ACHIEVING SCALABLE HARDWARE VERIFICATION WITH
SYMBOLIC SIMULATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Valeria Bertacco

August 2003

(© Copyright by Valeria Bertacco 2003
All Rights Reserved

il

I certify that I have read this dissertation and that, in my opinion,
it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

Kunle Olukotun
(Principal Adviser)

I certify that I have read this dissertation and that, in my opinion,
it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

David Dill

I certify that I have read this dissertation and that, in my opinion,
it is fully adequate in scope and quality as a dissertation for the

degree of Doctor of Philosophy.

Mark Horowitz

Approved for the University Committee on Graduate Studies.

il

v

Abstract

In the past 40 years, electronic systems have become pervasive in modern society. Digital integrated
circuits (ICs) are at the heart of the large majority of these systems. These digital ICs are complex
systems containing millions of interconnected transistors in a very small area. Moreover, the under-
lying semiconductor fabrication technology used to fabricate these ICs allows doubling the number
of transistors in the same area approximately every 18 months.

The design of digital systems is a complex and time consuming process that progresses through
various phases and levels of abstraction, and relies heavily on CAD (Computer-Aided Design) soft-
ware tools. Within this context, ensuring the correctness of these digital systems is a major con-
sideration, especially because the cost of failures is becoming increasingly high. One of the most
famous recent examples of its importance is the Intel, Inc. Pentium’s flaw in the floating point
divide unit of 1994 that eventually forced Intel to replace all the Pentium chips that were already
in the market. In many cases, the possibility of failure is even unacceptable, examples of these
applications are: transportation systems, medical applications and financial systems. Even though
guaranteeing the correctness of a design is such a central aspect in its development, current veri-
fication methodologies are still inadequate to tackle the complex systems that are being developed
nowadays. Hardware design companies try to compensate for mediocre CAD tools by dedicating
the majority of their resources involved in a design to verification, yet are still unable to guarantee
correct functionality over the entire design space.

Logic simulation is the most widely accepted method for ensuring the correctness of digital ICs

in industry because of its scalability, flexibility and predictable run-time behavior. This technique is

based on verifying a digital system by providing sequences of binary values for each of the inputs
of the system and checking that the corresponding outputs are correct, based on what the design
team expected or described in a specification document. However, because of its inherent approach,
this validation technique usually can visit only a small fraction of all the possible configurations
of a system - also called the state space - and thus the discovery of bugs heavily relies on the
expertise of the designer of the test stimuli to select a few crucial configurations to verify. Symbolic
simulation is another verification method that is attracting increasing interest because it allows the
verification engineer to explore all, or a major portion, of a circuit’s state space without the need to
design time-consuming test stimuli. However, this approach poses a high demand on the resources
of the simulating host, and in particular, on the memory system, because of the complexity of the
algorithms involved and their unpredictable run-time behavior. Thus, the scalability of this approach
has been the main limiting factor to its mainstream deployment and so far its scope has been limited

to small systems.

This thesis presents new symbolic simulation based approaches to the verification problem that
radically improve scalability. We present two new techniques that narrow the performance gap be-
tween the complexity of digital systems that are being developed and the limited ability to verify
them. The first technique, Cycle-Based Symbolic Simulation, is a unique combination of formal
methods and logic simulation that can stimulate a circuit with a very large number of input combi-
nations and sequences in parallel. The key concept is the use of a parametric form to represent the
set of states visited during simulation. This approach maintains a high degree of scalability, in line
with current cycle-based logic simulation techniques, while achieving better efficiency. To better
exploit the use of parameterization in improving the memory profile of simulation, the second tech-
nique, Disjoint Support Decomposition Based Symbolic Simulation, exploits the disjoint support
decomposition properties of the state functions. We develop a new algorithm that exposes the dis-
joint decomposition properties of a Boolean function by restructuring its BDD representation. The
new algorithm is very efficient in the sense that it has worst-case complexity that is only quadratic

in the size of the initial BDD, while previous algorithms had exponential complexity in the size of

vi

the function’s support. We deployed this algorithm to find the disjoint support decomposition of
the state functions in symbolic simulation. By restructuring the next-state functions using their dis-
joint support components, it is possible to gain better insight about the role of each input variable.
Consequently, the next-state functions can be transformed into a simpler parametric form without
sacrificing simulation accuracy. Both of these techniques have been tested on the ISCAS bench-
mark suite. The results show that the first technique can simulate very large trace sets in parallel,
maintaining a simulation speed and memory profile that are much closer to logic simulation. The
second technique is effective in reducing the memory requirements of symbolic simulation while

maintaining exact state exploration.

vii

viii

Acknowledgements

I would like to first thank my graduate advisor Kunle Olukotun. Throughout these years, he has
always been prompt and available in supporting whatever direction of research and of life I decided
to pursue. In our technical interactions, he would always go straight to the results of my work
and challenge me on their practical contribution to the quality of verification for industrial scale
digital designs. David Dill has been the person I could always go to for bouncing ideas and have
illuminating technical discussions. When my ideas could survive his dissecting analysis, I knew
I could publish them. On a personal level, I always admired his bluntness that would eliminate a
lot of useless conversation in our interactions. Thanks also to Mark Horowitz for being part of my
defense committee and reviewing this thesis even though it is not central to his research area.

My years in Synopsys have played a central role in shaping my understanding of design veri-
fication as an industrial challenge first and a research area later. My colleagues have been crucial
in providing me with invaluable opportunities: Ghulam Nurie, Swami Venkat and the marketing
team of the Vera Group allowed me to interact with customers in meetings that have always been
enlightening in my quest towards an understanding of the needs of the hardware designers. Pei-Hsin
Ho, my manager in the Advanced Technology Group of Synopsys, gave me the chance to be part
of a high-profile technical team and take part in seminars and technical conferences, all while never
losing sight of the objective of providing solutions for the design industry. Most of all, he showed
me how to efficiently achieve technology transfer, taking academic research and deploying it in
software solution for the hardware design community. I would like to thank my other colleagues in

the Advanced Technology Group, in particular: Stephen Edwards, Thomas Shiple, James Kukula,

iX

David Cyrluk, Tony Ma, Kevin Harer, Jerry Taylor, Randy Harr and Robert Damiano.

I spent the past year at Stanford completing my PhD work. During this time I shared my office
with John Davis. John has created a very positive work environment for me, he has always provided
good advice and been very helpful. He has been crucial especially during the preparation of my
oral defense talk for which he provided countless bits of advice, asked me all the most difficult
questions and forced me to rehearse it until it would flow seamlessly, by which point he could give
the talk himself. I would also like to thank all the people that supported me by making available all
those resources that are involved in putting together a thesis. My thanks go especially to: Charlie
Orgish, Darlene Hadding, Lance Hammond and Azita Emami-Neyestanak. My undergraduate ad-
visor, Maurizio Damiani, first introduced me to research and to the area of Computer Aided Design
for integrated circuits. I would like to thank him for the numerous interactions and collaborations
that lasted long after my undergraduate studies and spurred many of the publications that led to this
research work. The material presented in Chapters 4 and 5 has been shaped by many months of
intense discussions with him.

On a personal level, I would like to thank my parents for teaching me the first concepts of
mathematics and logic and for introducing me early in my life to pursuing both education and
industry experience, contrary to the Italian tradition of completing all the studies before gaining any
work experience. I also want to thank my family for supporting my choices in my path through life.
My brother Livio provided all sort of technical support and advice and solved many system crashes,
most often connecting from some remote location around Europe. Finally, I thank all my friends in
the Stanford community who provided me with enthusiastic social entertainment during my years
at Stanford.

As this work comes closer to completion, I look forward to new research in the years to come
that will hopefully both have practical use and be intellectually stimulating. Thus, I see this disser-

tation more as a stepping stone in my research work than as the end of my efforts.

