Energy: Series: Parallel:	In EECS 210 a capacitor is a device with i-v characteristic $i = C \frac{dv}{dt}$. ^{stored} = $\int_0^t i(\tau)v(\tau)d\tau = \int_0^t Cv(\tau)\frac{dv}{d\tau}d\tau = \int_0^{v(t)} Cv dv = \frac{1}{2}Cv(t)^2$. Capacitors in series: $\frac{1}{C_{EQ}} = \frac{1}{C_1} + \ldots + \frac{1}{C_N}$. N=2: $C_{EQ} = \frac{C_1C_2}{C_1+C_2}$. Capacitors in parallel: $C_{EQ} = C_1 + \ldots + C_N$ (EX: parallel plates). $v(t) = v(0) + \frac{1}{C} \int_0^t i(\tau)d\tau$; $i(t) = i(0) + \frac{1}{L} \int_0^t v(\tau)d\tau$. Also useful.
Thus:	Short capacitor: $-\frac{dv}{dt}$ huge $\rightarrow -i(t)$ huge \rightarrow spark . EX: camera flash. Capacitors tend to retard sharp voltage changes. EX: auto ignition. $v(t) = \cos(\omega t) \rightarrow i(t) = -\omega C \sin(\omega t)$. Gain= ωC ; Phase=90°. $i(t) = \cos(\omega t) \rightarrow v(t) = \frac{1}{\omega C} \sin(\omega t)$. Gain= $\frac{1}{\omega C}$; Phase=-90°.
EX:	A capacitor stores separated charge; its <i>net</i> charge is zero. $q = Cv$. More stored charge \rightarrow bigger electric field \rightarrow bigger potential difference. Time-varying voltage \rightarrow time-varying charge \rightarrow current flow. If voltage and current constant in time, capacitor= open circuit. Parallel-plate: $C = \frac{A\epsilon}{d}$ (ϵ =permittivity, A=area, d=separation). Farads=coulombs/volts; Joules=(coulombs)(volts)=(farads)(volts)^2.
Energy: Parallel:	In EECS 210 an inductor is a device with i-v characteristic $v = L\frac{di}{dt}$. ^{stored} $= \int_0^t i(\tau)v(\tau)d\tau = \int_0^t Li(\tau)\frac{di}{d\tau}d\tau = \int_0^{i(t)} Lidi = \frac{1}{2}Li(t)^2$. Inductors in parallel: $\frac{1}{L_{EQ}} = \frac{1}{L_1} + \ldots + \frac{1}{L_N}$. N=2: $L_{EQ} = \frac{L_1L_2}{L_1+L_2}$. Inductors in series: $L_{EQ} = L_1 + \ldots + L_N$ (EX: longer coil (more turns)).
Thus:	Open inductor: $-\frac{di}{dt}$ huge $\rightarrow -v(t)$ huge \rightarrow spark . EX: spark plug. Inductors tend to retard sharp current changes. EX: "choke" coils. $i(t) = \cos(\omega t) \rightarrow v(t) = -\omega L \sin(\omega t)$. Gain= ωL ; Phase=90°. $v(t) = \cos(\omega t) \rightarrow i(t) = \frac{1}{\omega L} \sin(\omega t)$. Gain= $\frac{1}{\omega L}$; Phase=-90°.
EX:	An inductor stores magnetic flux=(magnetic field)(area). $\Phi = Li$. More magnetic flux→bigger magnetic field→bigger current flow. Time-varying current→time-varying flux→emf⇔voltage (Faraday). If voltage and current constant in time, inductor= short circuit. Coil: $L = N^2 \frac{A\mu}{d}$ (μ =permeability, A=area, d=length, N=#turns). Henrys=(Ohms)(sec.); Farads=(Mhos)(sec.); Joules=(henrys)(amps)^2.

Given: A circuit in which a switch is opened or closed at t = 0.

Where: The circuit includes: inductors; capacitors; resistors; DC sources. Goal: What are the currents and voltages at $t = 0^-$; $t = 0^+$; $t \to \infty$?

- $\mathbf{t} = \mathbf{0}^+$: Use following to link voltages and currents at $t = 0^-$ to $t = 0^+$:
 - 1. Inductor *current* can't jump: Otherwise $V = L \frac{di}{dt} \to \infty!$
 - 2. Capacitor voltage can't jump: Otherwise $I = C \frac{dv}{dt} \to \infty!$
- $\mathbf{t} \to \infty$: Use following to compute voltages and currents as $t \to \infty$:
 - 1. Circuit contains only DC (constant) sources \rightarrow inductor=short circuit.
 - 2. Circuit contains only DC (constant) sources \rightarrow capacitor=open circuit.

EX: Electromagnet modelled by 10H in series with 4Ω (models coil resistance). After being closed awhile, switch is opened at t = 0. Compute $V_s(t)$ and $I_L(t)$.

 $\mathbf{t} = \mathbf{0}^{-} : \text{Inductor=short} \rightarrow V_s = (200A)(16\Omega||4\Omega) = 640V.$ Current divider $\rightarrow I_L = (200A)\frac{16\Omega}{16+4\Omega} = 160A.$

 $\mathbf{t} = \mathbf{0}^+$: Impossible! Inductor voltage $\rightarrow \infty$! Let $I_L(t) = (160A)e^{-t/1\,ms}, t > 0$. **Models:** Switch is opened over a *finite time*; the current falls rapidly to zero. **Then:** $V_s(t) = (10H)\frac{d}{dt}(160A)e^{-t/1\,ms} = -(10H)(160A)\frac{1}{0.001s}e^{-t/1\,ms}, t > 0$.

Note: Maximum voltage: $V_s(0)$ =-1.6 million volts! Not ∞ , but large! $\mathbf{t} \to \infty$: $V_s = 0$ across inductor; $V_s = (200A)(16\Omega) = 3200V$ across source. Also: Energy dissipated: $\frac{1}{2}LI_L^2 = \frac{1}{2}(10H)(160A)^2 = 128kJ$ (128,000 Joules!)

COMPLEX NUMBER MANIPULATIONS

Euler: $z = Me^{j\theta} = M\cos\theta + jM\sin\theta = R + jX;$ R = Re[z]; X = Im[z].**Note:** $j = \sqrt{-1}$ (in EE, i=current!). Imaginary part is **not** itself imaginary!

Add: Add and subtract in rectangular form: (3+j4) + (5+j12) = (8+j16). Mult: Multiply & divide in polar form: $3+j4 = 5e^{j53^{\circ}}$; $5+j12 = 13e^{j67^{\circ}}$. $(3+j4)(5+j12) = (3\cdot 5 - 4\cdot 12) + j(4\cdot 5 + 3\cdot 12) = -33 + j56$ (hard). $(3+j4)(5+j12) = 5e^{j53^{\circ}}13e^{j67^{\circ}} = 65e^{j120^{\circ}}$ (easy). Division easy too.

$$\frac{(a+jb)(c+jd)}{(e+jf)(g+jh)} = \sqrt{\frac{(a^2+b^2)(c^2+d^2)}{(e^2+f^2)(g^2+h^2)}} \exp j[\tan^{-1}\frac{b}{a} + \tan^{-1}\frac{d}{c} - \tan^{-1}\frac{f}{e} - \tan^{-1}\frac{h}{g}]$$