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Abstract— Ultimately, feedback control is about making ad-
justments using current state information in order to meet an
objective in the future. In the control of bipedal locomotion,
linear velocity of the center of mass has been widely accepted as
the primary variable around which feedback control objectives
are formulated. In this paper, we argue that it is easier to
predict the one-step ahead evolution of angular momentum
about the contact point than it is to make a similar prediction
for linear velocity, and hence it provides a superior quantity
for feedback control. So as not to confuse the benefits of
predicting angular momentum with any other control design
decisions, we reformulate the standard LIP model in terms
of angular momentum and show how to regulate swing foot
touchdown position at the end of the current step so as to meet
an angular momentum objective at the end of the next step. We
implement the resulting feedback controller on the 20 degree-
of-freedom bipedal robot, Cassie Blue, where each leg accounts
for nearly one-third of the robot’s total mass of 32 Kg. Under
this controller, the robot achieves fast walking, rapid turning
while walking, large disturbance rejection, and locomotion on
rough terrain.

I. INTRODUCTION

Maintaining “balance” is widely viewed as the most criti-
cal problem in bipedal locomotion. The notion of “balance”
needs to be quantified so that it can be transformed into a
feedback control objective. Some represent “balance” with
an asymptotically stable periodic orbit [1], [2]. A common
approach is to summarize the status of a nonlinear high-
dimensional robot model with a few key variables. The most
frequently proposed variables as surrogates for “balance” in-
clude Center of Mass (COM) velocity [3]–[7], COM position
[8], Capture Point [9], [10], Zero Moment Point [11], [12],
and Angular Momentum [13], [14].

In this paper we choose angular momentum about the
contact point as our primary control variable. Some of
its desirable properties in bipedal locomotion have been
highlighted and exploited for feedback control in [13]–[17].
We choose to demonstrate our results by reformulating the
well-known Linear Inverted Pendulum (LIP) model [18] in
terms of angular momentum about the contact point. We
emphasize that the LIP model, when reformulated in terms
of angular momentum, has higher fidelity when applied to
realistic robot models, than when based on linear velocity.
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Powell and Ames [14] developed a similarly reformulated
LIP model and they chose to regulate the angular momentum
at the beginning of the next step through touch down timing
and transfer of momentum at impact. Here we take advantage
of the higher fidelity of predicted angular momentum about
the contact point and choose to regulate it at the end of next
step, which can then be more effectively controlled by foot
placement [19], [20].

To demonstrate that our results transfer in practice to a
realistic bipedal robot, we implement the resulting feedback
controller on the 20 degree-of-freedom bipedal robot, Cassie
Blue, where each leg accounts for nearly one-third of the
robot’s total mass of 32 Kg. In experiments, Cassie Blue
is able to execute walking in a straight line up to 2.1 m/s,
simultaneously walking forward and diagonally on grass at
1 m/s, make quick, sharp turns, and handle very challenging
undulating terrain. For the purpose of completeness, we
note that a LIP-inspired controller organized around COM
velocity has been implemented on a Cassie-series robot in
[21].

The main contributions of the paper are as follows:

• Demonstrate that the one-step-ahead prediction of an-
gular momentum about the contact point provided by a
LIP model is superior to a one-step-ahead prediction of
linear velocity of the center of mass when applied to
realistic robots;

• Formulate a foot placement strategy based on the one-
step-ahead prediction of angular momentum.

• Demonstrate the resulting controller can achieve highly
dynamic gaits on a 3D bipedal robot with legs that are
far from massless; see Fig. 1

Fig. 1: Cassie Blue, by Agility Robotics, on the iconic
University of Michigan Wave Field.



Fig. 2: Rabbit and Cassie. Rabbit is planar robot with 2 joints
on each leg and Cassie is 3D robot with 7 joints on each leg.

We will use both Rabbit [22] and Cassie Blue to illustrate
our developments in the paper. Experiments will be con-
ducted exclusively on Cassie. Rabbit is a 2D biped with five
links, four actuated joints, and a mass of 32 Kg; see Fig. 2.
Each leg weighs 10 kg, with 6.8 kg on each thigh and 3.2
kg on each shin.