Contents

Abstract v
Acknowledgements ix
1 Introduction 1
1.1 Functional validation 2

1.2 Formal verification 3
1.2.1 Symbolic simulation 4

1.3 Contributions of the thesis L 5

1.4 Organization of thethesis 6

2 Design and verification of digital systems 9
2.1 Thedesignflow 10

2.2 RTLwverification 14

2.3 Boolean variables and functions and their representation 17
2.3.1 Binary Decision Diagrams 18

2.4 Models for design verification Lo 21
2.4.1 Structural network model Lo 21

242 Statediagrams Lo e 23

2.4.3 Mathematical model of Finite State Machines 25

2.5 Functional validation L 26

X1

2.6 Formal verification e e 31

2.6.1 Symbolic Finite State Machine traversal 32
2.7 Symbolic Simulation 35
277.1 Thealgorithm 37
2.7.2 The challenge in symbolic simulation 41
Cycle-Based Symbolic Simulation 43
3.1 Parametric transformations oL oo 43
3.2 Parameterizations in symbolic simulation 0L, 46
3.3 The CBSSalgorithm 47
3.4 The parameterization phase o 49
3.4.1 Using functional dependencies 50
3.4.2 How to classify the components of the state vector 53
343 Theremapfunction, 57
3.5 Implementation and complexity L. 59
3.6 Experimental results e 61
37 Conclusionl e 65
Disjoint Support Decompositions 67
4.1 Introduction e e e e 68
4.2 Related work on Disjoint Support Decompositions 69
43 Terminology L e e 71
4.3.1 DecompoSition treeS. v v vttt e e e e e e e e 73
4.4 The unique maximal Disjoint Support Decomposition 73
4.4.1 Decomposition by prime functions. 75
4.42 Acharacterization of F/Kp. 78
4.4.3 The normal Decomposition Tree 86
4.5 On the decomposability of Boolean functions 92

Xii

5 A novel algorithm for Disjoint Support Decompositions

5.1 Building the decomposition bottom-up

5.2 Case 1. Neither Ajgnor A isconstant and A1g Z A1 . . o v v oo oo ot ..

5.3 Case 2. Exactlyone of Ajg, Ajpisconstant

54 Case3.Ajp=Aj andAjgisnotaconstant

5.5 New decompositions

5.6 Putting it all together: The DSD procedure

5.6.1 Inherited decompositions . .

5.6.2 New decompositions

5.7 Complexity analysis and considerations

5.8 Experiments on the decomposability of industrial testbenches

59 Conclusion

6 Exact Parameterizations for Symbolic Simulation

6.1 Re-encoding the state function . . .
6.2 Reduction at Free Points

6.3 Elimination of Prime functions . . .

6.4 Removal of non-dominant variables

6.5 DSD-SS Implementation
6.6 Experimental results

6.7 Summary

7 Conclusion

7.1 Parameterized approaches in symbolic simulation

7.2 Disjoint support decompositions . .

7.3 The future of thiswork

Bibliography

xiii

95

96

99
103
106
108
117
120
125
127
129
136

137
138
140
143
146
150
151
155

157
157
158
159

161

List of Tables

3.1 Cycle Based Symbolic Simulation results

5.1 Disjoint Support Decomposition results

6.1 Disjoint Support Decomposition-based simulation results

X1V

List of Figures

2.1
2.2
23
24
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16

3.1
3.2

Design flow of a digital system 11
Approaches to verification L. Lo 16
Binary Decision Diagrams Lo oL 19
Graphic symbols for some basic logic gates 22
Structural network model oL oo 22
Network model of a 3-bits up/down counter withreset. 23
State diagram of a 3-bitup/down counter 24
State diagram of a 1-hot encoded 3-bitcounter 25
Compiled logic simulator L 27
Logic simulation - pseudocode 29
FSM state traversal - pseudocode oL 35
Logic and symbolic simulation 36
Symbolic simulation algorithm - pseudocode 38
Symbolic simulation for Example 2.8 - Initialization phase 38
Symbolic simulation for Example 2.8 - Simulation Step2 40
Iterative model of symbolic simulation 40
Parameterization of the state vector during symbolic simulation 44
Three steps of symbolic simulation for the counter of Example 2.2 and possible

parameterizations of the reached state sets 46

XV

33
3.4
35
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Cycle-Based symbolic simulationflow 49
The CBSS algorithm - pseudocode 50
The parameterized frontier subset PSex 51
parameterize function-pseudocodeo 53
Classifying simple and complex variables - pseudocode 55
Classifying shared variables - pseudocode 57
Decompositions for Example 4.1 0 L. 68
A decomposition tree for Example 4.3. Lo oo 74
Decomposition representation of the function of Example 4.7 88
Decomposition tree for Example 4.8. 89
PRIME decomposition. 111
Function for Example 5.6. 115
Two functions and the construction of their Max(G,H) tree. 127
A decomposed state vector forasmalldesign 139
The parameterized frontier set PSex oL 140
A vector function and its free points Lo Lo 141
Free points elimination for Example 6.1 143
General case for prime function elimination: (a) before and (b) after 145
Prime elimination for Example 6.2. 146
Non-dominant variable removal for Example 6.4 150
Trade-offs of in the breadth vs. scalability plane 159

XV1

Chapter 1

Introduction

In the past decade, the semiconductor industry has experienced a challenging evolution in the com-
plexity of digital integrated circuit (IC) designs: increasing integration density and die size has made
it possible to design chips with hundreds of millions of transistors. At the same time, the growing
importance of getting products to market quickly has increased the pressure on design teams to de-
liver new products and new technologies in a short time span: typical development times are less
than two years. In this fast evolving landscape, ensuring that the digital ICs are functionally correct
is crucial: an error in the design’s functionality can delay product deployment by months. More-
over, ICs are embedded in many safety critical applications, where a design flaw can lead to the loss

of life.

Due to the importance of design correctness, a significant fraction of engineering development
time and resources are devoted to it. Design verification involves checking that the initial functional
design of a circuit is correct against the specifications. It consists of a whole set of activities aimed
at acquiring a reasonable certainty level that a circuit will function correctly, under the assumption
that no manufacturing fault is present. Validating the functionality of digital circuits and systems is
an increasingly difficult task. Multiple chip design projects are reporting that approximately 70% of
their design time is spent in verification. This is due to the growing complexity of the designs that

has not been accompanied by improvements in functional verification techniques.

2 CHAPTER 1. INTRODUCTION

Part of this high resource allocation is due to the fact that verification methodologies are still
very experimental, there is almost no standard approach or methodology in any area pertaining to
verification, and the whole process is still largely manual. The cause of this high investment cost
can be attributed to the high complexity of the task at hand, but also to the lack of support from the
design automation industry. While on the design synthesis front, they have made available tools that
can, at least partially, support the complexity and the challenges of such highly integrated designs,
on the verification front there has been almost a complete lack of support. The only widely deployed
tools for verification are logic simulators. Such simulators are a key tool for the verification team to
gain insight in the actual functionality of the design under test; nonetheless, they cannot be used to
guarantee the general correctness of any aspect of a design, and thus, their usefulness as push-button

verification tools is still limited.

1.1 Functional validation

Designers normally try to ensure correctness by developing multiple set of tests to stimulate the
digital design and by inspecting the results of the simulations. These techniques are the only ones
available today that can cope with the complexity and scale of current digital ICs; at the same time
they have significant limitations.

Today, logic simulation is the mainstream approach for the validation of large synchronous
systems because of its scalability : CPU time is proportional to the design size and test length.
Simulation is also flexible: practical cycle-based simulators allow for circuits with multiple clocks
and the ability to mix cycle-based and event-based simulation. Unfortunately, the fraction of the
design space which can be explored by simulation is miniscule, especially for large designs. Only
one state and one input combination of the design under test are visited during each simulation
cycle. Moreover the test stimuli must be hand crafted by the designer to cover those areas of the
design that she wishes to validate. For a large, complex system, it is impossible to test or simulate

all possible inputs or sequences of inputs. One measure of the quality of verification for a design

1.2. FORMAL VERIFICATION 3

that is commonly used in industry is state coverage. State coverage counts how many different
configurations of a system have been visited, and thus verified, by the simulation. When the size of
the design space, or total number of reachable configurations, is known, the state coverage can be
expressed as a fraction of this size. Furthermore, simulation inputs are usually based on the design
specification and thus are only aimed at verifying that the design performs all the primary activities
indicated in the specification document. However, it is often the case that complex systems manifest
unforeseen behavior for corner case situations that were not planned in the specification. Most often,
designers are unaware of behavior that results as a by-product of the interactions among different
modules and that was unaccounted for in the specification document. Thus these cases do not get
checked, while they may as well have negative consequences on the overall behavior of the system.

Overall, designers are discovering that their simulation-based verification approaches are inade-
quate as ICs become more complex through increased size, more aggressive pipelining, and greater

use of concurrency.

1.2 Formal verification

In its broadest meaning formal verification consists of proving formally that the implementation
of a digital IC is compatible with its specification. In a formal verification approach, the desired
functionality of the system needs to be completely specified, then a formal model of the system
needs to be constructed — the implementation — and finally, formal reasoning is used to show that
this formal model satisfies the specification. Formal verification techniques have the potential of
providing more general results than traditional validation methods: it is possible for instance to
guarantee that a specific property holds for a design under all possible input stimuli. Due to the
complexity of constructing a complete specification and of formally proving the compatibility be-
tween implementation and specification, this approach is infeasible for state-of-the-art hardware

designs.

