PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 4 sides of 8.5×11 "cheat sheet."

SIGN YOUR NAME HERE:

- (20) 1. A voltage source $26\cos(50t)$ is connected to a small motor modelled by a 12Ω resistor in series with a 0.1H inductor.
 - (05) a. Compute the current i(t) passing through the motor.
 - (05) b. Compute the average power dissipated in the motor.
 - (10) c. Compute the capacitor which, connected in *parallel* with the motor, corrects its power factor to one.

Winter 2001

WRITE YOUR ANSWERS HERE:

(a):
$$i(t) =$$

(b):
$$\bar{P} =$$

(10) 2a. Draw the Thevenin and Norton equivalents of You need to compute all 3 of V_{OC} , I_{SC} , Z_{EQ} .

(05) 2c. To what is the circuit equivalent for $\omega = \frac{1}{\sqrt{LC}}$?

WRITE YOUR ANSWERS HERE:

THEVENIN

NORTON

(2b)

(2c)

- (10) 3a. A signal $V_I(t) = 6 + 9\sqrt{2}\cos(3t) + 20\cos(4t)$ is input into a system with transfer function $H(j\omega) = 3/(j\omega + 3)$. Compute the output $V_O(t)$.
 - **(05) 3b. Draw a circuit having this $H(j\omega)$. Use a 1Ω resistor and a capacitor.
 - (05) 3c. A system has transfer function $H(j\omega) = A/(j\omega + B)$ for $unknown\ A, B$. Its response to $V_I(t) = 3 + \cos(6t)$ is $V_O(t) = 1 + C\cos(6t - 45^\circ)$. Compute A, B, C.

WRITE YOUR ANSWERS HERE:

(a): $V_O(t) =$ (b):

(c): A = B = C =

- (20) 4. A series RLC has transfer function (the output is the resistor voltage).
 - (05) a. Determine Q from the figure.
 - (10) b. Compute L and C if $R = 20\Omega$.
 - (05) c. At what two frequencies is the magnitude=-60 dB? Hint: slopes.

WRITE YOUR ANSWERS HERE:

$$C=$$

(c):
$$f_1 =$$

$$f_2 =$$

- (10) 5a. For the Bode magnitude plot below left, compute $H(j\omega)$. Simplify your answer. (10) 5b. For the ideal op-amp circuit below right, compute $H(j\omega)$. Simplify your answer.

WRITE YOUR ANSWERS HERE:

(a):
$$H(j\omega) =$$

(b):
$$H(j\omega) =$$

#1:

#2:

#3:

#4:

#5:

 \sum :

DO NOT WRITE HERE +