The bipedal robot shown in Fig. 1, named Cassie Blue,
is designed and built by Agility Robotics. The robot weighs
32kg. It has 7 deg of freedom on each leg, 5 of which are
actuated by motors and 2 are constrained by springs; see
Fig. 2. A floating base model of Cassie has 20 degrees of
freedom. Each foot of the robot is blade-shaped and provides
5 holonomic constraints when it is on ground. Though each
of Cassie’s legs has approximately 10 kg of mass, most of
the mass is concentrated on the upper part of the leg. In this
regard, the mass distribution of Rabbit is a bit more typical
of bipedal robots, which is why we include the Rabbit model
in the paper.

The remainder of the paper is organized as follows.
Section II and III introduce angular momentum and the LIP
model. In Section IV, we show how to predict the evolution
of angular momentum with a LIP model and how to use the
prediction to decide foot placement. This provides a feedback
controller that will stabilize a 3D LIP. In Section V, we
provide our path to implementing the controller on Cassie
Blue. Additional reference trajectories are required beyond
a path for the swing foot, and we provide “an intuitive”
method for their design. Section VI shows the experiment
results. Conclusion are give in Sect. VII.

II. ANGULAR MOMENTUM ABOUT CONTACT POINT

In the following, we will address two questions: why we
can replace linear momentum with angular momentum for
the design of feedback controllers and what are the benefits
of doing so.

Initially, we address the single support phase of walking,
meaning only one leg is in contact with the ground. More-
over, we are considering a point contact.

Let L denote the angular momentum about the contact
point of the stance leg. The relationship between angular
momentum and linear momentum for a 3D bipedal robot

is
L = LCoM + p×mtotvCoM, (1)

where LCoM is the angular momentum about the center of
mass, vCoM is the linear velocity of the center of mass, mtot

is the total mass of the robot, and p is the vector emanating
from the contact point to the center of mass.

For a bipedal robot that is walking instead of doing
somersaults, the angular momentum about the center of
mass must oscillate about zero. Hence, (1) implies that the
difference between L and p×mvCoM also oscillates around
zero, which we will write as

L− p×mtotvCoM = LCoM oscillates about 0. (2)

From (2), we see that we approximately obtain a desired
linear velocity by regulating L.

The discussion so far has focused on a single support phase
of a walking gait. Bipedal walking is characterized by the
transition between left and right legs as they alternately take
on the role of stance leg (aka support leg) and swing leg (aka
non-stance leg). In double support, the transfer of angular
momentum between the two contact points satisfies

L2 = L1 + p2→1 ×mtotvCoM (3)

where Li is the angular momentum about contact point i and
p1→2 is the vector from contact point 1 to contact point 2.

Hence, one can replace the control of linear velocity with
control of angular momentum about the contact point. But
what are the advantages?

(a) The first advantage of controlling L is that it provides
a more comprehensive representation of current walk-
ing status by including both LCoM and p × mvCoM,
between which momentum transfers forth and back
during a step.

(b) Secondly, L has a relative degree three with respect to
motor torques, if ankle torque is zero. Indeed, in this
case,

L̇ = p×mtotg. (4)

where g is the gravitational constant. Consequently,
L is very weakly affected by peaks in motor torque
that often occur in off nominal conditions. Moreover,
if a limb, such as the swing leg, is moving quickly
in response to a disturbance, it will strongly affect the
angular momentum about the center of mass and the
robot’s linear velocity, while leaving the angular mo-
mentum about the contact point only weakly affected.

(c) Thirdly, L̇ is ONLY a function of the center of mass
position, making it easy to predict its trajectory over a
step.

(d) Finally, angular momentum about a given contact
point is invariant under impacts at that point, and the
change of angular momentum between two contact
points depends only on the vector defined by the two
contact points and the CoM velocity. Hence, we can
easily determine the angular momentum about the new



contact point by (3) when impact happens without
approximating assumptions about the impact model.
Moreover, if the vertical component of the vCoM is zero
and the ground is level, then p2→1 ×mtotvCoM = 0
and hence L2 = L1.

Figure 3 shows simulation plots of L, LCoM, and vxCoM for
the planar bipedal robot, Rabbit, and the 3D bipedal robot,
Cassie Blue. It is seen that the angular momentum about the
contact point has the advantages discussed above.