Traditionally formal methods have been mainly explored in academic research settings and only

4 CHAPTER 1. INTRODUCTION

applied to problems of very limited size. However, the recent “verification crisis” — that is the inabil-
ity of current validation techniques to provide sufficient confidence in the correctness of the design
— has spurred increased interest for this approach to verification which has led to new algorithmic
solutions and to new approaches that compromise on the completeness of the verification in order to
reduce its complexity. In particular, the past ten years have seen efforts in developing commercial
formal verification tools; however, so far these tools have not shown the required robustness to be
included in the industry mainstream verification methodology, they have only been applied to ex-
perimental projects. One of the main limitations shown by these first attempts are in the complexity
of the algorithms involved in formal verification: usually their demand for computing resources far
exceeds the resources available at most design sites. Another limitation has been the amount of

engineering effort that is required for providing a complete formal specification of the design.

As a consequence, formal techniques have only be applied to very simple designs that do not

represent the complexity of the digital ICs developed in industry.

1.2.1 Symbolic simulation

Symbolic simulation is a promising approach to formal verification. The key idea is to simulate
the design using Boolean symbolic variables instead of constant binary values at the combinational
inputs of the circuit’s model. During simulation, the approach derives Boolean expressions based
on the initial symbolic variables and the functionality of each of the circuit components. At the end
of each simulation step, we obtain a set of Boolean expression representing implicitly all configu-
rations — or set of states — that are reachable by the circuits in one clock cycle with an appropriate
set of inputs. Thus, this approach allows the complete behavior of a design in a specific state to
be verified with a single simulation step, under all possible inputs simultaneously. Thus, it has the
potential of 1) verifying many configurations of the design in parallel and providing much better
coverage than traditional logic simulation. 2) providing the ability to prove time-bound properties

of the design.

1.3. CONTRIBUTIONS OF THE THESIS 5

The problem with this approach is that it requires extensive manipulation of Boolean expres-
sions, which in turn, often exhaust the memory resources of the host computer even on designs of

limited complexity.

1.3 Contributions of the thesis

This thesis addresses the robustness and scalability limitations of symbolic simulation and presents
two algorithms that dramatically reduce the memory requirements compared to current techniques.

The first technique, called Cycle-Based Symbolic Simulation, simplifies the Boolean expres-
sions involved in symbolic simulation while trying to maximize the range that they span. The
resulting simulator maximizes the level of parallelism achievable with a limited amount of mem-
ory. This technique performs very well from a scalability standpoint, and achieves a high level of
parallelism in terms of test vectors run through the simulator, while maintaining a low memory pro-
file. We found, however, that a better parameterization technique was needed in order to support
the complete state exploration that is typical of symbolic simulation. To this end, we introduced
an efficient algorithm that exposes the disjunctive support decomposition properties of a Boolean
function.

The disjoint support decomposition of a scalar function F : B™ — ‘B, consists of finding other,
simpler functions G and H such that: F(xy, - ,x,) = G(H(X1,"** yXi),Xp+1,---,Xm). An exact
solution to this problem that had exponential complexity in the number of variables of the function,
was proposed in the late ‘50s. The algorithm we present in this thesis takes as input a binary decision
diagram (BDD) representation of a Boolean function and restructures it in its disjoint decomposition
components. The worst case complexity of the algorithm we propose is only quadratic in the size
of this representation, making it well suited for use with complex functions.

This algorithm is applied to transform and simplify the Boolean expressions involved in sym-
bolic simulation so that the simulation requires fewer memory resources while producing the same

original quality of results. Experimental results show that these solutions provide often more than 10

6 CHAPTER 1. INTRODUCTION

orders of magnitude better performance (in test vectors per second) than a logic simulator, while, at
the same time, improve the scale of symbolic simulation by handling up to thousands more symbolic

variables.

1.4 Organization of the thesis

In order to provide the context for our work, we present a quick overview of the steps involved in
the design cycle of a digital IC in Chapter 2. The chapter also presents the models of digital systems
used in verification and the main algorithms for both traditional simulation and formal verification.

We then present the first technique mentioned in the previous section, Cycle-Based Symbolic
Simulation in Chapter 3. The chapter provides a formal presentation of the algorithm and simulation
results that compare the performance of CBSS to that of a logic simulator.

In the following two chapters, we move away from the main topic of verification to focus on a
core topic of Boolean algebra, the theory of Disjoint Support Decompositions (DSD). This theory
is the central idea behind our second symbolic simulation technique. We decided to introduce it
only at this point, so that the reader has a chance of seeing the type of approach that we take
at verification with our first technique, before diving into core theoretical material. The first of
these two chapters introduces the main results of the Disjunctive Support Decomposition theory of
Boolean functions, the second presents our novel algorithm for decomposing the BDD of a function
in its disjoint support components. Chapter 5 discusses the algorithm in detail and shows results on
the decomposability of many Boolean functions involved in indutrial benchmarks.

This theory and novel algorithm are then deployed in Chapter 6 to present a new symbolic
simulation algorithm based on the DSD properties of the state vector functions of simulation. This
approach is called Disjoint Support Decomposition based Symbolic Simulation. The results compare
this approach to a plain symbolic simulator. We conclude the thesis with Chapter 7, where we
provide a discussion of the methods presented in the thesis and some directions for future research.

Each of the chapters starts with a presentation of our objectives for the chapter and a review of

1.4. ORGANIZATION OF THE THESIS 7

the previous research developed on its specific topic. The central part covers a formal presentation
of the material. When a chapter presents a new algorithm, we conclude presenting simulation results

obtained by implementing the algorithm and testing it on indutrial testbenches.

CHAPTER 1. INTRODUCTION

Chapter 2

Design and verification of digital systems

Before diving into the discussion of the various verification techniques, we are going to review how
digital ICs are developed. During its development, a digital design goes through multiple transfor-
mations from the original set of specifications to the final product. Each of these transformations
corresponds, coarsely, to a different description of the system, which is incrementally more detailed
and which has its own specific semantics and set of primitives. This chapter provides a high level
overview of this design flow in the first two sections. We then review the mathematical background
(Section 2.3) and cover the basic circuit structure and finite state machine definitions (Section 2.4)

that are required to present the core algorithms involved in verification.

The remaining sections presents the algorithms that are at the core of the current technology in
design verification. Section 2.5 covers the approach of compiled level logic simulation. This tech-
nique was first introduced in the late 80’s and it is still today the industry’s mainstream verification
approach. Section 2.6 provides and overview of formal verification and of a few of its more suc-
cessful solutions; within this context Section 2.7 focuses on providing a more detailed presentation
of symbolic simulation, since this technique will be at the basis of the novel solutions introduced by

this thesis.

10 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

2.1 The design flow

Figure 2.1 presents a conceptual design flow from specifications to final product. The flow in the
figure shows a top-down approach that is very simplfied: as we discuss later in this section, the
reality of an industrial development is much more complex, involving many iterations through var-
ious portions of this flow, until the final design converges to a form that meets the specification
requirements of functionality, area, timing, power and cost. The design specifications are generally
presented as a document describing a set of functionalities that the final solution will have to provide
and a set constraints that it must satisfy. In this context, the functional design is the initial process of
deriving a potential and realizable solution from this design specifications and requirements. This is
sometimes referred to as modeling and includes such activities as hardware/software tradeoffs and

a micro-architecture design.

Because of the large scale of the problem, the development of a functional design is usually
carried out using a hierarchical approach, so that a single designer can concentrate on a portion of
the model at any given time. Thus, the architectural description provides a partition of the design
in distinct modules, each of which contributes a specific functionality to the overall design. These
modules have well defined input/output interfaces and protocols for communicating with the other
components of the design. Among the results of this design phase is a high level functional descrip-
tion, often a software program in C or similar programming language, that simulates the behavior of
the design with the accuracy of one clock cycle and reflects the module partition. It is used for per-
formance analysis and also as a reference model to verify the behavior of the more detailed designs

developed in the following stages.

From the functional design model, the hardware design team proceeds to the Register Transfer
Level (RTL) design phase. During this phase, the architectural description is further refined: memory
element and functional components of each model are designed using an Hardware Description
Languages (HDL). This phase also sees the development of the clocking system of the design and

architectural trade-offs such as speed/power.

