Networks or Circuits Themselves: Need KVL and KCL

- **DEF:** A *circuit* or *network* is an interconnection of *devices*. Each device has a *voltage* **across** it and a *current* **through** it.
- **KCL: Kirchhoff's Current Law:** Conservation of charge \rightarrow \sum currents flowing into a point= \sum currents flowing out of that point.
- **KVL: Kirchhoff's Voltage Law:** Conservation of energy \rightarrow \sum voltages around any *closed path* in a circuit or network=0.
- **Why?** Move a charge q around the loop. Think of a car on a rollercoaster: Going "up" a voltage v_1 , the charge gains potential energy qv_1 . Going "down" voltage v_2 , the charge loses potential energy qv_2 . Charge returns to starting point $\rightarrow \sum \text{energy} = \sum qv_i = q \sum v_i = 0$.

KVL: $v_1 - v_2 - v_3 = 0$ (left loop)

- **KVL:** $v_3 + v_2 v_4 v_5 = 0$ (right)
- **KVL:** $v_1 v_4 v_5 = 0$ (outer loop)
- **KCL:** $i_1 = i_2 + i_3$ (at both points)
- Note: 1 KVL and 1 KCL redundant.

Devices in a Network or Circuit: Need i-v Characteristic

- **DEF:** Any device can be described by rule i=function(v), where i=current through it and v=voltage across it. using the **standard reference directions** shown:
 - (Ideal) current source: i=constant. EX: ideal solar cell.
 - (Ideal) voltage source: v=constant. EX: ideal battery.
 - (Ideal) **Resistor:** v = iR (Ohm's law). Units: volts=(ohms)(amps).
 - (Ideal) Conductance: i = Gv where G = 1/R. amps=(mhos)(volts).
 - (Ideal) Short circuit: (wire) $R = 0 \Leftrightarrow G \to \infty$.
 - (Ideal) **Open circuit:** (gap) $G = 0 \Leftrightarrow R \to \infty$.

KVL:
$$12 - 6i - 2(i+2) = 0 \rightarrow i = 1 A$$

 $\rightarrow v = 12 - 6(1) = 2(1+2) = 6 V$ $\begin{pmatrix} + \\ - \end{pmatrix}_{12} \bigvee_{-12} (1+2) = 6 V$ $\begin{pmatrix} + \\ - \end{pmatrix}_{12} \bigvee_{-12} (1+2) = 6 V$

Power: Dissipated: $2\Omega : (6)(1+2)=18W$; $6\Omega : (6)(1)=6W$; Total:24W. **Power:** Supplied: 2A:(6)(-2)=-12W; 12V:(12)(-1)=-12W; Total:-24W. **Check:** Power dissipated=power supplied (Tellegen's law) where power=vi.

- Voltage sources in series add: Apply KVL
- Current sources in parallel add: Apply KCL
- Resistors in series add: $v = iR_1 + \ldots + iR_n = i(R_1 + \ldots + R_n) = iR_{eq}$
- Conductances in parallel add: $i = G_1 v \dots G_n v = (G_1 \dots G_n) v$
- Resistors in parallel: add 1/R's (conductances in parallel add)
- Voltage sources in parallel blow up! KVL: $\sum v_i \neq 0 \rightarrow \text{Can't be!}$
- Current sources in series blow up! KCL: $\sum_{j=1}^{n} i_j \neq 0 \rightarrow \text{Can't be!}$ Inductors in series add: $v = L_1 \frac{di}{dt} + \ldots + L_n \frac{di}{dt} = (L_1 + \ldots + L_n) \frac{di}{dt}$
- Capacitors in parallel add: $i = C_1 \frac{dv}{dt} + \dots C_n \frac{dv}{dt} = (C_1 + \dots + C_n) \frac{dv}{dt}$
- Capacitors in series: add 1/C's (see later)
- Inductors in parallel: add 1/L's (see later)
- **EX#1:** $30\Omega, 60\Omega, 20\Omega$ resistors connected in series. Compute R_{eq} . **Soln:** $R_{eq} = 30 + 60 + 20 = 110\Omega$.
- **EX#2:** $30\Omega, 60\Omega, 20\Omega$ resistors connected in parallel. Compute R_{eq} .
- Soln: $G_{eq} = 1/30 + 1/60 + 1/20 = 1/10$ Mhos $\rightarrow R_{eq} = 1/G_{eq} = 10\Omega$.

EX#3: N resistors of $R\Omega$ each are connected in parallel. Compute R_{eq} . **Soln:** $G_{eq} = \frac{1}{R} + \ldots + \frac{1}{R} = \frac{N}{R} \rightarrow R_{eq} = \frac{R}{N}\Omega$. Parallel current paths.

- Note: For two resistors in parallel: $R_{eq} = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$
- BUT: This does not work for more than two resistors in parallel! $R_{eq} \neq \frac{R_1 R_2 R_3}{R_1 + R_2 + R_3}$! Look at units: This *must* be wrong!

VOLTAGE AND CURRENT DIVIDERS

CURRENT DIVIDER

$$\begin{split} i_1 &= i_s \frac{G_1}{G_1 + G_2} = i_s \frac{R_2}{R_1 + R_2} \\ i_2 &= i_s \frac{G_2}{G_1 + G_2} = i_s \frac{R_1}{R_1 + R_2} \\ i_s \ divided \ \text{between} \ G_1, G_2 \end{split}$$
same voltage across both

 $v_1 = v_s \frac{R_1}{R_1 + R_2}$ **EXS:** rheostat, $v_2 = v_s \frac{R_2}{R_1 + R_2}$ volume control v_s divided between R_1, R_2 same current through both