III. ONE-STEP-AHEAD PREDICTION OF ANGULAR
MOMENTUM WITH THE LINEAR INVERTED PENDULUM

MODEL

This section introduces the Linear Inverted Pendulum
(LIP) model of Kajita et al. [18] and the reformulation.
The LIP model assumes the center of mass moves in a
plane, the angular momentum about the center of mass is
constant, and the legs are massless. Here, we will express the
model in terms of its original coordinates, namely position
and linear velocity of the center of mass, and in terms of
the proposed new coordinates, namely position and angular
momentum about the contact point. The dynamics of the
inverted pendulum are exactly linear. Moreover, the 3D
dynamics in the x and y directions are decoupled, and hence
we only need to consider a 2D pendulum.

Fig. 4: Linear Inverted Pendulum Model. A prismatic joint
in the leg allows the CoM to move along a given line.

Let H denote the height of the center of mass. For a 2D
model, the dynamics in the x direction is[

ẋ
ẍ

]
=

[
0 1

g/H 0

] [
x
ẋ

]
, (5)

where x is the position of CoM in the frame of contact point.
if we assume there is no ankle torque. The solution of this
linear system is[
x(T )
ẋ(T )

]
=

[
cosh(`(T − t)) 1/` sinh(`(T − t))
` sinh(`(T − t)) cosh(`(T − t))

] [
x(t)
ẋ(t)

]
,

(6)
where ` =

√
g
H , t is the current time and T is the (predicted)

time of the end of the step.
We assume the body is a point mass and is moving on a

horizontal plane, that is the height of the center of mass
is constant. Because we are assuming a point mass, the
angular momentum about the center of mass is zero. We
now replace the states {x, ẋ} with {x, Ly}, where Ly is the

y-component of angular momentum about the contact point.
The corresponding dynamic model is[

ẋ

L̇y

]
=

[
0 1/mH
mg 0

] [
x
Ly

]
, (7)

and its corresponding solution is[
x(T )
Ly(T )

]
=
[

cosh(`(T − t)) 1/mH` sinh(`(T − t))
mH` sinh(`(T − t)) cosh(`(T − t))

] [
x(t)
Ly(t)

]
,

(8)
where t is the current time and T is the (predicted) time of
the end of the step.

For a point-mass inverted pendulum, where the mass
moves on a horizontal plane, representations (5) and (7) are
exactly the same. So what have we gained? Importantly,
for a real robot, where the two representations are
only approximate, the second one is better for making
predictions on the robot’s state, as we discussed in Sec. II.

Figure 5 compares the predictions of linear velocity and
angular velocity about the contact point for a seven degree of
freedom 2D model of Rabbit and a 20 degree of freedom 3D
model of Cassie. In the figure, the simulated instantaneous
values of vxCoM(t) and Ly(t) are shown in blue. The red line
shows the evolution of the predicted values at the end of a
step for vxCoM(t) and Ly(t) from (6) and (8). In a perfect
predictor, the predicted values would be straight lines. It
is clear that, when extrapolated to a realistic model of a
robot, the prediction of angular momentum about the contact
point is significantly more reliable than the estimate of linear
velocity.

IV. HIGH-LEVEL CONTROL STRATEGY IN TERMS OF
ANGULAR MOMENTUM

Because of the advantages of angular momentum versus
linear velocity that we listed in Sect. III, we will use angular
momentum about the contact point as the primary control
variable. In this section, we explain our method for deciding
where to end one step by initiating contact between the
ground and the swing foot, thereby beginning the next step.
In robot locomotion control, this is typically called “foot
placement control”.

A. Notation
We need to distinguish among the following time instances

when specifying the control variables.
• T is the step time.
• Tk is the time of the kth impact.
• T−k is the end time of step k, so that
• T+

k is the beginning time of step k + 1 and T−k+1 is the
end time of step k + 1.

• (T−k − t) is the time until the end of step k.
The superscripts + and − on Tk are due to the impact map;
see [16].
• pst→CoM, psw→CoM. Vector emanating from

stance/swing foot to CoM. Here, the stance foot
can be thought of as the current contact point and
the swing foot is defining the of contact for the next
impact and hence will be a control variable.