2.1. THE DESIGN FLOW

Design
specifications
. Functional void adder(int op1, int op2,
> . int& sum, int& overflow)
Design { !
sum = op1 + 0p2;
if ((msb(op1) == msb(op2)
&8& msb(sum) != msb(op1))
> . overflow = 1;
1)esoevferllow=0:
}
RTL
Design
module adder(op1, op2, sum, overflow,
> reset |, clk);
output [31:0] sum;
[input[31:0] op1, op2;
input overflow, reset |, clk;
glwgys @(posedge clk or negedge reset_l)
egin .)
RTL g\(s!;es:éﬂ'l\) sum = 31°h0000;
o . =opl +op2;
Verification overtlow = (opA[311°-0p2(31]) &
(op1[31]"sum(31]);
end
end
endmodule //adder
\
_ | Synthesis and
~ | Optimization
|
RTL vs. Gates
Verification
Tech. mapping
Place & Route
|
Fabrication
|
Testing and
Packaging

Figure 2.1: Design flow of a digital system

High Level
Functional description

Register Transfer
Level description

Gate Level
description

IC layout

Silicon die

Package die

11

12 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

With the RTL design, the functional design of our digital system ends and its verification begins.
RTL verification consists of acquiring a reasonable confidence that a circuit will function correctly,
under the assumption that no manufacturing fault is present. The underlying motivation is to re-
move all possible design errors before proceeding to the expensive chip manufacturing. Each time
functional errors are found the model needs to be modified to reflect the proper behavior. During
RTL verification, the verification team develops various techniques and numerous suites of tests to
check that the design behavior corresponds to the initial specifications. When that is not the case,
the functional design model needs to be modified to provide the correct behavior specified and the
RTL design updated consequently. It is also possible that the RTL verification phase reveals incon-
gruences or overlooked aspects in the original set of specifications and this latter one needs to be

updated instead.

In the diagram of Figure 2.1, RTL verification appears as one isolated phase of the design
flow. However, in practical designs, the verification of the RTL model is carried on in parallel
with the other design activities and it often lasts until chip layout. An overview of the verification

methodologies that are common in today’s industrial developments is presented in the next section.

The next design phase consists of the Synthesis and optimization of the RTL design. The overall
result of this phase is to generate a detailed model of a circuits which is optimized based on the
design constraints. For instance a design could be optimized for power consumption or the size
of its final realization (IC area) or for the ease of testability of the final product. The detailed
model produced at this point describes the design in terms of its basic logic components, such as
AND, OR, NOT or XOR and memory elements. Optimizing the netlist, or gate level description,
for constraints such as timing and power requirements is an increasingly challenging activity for
current developments and it usually involves multiple iterations of trial-and-error attempts before
it converges to a solution that satisfies both these requirements. Such optimizations may in turn

introduce functional errors that require additional RTL verification.

While all the design phases, up to this point, have minimal support from Computer Aided Design

(CAD) software tools and are almost entirely hand crafted by the design and verification team,

2.1. THE DESIGN FLOW 13

starting from synthesis and optimization, most of the activities are semi-automatic or at least heavily
supported by CAD tools. Automating the RTL verification phase, is the next challenge that the CAD

industry is facing in providing full support for digital systems development.

The synthesized model needs to be verified. The objective of RTL versus gates verification, or
equivalency checking, is to guarantee that no errors have been introduced during the synthesis phase.
It is an automatic activity requiring minimal human interaction that compares the pre-synthesis
RTL description to the post-synthesis gate level description in order to guarantee the functional

equivalence of the two models.

At this point, it is possible to proceed to technology mapping and placement and routing. The
result is a description of the circuit in terms of a geometrical layout used for the fabrication process.

Finally the design is fabricated, and the microchips are tested and packaged.

This design flow is obviously a very ideal, conceptual case. For instance, usually there are many
iterations of synthesis, due to changes in the specification or to the discovery of flaws during RTL
verification. Each of the new synthesized version of the design needs to be put through again all
the subsequent design phases. One of the main challenges faced by design teams, for instance, is in
satisfying the ever increasing market pressure to produce designs with faster and faster clock cycles.
These tight timing specifications force engineering teams to push the limits of their designs by op-
timizing them at every level: architectural, in the components choice and sizing, and in placement
and routing. Achieving timing closure, that is, developing a design that satisfies the timing con-
straints set in the specifications while still operating correctly and consistently, most often requires
optimizations that go beyond the abilities of automatic synthesis tools and forces the engineers to
intervene manually, at least in some critical portions of the design. Often, it is only possible to
check if a design has met the specification requirements after the final layout has been produced.
If these requirements are not met, the engineering team comes up with alternative optimizations or

architectural changes and creates a new model that needs to go through the complete design flow.

14 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

2.2 RTL verification

As we observed in the previous section, the correctness of a digital circuit is a major consideration
in the design of digital systems. Given the extremely high and increasing costs of manufacturing
microchips, the consequences of flaws going unnoticed in system designs until after the production
phase, would be very expensive. At the same time, RTL verification is still one the most challenging
activities in digital system development: as of today, it is still carried on mostly with ad-hoc tests,
scripts and often even tools developed by the design and verification teams specifically for the cur-
rent design. In the best case, these verification infrastructure development can be amortized among
a family of designs with similar architecture and functionality. Moreover, verification methodology
still lacks any standard or even a commonly accepted approach, with the consequence that each
hardware engineering team has its own distinct verification practices which often change with sub-
sequent designs by the same team, due to the insufficient “correctness confidence level” that any of
the current approaches provide. Given this scenario, it is easy to see why many digital IC devel-
opment teams report that more than 70% of the design time and engineering resources are spent in
verification, and why verification is thus the bottleneck in the time-to-market for integrated circuit

development [5].

The workhorse of the industrial approach to verification is functional validation. The functional
model of a design is simulated with meaningful input stimuli and the output is checked for the
expected behavior. The model used for simulation is the RTL description The simulation involves
applying patterns of test data at the inputs of the model, then using the simulation software or
machine to compute the simulated values at the outputs and finally checking the correctness of the
values obtained.

Validation is generally carried on at two levels: module level and chip level. The first verifies
each module of the design independently. It involves producing entire suites of stand alone tests,
each of which checks the proper behavior of one specific aspect or functionality of that module.

Each test includes a set of input patterns to stimulate the module and a portion that verifies that the

2.2. RTL VERIFICATION 15

output of the module corresponds to what is expected. The design of these tests is generally very
time consuming, since each of them has to be handcrafted by the verification engineering team.
Moreover their reusability is very limited because they are specific to each module. In general, the
verification team develops a separate test suite for each functionality described in the original design
specification document. Recently, a few CAD tools have become available to support functional
validation: they mainly provide more powerful and compact language primitives to describe the test

patterns and to check the outputs of the module, thus saving some test development time [34, 37, 5].

During chip level validation, the design is verified as a whole. Often this is done after a fair
confidence is obtained about the correctness of each single module, and the focus is mainly in
verifying the proper interaction between modules. This phase, while more compute intensive, has
the advantage of being carried on in a more automatic fashion. In fact, input test patterns are
often randomly generated, with the only constraint of being compatible with what the specification
document define to be the proper input format to the design. During chip level validation it is
usually possible to simulate both the RTL and a high level description of the design simultaneously
and check that the outputs of the two systems and the values stored in their memory elements match

one to one, at the end of each clock cycle.

The quality of all these verification efforts is usually analytically evaluated in terms of coverage:
a measure of the fraction of the design that has been verified [43, 50]. Functional validation can
provide only partial coverage because of its approach; the objective is thus to maximize coverage
for the design under test. Various measures of coverage are in use: for instance /ine coverage counts
the lines of the RTL description that have been activated during simulation. Another type is state
coverage which measures the number of all the possible configurations of a design that have been
simulated, that is, validated. This measure is particularly valuable when an estimate of the size of
the total state space of the design is available: in this situation the designer can use state coverage

to quantify the fraction of the design that she has verified.

With the increasing complexity of industrial designs, the fraction of the design space that the

functional validation approach can explore is becoming vanishingly small, and it is showing more

16 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

and more that it is an inadequate solution to the verification problem. Since only one state and one
input combination of the design under test are visited during each step of simulation, it is obvious

that neither of the above approaches can keep up with the exponential growth in circuit complexity.

Because of the limitations of functional validation, new alternative techniques have received
increasing interest. The common trait of these techniques is the attempt to provide some type of
mathematical proof that a design is correct, thus guaranteeing that some aspect or property of the
circuit behavior holds under every circumstance, and thus its validity is not limited only to the set of
test patterns that have been checked. These techniques go under the name of formal verification and
have been studied mostly in academic research settings for the past 25 years. Formal verification
constitutes a major paradigm shift in solving the verification problem. As Figure 2.2 shows, with
logic simulation we probe the system with a few handcrafted stimuli, while with formal verification
we show the correctness of a design by providing analytical proofs that the system is compatible
with each of the specifications. Compared to a functional validation approach, this is equivalent to

simulating a design with all possible input stimuli and thus to providing 100% coverage.

