models coil resistance).
After being closed awhile,
switch is opened at $t=0$.
Compute $V_{s}(t)$ and $I_{L}(t)$.
$\mathbf{t}=\mathbf{0}^{-}:$Inductor $=$short $\rightarrow V_{s}=(200 A)(16 \Omega \| 4 \Omega)=640 V$.
Current divider $\rightarrow I_{L}=(200 A) \frac{16 \Omega}{16+4 \Omega}=160 A$.
$\mathbf{t}=\mathbf{0}^{+}$: Impossible! Inductor voltage $\rightarrow \infty$! Let $I_{L}(t)=(160 A) e^{-t / 1 m s}, t>0$.
Models: Switch is opened over a finite time; the current falls rapidly to zero.
Then: $V_{s}(t)=(10 H) \frac{d}{d t}(160 A) e^{-t / 1 m s}=-(10 H)(160 A) \frac{1}{0.001 s} e^{-t / 1 m s}, t>0$.
Note: Maximum voltage: $V_{s}(0)=\mathbf{- 1 . 6}$ million volts! Not ∞, but large!
$\mathbf{t} \rightarrow \infty: V_{s}=0$ across inductor; $V_{s}=(200 A)(16 \Omega)=3200 V$ across source.
Also: Energy dissipated: $\frac{1}{2} L I_{L}^{2}=\frac{1}{2}(10 H)(160 A)^{2}=128 k J$ (128,000 Joules!)

COMPLEX NUMBER MANIPULATIONS

Euler: $z=M e^{j \theta}=M \cos \theta+j M \sin \theta=R+j X ; \quad R=\operatorname{Re}[z] ; X=\operatorname{Im}[z]$. Note: $j=\sqrt{-1}$ (in EE, $\mathrm{i}=$ current!). Imaginary part is not itself imaginary!

Add: Add and subtract in rectangular form: $(3+j 4)+(5+j 12)=(8+j 16)$. Mult: Multiply \& divide in polar form: $3+j 4=5 e^{j 53^{\circ}} ; \quad 5+j 12=13 e^{j 67^{\circ}}$. $(3+j 4)(5+j 12)=(3 \cdot 5-4 \cdot 12)+j(4 \cdot 5+3 \cdot 12)=-33+j 56$ (hard).
$(3+j 4)(5+j 12)=5 e^{j 53^{\circ}} 13 e^{j 67^{\circ}}=65 e^{j 120^{\circ}}$ (easy). Division easy too.

$$
\frac{(a+j b)(c+j d)}{(e+j f)(g+j h)}=\sqrt{\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)}} \exp j\left[\tan ^{-1} \frac{b}{a}+\tan ^{-1} \frac{d}{c}-\tan ^{-1} \frac{f}{e}-\tan ^{-1} \frac{h}{g}\right]
$$

