EECS 210 KIRCHHOFF'S VOLTAGE \& CURRENT LAWS Winter 2001
Networks or Circuits Themselves: Need KVL and KCL
DEF: A circuit or network is an interconnection of devices.
Each device has a voltage across it and a current through it.
KCL: Kirchhoff's Current Law: Conservation of charge \rightarrow
Ecurrents flowing into a point $=$ 立currents flowing out of that point.
KVL: Kirchhoff's Voltage Law: Conservation of energy \rightarrow
\sum voltages around any closed path in a circuit or network $=0$.
Why? Move a charge q around the loop. Think of a car on a rollercoaster:
Going "up" a voltage v_{1}, the charge gains potential energy $q v_{1}$.
Going "down" voltage v_{2}, the charge loses potential energy $q v_{2}$.
Charge returns to starting point \rightarrow 年nergy $=\sum q v_{i}=q \sum v_{i}=0$.
KVL: $v_{1}-v_{2}-v_{3}=0$ (left loop)
KVL: $v_{3}+v_{2}-v_{4}-v_{5}=0$ (right)
KVL: $v_{1}-v_{4}-v_{5}=0$ (outer loop)
KCL: $i_{1}=i_{2}+i_{3}$ (at both points)

Note: 1 KVL and 1 KCL redundant.

Devices in a Network or Circuit: Need i-v Characteristic

DEF: Any device can be described by rule $i=f u n c t i o n(v)$, where $i=$ current through it and $v=$ voltage across it. using the standard reference directions shown:

- (Ideal) current source: $\mathrm{i}=$ constant. EX: ideal solar cell.
- (Ideal) voltage source: v=constant. EX: ideal battery.
- (Ideal) Resistor: $v=i R$ (Ohm's law). Units: volts=(ohms)(amps).
- (Ideal) Conductance: $i=G v$ where $G=1 / R$. amps=(mhos)(volts).
- (Ideal) Short circuit: (wire) $R=0 \Leftrightarrow G \rightarrow \infty$.
- (Ideal) Open circuit: (gap) $G=0 \Leftrightarrow R \rightarrow \infty$.

KVL: $12-6 i-2(i+2)=0 \rightarrow i=1 A$ $\rightarrow v=12-6(1)=2(1+2)=6 V$

Power: Dissipated: $2 \Omega:(6)(1+2)=18 \mathrm{~W} ; \quad 6 \Omega:(6)(1)=6 \mathrm{~W} ; \quad$ Total: 24 W . Power: Supplied: 2A:(6)(-2)=-12W; 12V:(12)(-1)=-12W; Total:-24W. Check: Power dissipated=power supplied (Tellegen's law) where power=vi.

- Voltage sources in series add: Apply KVL
- Current sources in parallel add: Apply KCL
- Resistors in series add: $v=i R_{1}+\ldots+i R_{n}=i\left(R_{1}+\ldots R_{n}\right)=i R_{e q}$
- Conductances in parallel add: $i=G_{1} v \ldots G_{n} v=\left(G_{1} \ldots G_{n}\right) v$
- Resistors in parallel: add $\mathbf{1 / R}$'s (conductances in parallel add)
- Voltage sources in parallel blow up! KVL: $\sum v_{i} \neq 0 \rightarrow$ Can't be!
- Current sources in series blow up! KCL: $\sum i_{j} \neq 0 \rightarrow$ Can't be!
- Inductors in series add: $v=L_{1} \frac{d i}{d t}+\ldots+L_{n} \frac{d i}{d t}=\left(L_{1}+\ldots+L_{n}\right) \frac{d i}{d t}$
- Capacitors in parallel add: $i=C_{1} \frac{d v}{d t}+\ldots C_{n} \frac{d v}{d t}=\left(C_{1}+\ldots+C_{n}\right) \frac{d v}{d t}$
- Capacitors in series: add $1 / \mathrm{C}$'s (see later)
- Inductors in parallel: add $1 / L$'s (see later)

EX\#1: $30 \Omega, 60 \Omega, 20 \Omega$ resistors connected in series. Compute $R_{\text {eq }}$.
Soln: $R_{e q}=30+60+20=110 \Omega$.
EX\#2: $30 \Omega, 60 \Omega, 20 \Omega$ resistors connected in parallel. Compute $R_{e q}$.
Soln: $G_{e q}=1 / 30+1 / 60+1 / 20=1 / 10 \mathrm{Mhos} \rightarrow R_{e q}=1 / G_{e q}=10 \Omega$.
EX\#3: N resistors of $R \Omega$ each are connected in parallel. Compute $R_{e q}$.
Soln: $G_{e q}=\frac{1}{R}+\ldots+\frac{1}{R}=\frac{N}{R} \rightarrow R_{e q}=\frac{R}{N} \Omega$. Parallel current paths.
Note: For two resistors in parallel: $R_{e q}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.
BUT: This does not work for more than two resistors in parallel! $R_{e q} \neq \frac{R_{1} R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}!$ Look at units: This must be wrong!

VOLTAGE AND CURRENT DIVIDERS

CURRENT DIVIDER

$i_{1}=i_{s} \frac{G_{1}}{G_{1}+G_{2}}=i_{s} \frac{R_{2}}{R_{1}+R_{2}}$
$i_{2}=i_{s} \frac{G_{2}}{G_{1}+G_{2}}=i_{s} \frac{R_{1}}{R_{1}+R_{2}}$
i_{s} divided between G_{1}, G_{2} same voltage across both

VOLTAGE DIVIDER
$v_{1}=v_{s} \frac{R_{1}}{R_{1}+R_{2}}$ EXS: rheostat, $v_{2}=v_{s} \frac{R_{2}}{R_{1}+R_{2}}$ volume control v_{s} divided between R_{1}, R_{2} same current through both