. —_— | design _
i Input 7 f output —; propertiesor | —
\ patterns g, Checking specifications
Logic simulation Formal verification

Figure 2.2: Approaches to verification

It is obvious that the promise of such thorough verification, makes formal verification a very
appealing approach. While on one hand the solution to the verification problem seems to lie with
formal verification approaches, on the other hand, these techniques have been unable to tackle
industrial designs due to the complexity of the underlying algorithms, and thus have been applicable
only to smaller components. They have been used in industrial development projects only at an

experimental level, and so far they generally have not been part of the mainstream verification

2.3. BOOLEAN VARIABLES AND FUNCTIONS AND THEIR REPRESENTATION 17

methodology.
We now overview some of the fundamental methods for validation and verification to set the
stage for the new techniques presented in this thesis. Before diving into this, we briefly review some

mathematical concepts and the models and abstractions of digital systems used by these techniques.

2.3 Boolean variables and functions and their representation

We review here a few basic notions on Boolean algebra to set the stage for the following presenta-
tion.

Let B denote the Boolean set {0,1}. A symbolic variable is a variable defined over B. A
logic function is a mapping F : B" — B™. Hereafter, lower-case and upper-case letters will denote
logic variables and functions, respectively. We will be mostly concerned with scalar functions
F(x1,+-+,x,) : B" — B. We use boldface to indicate vector-valued functions. The i component of
a vector function F is indicated by F;.

The I-cofactor of a function F w.r.t. a variable x; is the function F}, obtained by substituting 1

for x; in F. Similarly, the O-cofactor, Fx;, is obtained by substituting O for x; in F.

Definition 2.1. Let F : B" — B denote a non-constant Boolean function of n variables x1,--- ,x,.
We say that F depends on x; if F,, # Fx. We call support of F, indicated by S(F), the set of Boolean
variables F depends on. In the most general case when F is a multiple output function, we say that

F: B"™ — B" depends on a variable x;, if at least one of its components F; depends on it.

The size of S(F') is the number of its elements, and it is indicated by |.S(F')|. Two functions F,G

are said to have disjoint support if they share no support variables, i.e. S(F)NS(G) = 0.

Definition 2.2. The range of a function ¥ : B" — B"™ is the set of m-tuples that can be asserted by

F, and it will be denoted by R (F):

R(F) = {y € B"[3x € B",F(x) =y}

18 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

For scalar functions the range reduces to R (F) = ‘B for all except the two constant functions 0 and

1.

An operation between Boolean functions that will be needed in the following presentation is

that of generalized cofactor:

Definition 2.3. Given two functions F and G, the generalized cofactor of F w.r.t. G is the function

Fg such that for each input combination satisfying G the outputs of F' and Fg are identical.

Notice that in general there are multiple possible functions F satisfying the definition of gen-
eralized cofactor. Moreover, if F and G have disjoint supports, than one possible solution for Fg is
the function F itself.

A special class of functions that will be used frequently is that of characteristic functions. They
are scalar functions that represent sets implicitly: They are asserted if and only if their input value

belongs to the set represented.

Definition 2.4. Given a set V C B", whose elements are Boolean vectors, its characteristic function
v (x) : B" — B is defined as:
1 when xev
xv (x) = 2.1
0 otherwise
When sets are represented by their characteristic function, the operations of set intersection,
union and complementation correspond to AND, OR and NOT respectively, on their corresponding

functions. This observation will be very useful in the following presentation.

2.3.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [17, 19] are a compact and efficient way of representing and ma-
nipulating symbolic Boolean functions. Because of this, BDDs are a key component of all symbolic
techniques for verification. They form a canonical representation, making the testing of functional

properties such as satisfiability and equivalence straightforward.

2.3. BOOLEAN VARIABLES AND FUNCTIONS AND THEIR REPRESENTATION 19

BDDs are rooted directed acyclic graphs that satisfy a few restrictions for canonicity and com-
pactness. Each path from root to leaves, in the graph, correspond to an evaluation of the Boolean

function for a specific assignment of its input variables.

Example 2.1. Figure 2.3.a represents the BDD for the function F = (X+¥)pq. Given any as-
signment to the four input variables it is possible to find the value of the function by following the
corresponding path from the root F to a leaf. At each node, the 0 edge (dashed) is chosen is the
variable has a value 0, similarly for the 1 edge.

Figure 2.3.b represents the BDD for the function G =w ®x®y @ z. Observe that the number
of BDD nodes needed to represent XOR functions with BDDs, is 2 - #vars. At the same time, other
canonical representations, such as truth tables or sum of minterms require a number of terms that

is exponential with respect to the number of variables in the function’s support.

Figure 2.3: Binary Decision Diagrams

For a given ordering of the variables, it was shown in [17] that a function has a unique BDD
representation. Therefore, checking the identity of two functions reduces to checking for BDD

identity, which is accomplished in constant time.

20 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

The following definition formalizes the structure of BDDs:

Definition 2.5. A BDD is a DAG with two sink nodes labeled “0” and “1” representing the Boolean
functions 0 and 1. Each non-sink node is labeled with a Boolean variable x; and has two out-edges
labeled 0 and 1. Each non-sink node represents the Boolean function X;Fy + x;F|, where Fy and F}
are the cofactors w.r.t. x and are represented by the BDDs rooted at the 0 and 1 edges respectively.

Moreover, a BDD satisfies two additional constraints:

1. There is a complete (but otherwise arbitrary) ordering of the input variables and every path

from source to sink in the BDD visits the input variables according to this ordering.

2. Each node represents a distinct logic function, that is, there is no duplicate representation of

the same function.

A common optimization in implementing BDDs is the use of complement edges [13]. A com-
plement edge indicates that the connected function is to be interpreted as the complement of the
ordinary function. When using complement edges, BDDs have only one sink node “1”, whereas the
sink node “0” is represented as the complement of “1”.

Boolean operations can be easily implemented as graph algorithms on the BDD data structure
by simple recursive routines making Boolean function manipulation straightforward when using a
BDD representation.

A critical aspect that contributes to the wide acceptance of BDDs for representing Boolean
functions is that in most applications the amount of memory required for BDDs remains manage-
able. The number of nodes that are part of a BDD, also called the BDD size, is proportional to the
amount of memory required, and thus the peak BDD size is a commonly used measure to estimate
the amount of memory required by a specific computation involving Boolean expressions. How-
ever, the variable order chosen can affect the size of a BDD. It has been shown that for some type of
functions the size of a BDD can vary from linear to exponential based on the variable order. A lot of
research has been done in finding algorithms that can provide a good variable order. While finding

the optimal order is an intractable problem, many heuristics have been suggested to find sufficiently

2.4. MODELS FOR DESIGN VERIFICATION 21

good orders, from static approaches based on the underlying logic network structure in [52, 32], to
dynamic techniques that change the variable order whenever the size of the BDD grows beyond a
threshold [58, 12].

Binary Decision Diagrams are used extensively in symbolic simulation, one of the more suc-
cessful formal verification methods. The most critical drawback of this method is its high demand
on memory resources, which are mostly used for BDD representation and manipulation. This thesis
introduces novel techniques that transform the Boolean functions involved in symbolic simulations
through parameterization. The result of the parameterization is to produce new functions that have
a more compact BDD representation, while preserving the same results of the original symbolic
exploration. The reduced size of the BDDs involved in simulation translates to a lower demand of
memory resources, and thus it increases the size of IC designs that can be effectively tackled by this

formal verification approach.

2.4 Models for design verification

The verification techniques that we present in this thesis rely on a structural gate-level network
description of the digital system, generally obtained from the logic synthesis phase of the design
process. In the most general case, such networks are sequential, meaning that they contain storage
elements like flipflops or banks of registers. Such circuits store state information about the system,
thus the output at any point in time depends not only on the current input but also on historical
values of the input. State transition models are a common abstraction to describe the functional-
ity of a design. In this section we review both their graph representation and the corresponding

mathematical model.

2.4.1 Structural network model

A digital circuit can be modeled as a network of ideal combinational logic gates and a set of memory

elements to store the circuit state. The combinational logic gates we use are: AND, OR, NOT or

22 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

XOR. Figure 2.4 reproduces the graphic symbol we use for each of these types.

a a a d a
b} a+b b:-—a-b a—>.i§ bj’a@b

2—-inputs OR gate 2—-inputs AND gate NOT gate 2—-inputs XOR gate D flip—flop

Figure 2.4: Graphic symbols for some basic logic gates

A synchronous sequential network has a set of primary inputs and a set of primary outputs. We
make the assumption that the combinational logic elements are ideal, that is that there is no delay in
the propagation of the value across the combinational portion of the network. Figure 2.5 represents

such a model for a general network.

outputs

C

N\

NN § " elements

Figure 2.5: Structural network model

We also assume that there is a single clock signal to latch all the memory elements. In the most
general case where a design has multiple clocks, the system can still be modeled by an equivalent
network with a single global clock and appropriate logic transformations to the inputs of the memory

elements.

