Given: Transfer function factored into form $H(j \omega)=\frac{\left(j \omega-z_{1}\right) \ldots\left(j \omega-z_{M}\right)}{\left(j \omega-p_{1}\right) \ldots\left(j \omega-p_{N}\right)}$.
Goal: Plot gain $|H(j \omega)|$ and phase $\angle H(j \omega)$ vs. frequency $\omega=2 \pi f$ on a log-log scale: $\log |H(j 2 \pi f)|$ vs. $\log (f) \Leftrightarrow$ express gain in decibels.

EX: Voltage source v_{S} with internal resistance R connected to capacitor C.
Input: $v_{S}(t)=\cos (2 \pi f t)$. Output: $v_{C}(t)=M \cos (2 \pi f t+\theta)$.
Phasors: $V_{C}=V_{S} \frac{1 /(j \omega C)}{R+1 /(j \omega C)}=V_{S} \frac{1}{1+j \omega R C}$ (voltage divider)
Then: Transfer function $=H(j \omega)=\frac{V_{C}}{V_{S}}=\frac{1}{1+j \omega R C}=\frac{1}{\sqrt{1+(\omega R C)^{2}}} L-\tan ^{-1}(\omega R C)$.
Plot: Gain $=\frac{1}{\sqrt{1+(2 \pi f R C)^{2}}}$ vs. $f ; \mathbf{P h a s e}=-\tan ^{-1}(2 \pi f R C)$ vs. f.
Gain: Plot gain vs. frequency on regular plot and $\log -\log$ plot, for $R C=\frac{1}{2 \pi}$:

Note: Advantages of using a log-log plot, instead of a regular plot:

1. Plot consists of two straight lines connected by a short curve;
2. Can depict gain values over a much broader range of frequencies;
3. Can extend easily to more complex transfer functions (see below).

Idea: Plot $20 \log _{10}|H(j 2 \pi f)|=$ gain in decibels vs. frequency on log scale:

Note: Following features of Bode gain and phase plots on semilog scales:

1. Gain plot lines have slopes of zero or $-6 \mathrm{db} /$ octave $=-20 \mathrm{db} /$ decade, where octave $=$ factor of 2 and decade $=$ factor of 10 and $6 \approx 20 \log _{10} 2$.
2. Sloped line intercepts 0 dB at "corner frequency" $f=1 /(2 \pi R C) \mathrm{Hz}$.
3. AT the corner frequency, gain $=\frac{1}{\sqrt{2}}=-3 \mathrm{~dB}$ and phase $=-45$ degrees.

Given: Transfer function $H(j \omega)=10 \frac{-\omega^{2}+j \omega\left(10^{6}+10^{4}\right)+10^{10}}{-\omega^{2}+j \omega\left(10^{8}+100\right)+10^{10}}=10 \frac{\left(j \omega+10^{4}\right)\left(j \omega+10^{6}\right)}{(j \omega+100)\left(j \omega+10^{8}\right)}$.
Goal: Plot Bode magnitude plot for this transfer function.
Idea: $20 \log _{10}|H(j \omega)|=20 \log _{10}(10)+20 \log _{10}\left|j \omega+10^{4}\right|+20 \log _{10}\left|j \omega+10^{6}\right|$ $-20 \log _{10}|j \omega+100|-20 \log _{10}\left|j \omega+10^{8}\right|$ since dB of products add.
DEF: Zeros are roots of numerator polynomial of $H(j \omega)$ (z_{i} overleaf).
DEF: Poles are roots of denominator polynomial of $H(j \omega)$ (p_{i} overleaf).
Point: We can handle each individual term as we did overleaf. Procedure:

1. In $H(j \omega)$, let $\omega \rightarrow 0$ and compute the DC gain $|H(j 0)|$ in dB .
2. At each zero frequency of $H(j \omega)$, add slope $20 \mathrm{~dB} /$ decade $=6 \mathrm{~dB}$ /octave.
3. At each pole frequency of $H(j \omega)$, subtract $20 \mathrm{~dB} /$ decade $=6 \mathrm{~dB}$ /octave.

The four smaller plots add together (since decibels) to give the larger plot.