(a) Rabbit Ly (b) Rabbit vxCoM (c) Rabbit Ly
CoM

(d) Cassie Ly (e) Cassie vxCoM (f) Cassie Ly
CoM

Fig. 3: Comparison of Ly , Ly
CoM, vxCoM in simulation for the bipedal robots Rabbit and Cassie, while vzCoM is carefully

regulated to zero. The angular momentum about the contact point, Ly , has a convex trajectory, both of which are similar to
the trajectory of a LIP model, while the trajectory of the longitudinal velocity of the center of mass, vxCoM, has no particular
shape. The variation of LCoM throughout a step, which is caused by the legs of the robot having mass, is what leads to a
difference in the COM velocity between a real robot and a LIP model. In this figure, Ly is continuous at impact, which is
based on two conditions: vzCoM = 0 at impact and the ground is level. Even when these two conditions are not met, the
jump in L at impact can be easily calculated with (3).

(a) Rabbit Ly prediction (b) Rabbit vxCoM prediction (c) Cassie Ly prediction (d) Cassie vxCoM prediction

Fig. 5: Comparison of the ability to predict velocity vs angular momentum at the end of a step. The instantaneous values are
shown in blue and the predicted value at end of step is shown in red. The most crucial decision in the control of a bipedal
robot is where to place the next foot fall. In the standard LIP controller, the decision is based on predicting the longitudinal
velocity of the center of mass. In Sect. III we use angular momentum about the contact point. We do this because on realistic
bipeds, the LIP model provides a more accurate and reliable prediction of L than vCoM. The comparison is more significant
on Rabbit, whose leg center of mass is further away from the overall CoM.

Fig. 6: Definition of Tk

B. Foot placement in longitudinal direction

In the following, we breakdown the estimated evolution of
Ly from t to T−k+1, at three key time intervals or instances:

1) From t to T−k : From the second row of (8), an estimate
for the angular momentum about the contact point at the end
of current step, L̂y(T−k , t), can be continuously estimated by

L̂y(T−k , t) =mH` sinh(`(T−k − t))pxst(t)

+ cosh(`(T−k − t))Ly(t) (9)

2) From T−k to T+
k : If the CoM height is constant and

the ground is flat, the angular momentum about the next
contact point will be equal to the angular momentum about
the current stance leg,

L̂y(T+
k , t) = L̂y(T−k , t); (10)

see (3).



What’s more, the swing foot before impact will become
the stance foot after impact,

pxst→CoM(T+
k ) = pxsw→CoM(T−k ). (11)

3) From T+
k to T−k+1: Similar to (9), the Angular Mo-

mentum at the end of next step is

L̂y(T−k+1, t) = mH` sinh(`T )pxst→CoM(T+
k )+cosh(`T )L̂y(T+

k , t)
(12)

Combining (9)-(12), we can decide the desired swing foot
position at the end of the current step, given the value of
desired angular momentum at the end of the next step,

px des
sw→CoM(T−k , t) :=

Ly des(T−k+1)− cosh(`T )L̂y(T−k , t)

mH` sinh(`T )
.

(13)

C. Lateral Control

From (4), the time evolution of the angular momentum
about the contact point is decoupled about the x- and y-axes.
Therefore, once a desired angular momentum at the end of
next step is given, Lateral Control is essentially identical to
Longitudinal Control and (13) can be applied equally well in
the lateral direction. The question becomes how to decide
on Lx des(T−k+1).

For walking in place or walking with zero average lateral
velocity, it is sufficient to obtain Lx des from a periodically
oscillating LIP model,

Lx des(T−k+1) = ±1

2
mHW

` sinh(`T )

1 + cosh(`T )
, (14)

where W is the desired step width. The sign is positive if
next stance is left stance and negative if next stance is right
stance. Lateral walking can be achieved by adding an offset
to Lx des.

D. Turning

Turning in essence is changing direction of velocity. At
turning, same value of Lx des and Ly des will be defined in
different frame at each step, and the foot placement will be
calculated correspondingly.