Example 2.2. Figure 2.6 is an example of a structural network model for a 3-bits up-down counter
with reset. The inputs to the system are the reset and the count signals. The outputs are 3 bits

representing the current value of the counter. The clock input is assumed implicitly. This system

2.4. MODELS FOR DESIGN VERIFICATION 23

has four memory elements that store the current counter value and if the counter is counting up or
down. At each clock tick the system updates the values of the counter if the count signal is high.
The value is incremented until it reaches the maximum value seven, after, it is decremented down to
zero. Whenever the reset signal is held high the counter is reset to zero.

The dotted perimeter in the figure indicates the combinational portion of the circuit’s schematic.

up

Ay

x

&

Figure 2.6: Network model of a 3-bits up/down counter with reset

2.4.2 State diagrams

A representation that can be used to describe the functional behavior of a sequential digital system
is a Finite State Machine model.

Such model can be represented through state diagrams. A state diagram is a labeled directed
graph where each node represents a possible configuration of the circuit. The arcs connecting the
nodes represent changes from one state to the next and are annotated by the input which would cause

such transition in a single clock cycle. State diagrams present only the functionality of the design,

24 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

while the details of the implementation are not considered and any implementation satisfying this
state diagram will perform the function described. State diagrams also contain the required outputs
at each state and/or at each transition. In a Mealy state diagram, the outputs are associated to each
transition arc, while in a Moore state diagram outputs are specified with the nodes/states of the
diagram. The initial state is marked in a distinct way to indicate the starting configuration of the

system.

Example 2.3. Figure 2.7 represents the Moore state diagram corresponding to the counter of Ex-
ample 2.2. Each state indicates the value stored in the three flip-flops x¢, x1, x» in bold and in the
up/down flip-flop under it. All the arcs are marked with the input signal required to perform that

transition. Notice also that the initial state is indicated with a double circle.

count reset count reset count reset
count count

countreset > QUIT | (UIU | count reset

countreset \ w2t)\ VIV

count count

count reset count reset count reset

value
up/dn

Figure 2.7: State diagram of a 3-bit up/down counter
In the most general case the number of configurations, or different states a system can be in, is
much smaller than the number of possible values that its memory elements can assume.

Example 2.4. Figure 2.8 represents the Finite State Machine of a 3-bits counter 1-hot encoded.

Notice that even if the state is encoded using three bits, only the three configurations 001,010, 100

2.4. MODELS FOR DESIGN VERIFICATION 25

are possible for the circuit. Such configurations are said to be reachable from the Initial State. The
remaining five configuration 000,011,101,110,111 are said to be unreachable, since the circuit will

never be in any of these states during normal operation.

count reset

count reset

count reset count reset

Figure 2.8: State diagram of a 1-hot encoded 3-bit counter

2.4.3 Mathematical model of Finite State Machines

An alternative way of describing a Finite State Machine is through a mathematical description of the
set of states and the rules to perform transitions between states. In mathematical terms, a completely
specified, deterministic Finite State Machine (FSM) is defined by a 6-tuple:

M= (I,0,S,8,5,\)

where:

e [is an ordered set (i1, - - -, i,,) of Boolean input symbols,

e O is an ordered set (01, ..., 0,) of Boolean output symbols,
e Sis an ordered set (sq, - .., 5,) of Boolean state symbols,

d is the next-state function: &: S x [: B*" — §: B",

A is the output function A : Sx I : B"" — O : BP,

and Sy is an initial assignment of the state symbols.

26 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

The definition above is for a Mealy type FSM, for a Moore type FSM the output function A
simplifies to: A: S: B" — O : BP.

Example 2.5. The mathematical description of the FSM of Example 2.4 is the following:

o [= {count,reset},

0= {X(),xl,XZ},

s = {001,010, 100},

count reset | 001 | 010 | 100

00 001 | 010 | 100

o= 01 001 | 001 | 001

10 010 | 100 | 001

11 010 | 001 | 001

A={001 — 001,010 — 010,100 — 100},
o So = {001}

While the state diagram representation is often much more intuitive, the mathematical model
gives us a mean of having a formal description of a FSM or, equivalently, of the behavior of a
sequential system. The formal mathematical description is also much more compact, making it

possible to describe even very complex systems for which a state diagram would be unmanageable.

2.5 Functional validation

The most common approach to functional validation involves the use of a logic simulator soft-
ware. A commonly deployed architecture is based on the levelized compiled code logic simulator
approach by Barzilai and Hansen [4, 33, 66].

Their algorithm starts from a gate level description of a digital system and chooses an order

for the gates based on their distance from the primary inputs — in fact, any order compatible with

2.5. FUNCTIONAL VALIDATION 27

this partial ordering is valid. The name levelized of the algorithm is due precisely to this initial
ordering by levels of the gates. The algorithm then builds an internal representation in assembly
language where each gate corresponds to a single assembly instruction. The order of the gates and,
equivalently, of the instructions, guarantees that the values for the instruction’s inputs are ready
when the program counter reaches that specific instruction. This assembly block constitutes the

internal representation of the circuit in the simulator.

out,

Qo

c

~
-

out 0

3

Ry

X

X

Figure 2.9: Compiled logic simulator

Example 2.6. Figure 2.9 reproduces the gate level representation of the counter we used in Example
2.2. Each combinational gate has been assigned a level number (in italic in the picture) based on
its distance from the inputs of the design. Subsequently, gates have been numbered sequentially
(bold numbers) compatibly with this partial order. From this diagram it is possible to write the

corresponding assembly block:

1. rl

NOT (x1)

2. r2 = OR(x0, x1)

28 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

3. r3 = AND (x0, x1)

11. rll = XOR(x0, count)
12. rl2 = NOT (reset)

13. rl3 = AND(rl, x0)

27. r27 = AND(r24, rl2)

28. r28 = AND(r26, rl2)

Note that there is a I-to-1 correspondence between each instruction in the assembly block and

each gate in the logic network.

The assembly compiler can then take care of mapping the virtual registers of the source code to
the physical registers set available on the specific simulating host.

Multiple inputs gates can be easily handled by composing their functionality through multi-
ple operations. For instance, with reference to Example 2.6, the 3-input XNOR of gate 7, can be

translated as:

7. r7tmp = XOR (up, x1)

Tbis. r7 XNOR (r7tmp, x0)

At this point, simulation is performed by providing an input test vector, executing the assembly
block and reading the output values computed. Such output values can be written to a separate file
to be further inspected later to verify the correctness of the results:

Notice that, in first approximation, each of the assembly instructions can be executed in one CPU
clock cycle of the host computer, thus providing a very high performance simulation. Moreover, this
algorithm scales linearly with the length of the test vector and with the circuit complexity. The high
performance and linear scalability of logic simulation are the properties that make this approach to

functional validation widely accepted in industry.

2.5. FUNCTIONAL VALIDATION 29

Logic_Simulator (network_model) {

assign (present_state_signals, reset_state_pattern);

while (input_pattern != empty) {
assign (input_signals, input_pattern);
CIRCUIT _ASSEMBLY;
output_values = read(output_signals);
state_values = read(next_state_signals);
write_simulation_output (output_values);
assign (present_state_signals, state_values);
next input_pattern;

Figure 2.10: Logic simulation - pseudocode

The model just described is called a cycle-based simulator, since values are simulated on a cycle
by cycle basis. Another family of simulators are event-driven simulators: the key difference is that
each gate is simulated only when there is a change of the values at its inputs. This alternative
scheduling approach makes possible to achieve a finer time granularity in the simulation, and to

simulate events that occur between clock cycles.

Various commercial tools are available that use one or both of the approaches described above,
and that have proven to have the robustness and scalability to handle the complexity of designs
being developed today. Such commercial tools are also very flexible: Practical cycle-based sim-
ulators allow for circuits with multiple clocks and the ability to mix cycle-based and event-based
simulation to optimize performance [31]. When deployed in a digital system development context,
simulators constitute the core engine of the functional validation process. However, the develop-
ment of meaningful test sequences is the bulk of the time spent in verification. Generally the test
stimuli are organized so that distinct sequences cover different aspects of the design functionalities.
Each test sequence needs to be hand crafted by verification engineers. The simulated output values
then are checked again by visual inspection. Both these activities require an increasing amount of

engineering resources.

30 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

As mentioned before, some support in such development is available from specialized program-
ming languages that make it possible for the verification engineer to use powerful primitives to
create stimuli for the design, and to create procedures to automatically check the correctness of the
output values [34, 49]. These test programs are then compiled and executed side by side with the
simulation, exchanging data with it at every time step. Another module that is often run in parallel
to the simulator or as a post-processing tool is a coverage engine: it collects analytical data on the

portions of the circuit that has been exercised.

Since designs are developed and changed on a daily basis, it is typical to make use of verification
farms — thousands of computers running logic simulators — where the test suites are run every day

for weeks at a time.

Another common validation methodology approach in industry is pseudo-random simulation.
Pseudo-random simulation is mostly used to provide chip level validation and to complement Stand
Alone Testing validation at the module level. This approach involves running logic simulation with
stimulus generated randomly, but within specific constraints. For instance, a constraint could specify
that the reset sequence is only initiated 1% of time. Or it could specify some high level flow of the
randomly generated test, while leaving the specific vectors to be randomly determined [2, 26, 69].
The major advantage of pseudo-random simulation is that the burden on the engineering team for
test development is greatly reduced. However, since there is a very limited control on the direction
of the design state exploration, it is hard to achieve a high coverage with this approach and to avoid

producing just many similar redundant tests that have limited incremental usefulness.

Pseudo-random simulation is also often run using emulators, which conceptually are hardware
implementations of logic simulators. Usually they use configurable hardware architectures, based
on FPGAs (Floating Point Gate Arrays) or specialized reconfigurable components that are con-
figured to reproduce the gate level description of the design to be validated [56, 35, 25]. While
emulators can perform one to two order of magnitude faster than software based simulation, they
constitute a very expensive solution because of the high raw cost of acquiring them and the time

consuming process of configuring them for a specific design, which usually requires several weeks

2.6. FORMAL VERIFICATION 31

of engineering effort. Because of these reasons, they are mostly used for IC designs with a large
market.

Even if design houses put so much effort in developing tests for their designs and in maximizing
the amount of simulation in order to achieve thorough coverage, simulation can only stimulate a
small portion of the entire design and thus can potentially miss a subtle design error that might only

surface trouble under a particular set of rare conditions.

2.6 Formal verification

On the other side of the verification spectrum are formal verification techniques. These methods
have the potential to provide a quantum leap in the coverage achievable on a design, thus improving
significantly the quality of verification. Formal verification attempts to establish universal properties
about the design, independent of any particular set of inputs. By doing so, the possibility of letting
corner situations go untested in a design is removed. A formal verification system uses rigorous,
formalized reasoning to prove statements that are valid for all feasible input sequences. Formal
verification techniques promise to complement simulation because they can generalize and abstract
the behavior of the design.

Almost all verification techniques can be roughly classified in one of two categories: model-
based or proof-theoretic. Model-based techniques usually rely on a brute-force exploration of the
whole solution space using symbolic techniques and finite state machines representations. The main
successful results of these methods are based on symbolic state traversal algorithms which allow
the full exploration of digital systems up to a few hundreds latches. At the root of state traversal
approaches is some type of implicit or explicit representation of all the states of a systems that
have been visited up to a certain step of the traversal. Since there is an exponential relationship
between the number of states and the number of memory elements in a system, it is easy to see how
the complexity of these algorithms grows exponentially with the number of memory elements in a

system. This problem is called the state explosion problem and it’s the main reason for the very

32 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

limited applicability of the method. At the same time, the approach has the advantage of being fully
automatic.

An alternative approach that belongs to the model based category is symbolic simulation. This
method verifies a set of scalar tests with a single symbolic vector. Symbolic functions are assigned
to the inputs and propagated through the circuit to the outputs. This method has the advantage that
large input spaces can be covered in parallel with a single symbolic sweep of the circuit. Again, the
bottleneck of this approach lies in the explosion of symbolic functions representations.

Symbolic approaches are also at the base of equivalency checking, another verification tech-
nique. In equivalence checking, the goal is to prove that two different network models provide the
same functionality. In recent years this problem has found solutions that are scalable to industrial
size circuits, thus achieving full industrial acceptance. Although checking the equivalence of two
circuits has the advantage that it does not require to face the state explosion problem, nevertheless,
there is hope that symbolic techniques will be the basis for viable industrial-level solutions to formal
verification.

The other family of techniques, proof-theoretic methods, are based on abstractions and hierar-
chical methods to prove the correctness of a system [39, 42]. Verification in this framework uses
theorem prover software to provide support in reasoning and deriving proofs about the specifica-
tions and the developed model of a design. They use a variety of logic representations. The design
complexity that a theorem prover can handle is unlimited. However, currently available theorem
provers require significant human guidance: even with a state-of-the-art theorem prover, proving
that a model satisfies a specification is a very hand-driven process. Thus, this approach is still

impractical for most industrial applications.

2.6.1 Symbolic Finite State Machine traversal

One approach used in formal verification is to focus on a property of a circuit and prove that this
property holds for any configuration of the circuit that is reachable from its initial state. For instance,

such property could specify that if the system is properly initialized, it never deadlocks. Or, in the

2.6. FORMAL VERIFICATION 33

case of pipelined microprocessor, one property could be that any issued instruction completes within
a finite number of clock cycles. The proof of properties such as these, require, first of all, to construct
a global state graph representing the combined behavior of all the components of the system. After
this, each state of the graph needs to be inspected to check if the property holds for that state. Many
problems in formal hardware verification are based on reachable state computation of Finite State
Machines (FSMs). A reachable state is just one that is reachable for some input sequence from
a given set of possible initial states (see Example 2.4). This type of computation uses a symbolic
breadth-first approach to visit all reachable states, also called reachability analysis. This approach,
described below, has been published in seminal papers by Madre, Coudert and Berthet [27] and later
in [64, 21].

In the context of FSMs, reachable states computations are based on implicit traversal of the state
diagram (Section 2.4.2). The key step of the traversal is in computing the image of a given set of
states in the diagram, that is, computing the set of states that can be reached from the present state

with one single transition (following one edge in the diagram).

Example 2.7. Consider the state diagram of Figure 2.7. The image of the one state set {000 — 1}
is {000 — 1,001 — 1} since there is one edge connecting the state 000 — 1 to both these states. The

image of the set {110— 1,111 —0} is {000—1,110— 1,111 —-0,110—0}.

Definition 2.6. Given a FSM M and a set of states R, its image is the set of states that can be
reached by one step of the state machine. With reference to the model definition of Section 2.4.3, the

image is:

Img(M,R) = {s'|s' = 8(s,i),s ER,i € I}

It is also possible to convert the next state function 8() into a transition relation TR(s,s'), which

holds when there is some input i such that 8(s,x) = s’. This relation is defined by existentially

34 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

quantifying the inputs from §():

TR(s,s') =3i [/n\ By (s,i) = s;c]

k=1

where J represents the transition function for the kth bit. The transition relation can be repre-
sented by a corresponding characteristic function — see Definition 2.4 — % 7R which equals 1 when

TR(s,s") holds.

We can then define the image of a pair (M, R) using characteristic functions. Given a set of
states R with characteristic function)y, its image under transition relation TR is the set Img having

characteristic function:

Ximg(s') =35 (xrr(s,s") - Ar(s))

As we mentioned before, image computation is the key step of reachability analysis, the opera-
tion of finding the set of all the states of the FSM that are reachable. Reachability analysis involves
determining the set of states that can be reached by a FSM, after an arbitrary number of transitions,
given that it starts from an initial state Sp. The set of reachable states can be computed by a symbolic
breadth-first traversal where all operations are performed on the characteristic functions. During
each iteration, the procedure starts from a set of newly encountered states from and performs an
image computation on the set to determine the new set of states t o that can be reached in one tran-
sition from the states in from. The states to include in the from set are simply the states in the
to set of the previous step that have not already been used in a previous image computation. Since
the FSM that is being traversed has a finite number of states and transitions, these iterations will
eventually reach a point where no new states are encountered. That point is called the fixpoint. The
final accumulated set of states reached represents the set of all reachable states from the initial
state Sp. In practice, all the sets involved in the computation are represented by their characteristic

functions.

2.7. SYMBOLIC SIMULATION 35

Machine_Traversal (FSM M) {

from = new = reached = initial_state;
while (new # 0) {
to = Img(transition_relation, from);

new = To \ reached;
reached = reached U new;
from = new;

}

return reached;

Figure 2.11: FSM state traversal - pseudocode

In general, the number of iterations required to achieve this fixpoint could be linear in the num-
ber of states of the FSM, and thus exponential in the number of memory elements of the system.

Symbolic traversal is at the core of the symbolic model checking approach to verification. The
basic idea underlying this method is to use BDDs (Section 2.3.1) to represent all the functions in-
volved in the validation and the set of states that have been visited during the exploration. The
primary limitation of this approach is that the BDDs that need to be constructed can grow extremely
large, exhausting the memory resources of the simulation host machine and/or causing severe per-
formance degradation. Moreover, each image computation operation can take too long. The solution
(exact or approximate) to these bottlenecks is still the subject of intense current research, in partic-
ular various solutions have been proposed that try to contain the size of the BDDs involved [57, 24]
and to reduce the complexity of performing the image computation operation [23, 54].

Finally, another limitation of symbolic traversal is that it is not very informative from a design

debugging standpoint: If a bug is found, it is nontrivial to construct an input trace that exposes it.