V. IMPLEMENTING THE LIP-BASED ANGULAR
MOMENTUM CONTROLLER ON A REAL ROBOT

In this section we introduce the control variables for Cassie
Blue and generate their reference trajectory. As in [7], we
leave the stance toe passive. Consequently, there are nine (9)
control variables, listed below from the top of the robot to
the end of the swing leg,

h0 =



torso pitch
torso roll

stance hip yaw
swing hip yaw
pzst→CoM

pxsw→CoM

pysw→CoM
pzsw→CoM

swing toe absolute pitch


. (15)

For later use, we denote the value of h0 at the beginning of
the current step by h0(T+

k−1). When referring to individual
components, we’ll use h03(T+

k−1), for example.
We first discuss variables that are constant. The reference

values for torso pitch, torso roll, and swing toe absolute
pitch are constant and zero, while the reference for pzst→CoM,
which sets the height of the CoM with respect to the ground,
is constant and equal to H .

We next introduce a phase variable

s :=
t− T+

k−1
T

(16)

that will be used to define quantities that vary throughout
the step to create “leg pumping” and “leg swinging”. The
reference trajectories of pxsw→CoM and pysw→CoM are defined
such that:
• at the beginning of a step, their reference value is their

actual position;
• the reference value at the end of the step implements

the foot placement strategy in (13); and
• in between a half-period cosine curve is used to connect

them, which is similar to the trajectory of an ordinary
(non-inverted) pendulum.

The reference trajectory of pzsw→CoM assumes the ground is
flat and the control is perfect:
• at mid stance, the height of the foot above the ground

is given by zCL, for the desired vertical clearance.
The reference trajectories for the stance hip and swing hip

yaw angles are simple straight lines connecting their initial
actual position and their desired final positions. For walking
in a straight line, the desired final position is zero. To include
turning, the final value has to be adjusted. Suppose that a turn
angle of ∆Ddes

k radians is desired. One half of this value is
given to each yaw joint:
• + 1

2∆Ddes
k → swing hip yaw; and

• − 1
2∆Ddes

k → stance hip yaw

The signs may vary with the convention used on other robots.
The final result for Cassie Blue is

hd(s) :=

0
0

(1− s)h03(T+
k−1) + s(− 1

2
(∆Dk))

(1− s)h04(T+
k−1) + s( 1

2
(∆Dk))

H
1
2

[
(1 + cos(πs))h06(T+

k−1) + (1− cos(πs))px des
sw→CoM(T−k )

]
1
2

[
(1 + cos(πs))h07(T+

k−1) + (1− cos(πs))py des
sw→CoM(T−k )

]
4zcl(s− 0.5)2 + (H − zCL);

0


.

(17)
When implemented with an Input-Output Linearizing Con-
troller1 so that h0 tracks hd, the above control policy allows
Cassie to move in 3D in simulation. Figure 7 shows Cassie
starts from a walking in place gait and accelerate to a speed
of 2.8 m/s.

1The required kinematic and dynamics functions are generated with
FROST [23].



Fig. 7: Simulation results of Cassie. Lx des

mH ramped up from
0 to 3 m/s.

VI. EXPERIMENTAL RESULTS

A description of a practical implementation of the con-
troller is omitted here because of space limitations. A brief
description can be found in [24]. Details of it will be included
in a longer publication. The controller was implemented on
Cassie Blue. The closed-loop system consisting of robot and
controller was evaluated in a number of situations that are
itemized below.
• Walking in a straight line on flat ground. Cassie could

walk in place and walk stably for speeds ranging from
zero to 2.1 m/s.

• Diagonal Walking. Cassie is able to walk simultane-
ously forward and sideways on grass, at roughly 1 m/s
in each direction.

• Sharp turn. While walking at roughly 1 m/s, Cassie
Blue effected a 90o turn, without slowing down.

• Rejecting the classical kick to the base of the hips.
Cassie was able to remain upright under “moderate”
kicks in the longitudinal direction. The disturbance
rejection in the lateral direction is not as robust as
the longitudinal, which is mainly caused by Cassie’s
physical design: small hip roll motor position limits.

• Finally we address walking on rough ground. Cassie
Blue was tested on the iconic Wave Field of the Uni-
versity of Michigan North Campus. The foot clearance
was increased from 10 cm to 20 cm to handle the
highly undulating terrain. Cassie is able to walk through
the“valley” between the large humps with ease at a
walking pace of roughly 0.75 m/s, without falling in
all tests. The row of ridges running east to west in the
Wave Field are roughly 60 cm high, with a sinusoidal
structure. We estimate the maximum slope to be 40
degrees. Cassie is able to cross several of the large
humps in a row, but also fell multiple times. On a more
gentle, straight grassy slope of roughly 22 degrees near
the laboratory, Cassie can walk up it with no difficulty
whatsoever.

VII. CONCLUSIONS

We argued that a one-step ahead prediction of angular
momentum about the contact point has many advantages for

(a) Fast Walking (b) Rough Terrain

(c) Disturbance Rejection

(d) A Fast 90 Degree Turn with a Long Stride

Fig. 8: Images from several closed-loop experiments con-
ducted with Cassie Blue and the controller developed in this
paper.Short Footage of those experiments are compiled in
video [25]. Longer versions can be found in [26]

feedback control. While we only demonstrated this for step
placement in a LIP-inspired controller, we believe the same
will hold on many other control strategies.

Using our new controller, Cassie was able to accomplish a
wide range of tasks with nothing more than common sense
task-based tuning: a higher step frequency to walk at 2.1
m/s and extra foot clearance to walk over slopes exceeding
15 degrees. Moreover, in the current implementation, there is
no optimization of trajectories used in the implementation on
Cassie. The robot’s performance is currently limited by the
hand-designed trajectories leading to joint-limit violations
and foot slippage. These limitations will be alleviated by
incorporating optimization.

The current controller tries its best to maintain a zero
center of mass velocity in the z-direction. This simplifies
the transition formula for the angular momentum at impact.
As in [14], it will be interesting to exploit changes in the
vertical component of the center of mass velocity in order
to better achieve a desired angular momentum.



REFERENCES

[1] J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects. IEEE
Transactions on Automatic Control, 46(1):51–64, January 2001.

[2] A. D. Ames, E. A. Cousineau, and M. J. Powell. Dynamically stable
bipedal robotic walking with NAO via human-inspired hybrid zero
dynamics. In Proceedings of the 15th ACM international conference
on Hybrid Systems: Computation and Control, pages 135–144. ACM,
2012.

[3] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and
Hirohisa Hirukawa. The 3d linear inverted pendulum mode: A simple
modeling for a biped walking pattern generation. In Proceedings 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No. 01CH37180), volume 1, pages 239–246. IEEE, 2001.

[4] Xingye Da, Omar Harib, Ross Hartley, Brent Griffin, and Jessy W
Grizzle. From 2D design of underactuated bipedal gaits to 3D
implementation: Walking with speed tracking. IEEE Access, 4:3469–
3478, 2016.

[5] Ross Hartley, Xingye Da, and Jessy W. Grizzle. Stabilization of
3D underactuated biped robots: Using posture adjustment and gait
libraries to reject velocity disturbances. In IEEE Conference on
Control Technology and Applications (CCTA), 2017.

[6] Omar Harib, Ayonga Hereid, Ayush Agrawal, Thomas Gurriet, Sylvain
Finet, Guilhem Boeris, Alexis Duburcq, M. Eva Mungai, Matthieu
Masselin, Aaron D. Ames, Koushil Sreenath, and Jessy Grizzle.
Feedback control of an exoskeleton for paraplegics: Toward robustly
stable hands-free dynamic walking. arXiv preprint arXiv:1802.08322
[cs.RO], 2018.

[7] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J. Huang, and
J. Grizzle. Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway. In 2019 American Control Conference
(ACC), pages 4559–4566, 2019.

[8] Xingye Da and Jessy Grizzle. Combining trajectory optimization, su-
pervised machine learning, and model structure for mitigating the curse
of dimensionality in the control of bipedal robots. The International
Journal of Robotics Research, 38(9):1063–1097, 2019.

[9] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami.
Capture point: A step toward humanoid push recovery. In 2006 6th
IEEE-RAS international conference on humanoid robots, pages 200–
207. IEEE, 2006.

[10] Johannes Englsberger, Christian Ott, Máximo A Roa, Alin Albu-
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