2.7 Symbolic Simulation

An alternative approach to symbolic state traversal is symbolic simulation. As described in Section
2.5, a logic simulator uses a gate-level representation of a circuit and perform the simulation by

manipulating the Boolean scalar values, 0 and 1. Symbolic simulation differ from logic simulation

36 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

because it builds Boolean expressions rather than scalar values, as a result of circuit simulation.

Consider the two OR gates in Figure 2.12.

scalar values symbolic values

Figure 2.12: Logic and symbolic simulation

On the left side, in performing logic simulation, the two input values 0 and 1 are evaluated and
the result of the simulation produces a value 1 for the output node of the gate. On the right side
of the figure, we perform a symbolic simulation of the same gate. The inputs are the two symbolic

variable a and b, and the result placed at the output node is the Boolean expression a + b.

This approach is very powerful is two ways. First, at the completion of the symbolic simulation
we have a Boolean expression that represents the full functionality of the circuit (in this example, a
tiny one-gate circuit). This expression can be compared and verified against a formal specification
of the desired outputs. Because of the quickly increasing complexity of these expressions, this
comparison is only feasible for very small designs. Second, symbolic simulation can be seen as
a way of applying multiple test vectors in parallel to a logic simulator, each symbolic variable
representing implicitly both scalar values 0 and 1 and thus multiplying by a factor of two the number
of equivalent vectors that are being simulated. For instance, the symbolic simulation of Figure 2.12
is implicitly applying four test vectors in parallel corresponding to {a = 0,0 =0}, {a = 1,b =0},
{a=0,b=1}, {a=1,b=1}. This use of symbolic simulation is interesting also because it can
be easily integrated in a logic simulation methodology where the amount of parallelism in the test

vector can be tuned to the resources of the host.

2.7. SYMBOLIC SIMULATION 37

2.7.1 The algorithm

The key idea of symbolic simulation consists of the use of mathematical techniques for letting
symbols represent arbitrary input values for a circuit. One of the first works in this area is by King
in 1976 [48], where he proposes a method of symbolic execution to verify software programs. More
recently, in 1987, Bryant introduced in [20] a method for the symbolic simulation of CMOS designs.
The algorithm presented in that work uses BDDs — see the previous Section 2.3.1 — as the underlying
mathematical technique to represent the values associated with the nodes of the circuit.

In symbolic simulation, the state space of a synchronous circuit is explored iteratively by means
symbolic expressions. The iterative exploration is performed with reference to a gate level descrip-
tion of the digital design. At each step of simulation each input signal and present state signal is
assigned a Boolean expression; these expressions can be generally complex or extremely simple,
such as simple Boolean variables or even constant values. The simulation proceeds by deriving
the appropriate Boolean expression for each internal signal of the combinational portion of the net-
work, based on the expressions at the inputs of each logic gate and the functionality of the gate. It
is straightforward to see an analogy with the logic simulation approach described in Section 2.5,
where we would operate on the same gate level description model for the design, but the inputs
would be assigned to constant values instead of Boolean expressions and the internal operations
would be in the binary domain.

In detail, the algorithm operates as follows: At time step 0, the gate level network model is
initialized with the initial assignment Sy for the each of the state signals and with a set of Boolean
variables IN @0 = {i1@0," - ,im@o} for the combinational input signals. symbols. During each time
step, the Boolean expressions corresponding to the primary outputs and the next state signals are
computed in terms of the expressions at the inputs of the network. To do this, a Boolean expression
is computed at each gate’s output node based on the gate’s functionality. Gates are evaluated in an
order compatible with their distance from the input nodes, similarly to what is done in compiled
level logic simulation. At the end of each step, Boolean expression are obtained for the primary

outputs. The expressions computed for the memory elements’ inputs are fed back to the state inputs

38 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

of the circuit for the next step of simulation.

Symbolic_Simulator (network_model) {

assign (present_state_signals, reset_state_pattern);

for (step = 0; step < MAX_SIMULATION_STEPS; step+l) {
input_symbols = create_boolean_variables (m, step);
assign (input_signals, input_symbols);
foreach (gate) in (combinational_netlist) {

compute_boolean_expression (gate);

}

output_symbols = read(output_signals);
state_symbols = read(next_state_signals);
check_simulation_output (output_symbols) ;
assign (present_state_signals, state_symbols);

Figure 2.13: Symbolic simulation algorithm - pseudocode

symbolic "o —] —>
inputs €, — PN R —
>
NN N —
F_
1 —> N\ \ .
initial g __p» N =
state g —p —
0 —>| []

Figure 2.14: Symbolic simulation for Example 2.8 - Initialization phase

Example 2.8. We want to symbolically simulate the counter circuit of Example 2.2. To set up the
simulation we configure the state lines with the initial state {000 — 1} as indicated in Figure 2.7.
Then, we use two symbolic variables rqo and cg for the two input lines.

At this point the simulation proceeds computing a symbolic expression for each gate output

node. Using the labels of Figure 2.9, we show some of the expressions for the first step of simulation:

1. 1 2. 0

2.7. SYMBOLIC SIMULATION 39

11. ¢ 12. 7 13. 0

19. 0 20. Toco

At the end of the first step, the expressions for outputs and flip-flop’s inputs are:

outy = Xxg = TgCo
outy = x3 = outpy = x, =0
up = 1

The expressions computed for the memory elements are used to set the state lines for the next
simulation step, while the input lines will be set with new symbolic variables as indicated in Figure

2.15. At completion of the second simulation step, we obtain the following expressions:

outy = xo = ((Foco) ®c1)7T
out; = X1 = Tgricoci

outy = x =0

up = 1

Note how the expressions involved in the simulation become increasingly complex at each time step.

Notice that new Boolean variables are created at every simulation step, one for each of the
combinational primary inputs of the network. Thus, the expression obtained for the outputs and
the state signals at the end of each step k will be functions of variables in {IN@o,--- ,/Nax}. The
vector of Boolean functions obtained for the state symbols ST @) : B — B" represents all the
states that can be visited by the circuit at step k. The state symbols ST @k represent the states at
step & in implicit form, that is, any distinct assignment to the symbolic variables {IN@o,--- ,INak }
will evaluate the state expressions to a valid state vector that is reachable in k steps from the initial

state Sp. Viceversa, each state that is k steps away from the initial state corresponds to a least one

40 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

ry —»| \
c, —» N

RNy
\ %\\\\\\\\\\\\‘

VV¢

— 1 — N) T
— 0 —> N \

— 0 — N\ PR \\\\
(TOCO—F \

Figure 2.15: Symbolic simulation for Example 2.8 - Simulation Step 2

evaluation of the symbolic variables.

The procedure just described is equivalent to propagating the symbolic expressions through a
time-unrolled version of the circuit, where the combinational portion is duplicated as many times
as there are simulation steps. Figure 2.16 shows this iterative model and input and output nodes for

the symbolic variables and expressions, respectively.

IN ouTt

IN ourt |
! @k+1 ©@k+1

N S

o o :\ \ \\ §‘\\\\§\\§\\\§ :

=g\ Ne-¢ NI
S\ ooy AR o

Figure 2.16: Iterative model of symbolic simulation

Design errors are found by checking at every step that the functions OUT @k : {ineo, - ,iner} —
BP represents a set of legal values for the outputs of the circuit. When an illegal output combina-
tion is found, OUT @k reports all the possible input combinations that expose it. To generate a test
sequence that exposes the error, is sufficient to find an evaluation of all the symbolic variables that

simultaneously satisfy the error condition. If the correct output vector at time k is given by the

2.7. SYMBOLIC SIMULATION 41

Boolean vector C € BP, all the assignments that satisfy the expression Err:

p
Err= /\(OUT@kJ =C))
i=1

are valid test sequences that expose the design error. This approach can be easily generalized to
verify more complex properties where the output signals have to satisfy complex relations expressed

in terms of the input symbols.

2.7.2 The challenge in symbolic simulation

While theoretically the simulation can proceed indefinitely, the representation of the Boolean ex-
pressions involved eventually requires memory resources beyond those available in the simulation
host. Similarly to the state traversal algorithm, the bottleneck of this approach lies in the explosion
of the BDD representations. Various techniques have been suggested to approximate the functions
represented in order to contain the size of the BDDs within reasonable limits.

In [67], Wilson presents a technique that imposes a hard limit on the size of the BDDs involved
in the simulation. Whenever this limit is reached, one or more of the symbolic variables are eval-
uated to a constant, so that the Boolean expressions, and consequently, their BDD representations,
can be simplified. The simulation step is then re-simulated with the other constant value for each
of the simplified symbolic variable, until complete expressions are obtained for the outputs of the
network.

A different approach is chosen by Bergmann in [6], where the design is abstracted, so that its
size can be within reach of a simulator. Different abstractions are chosen based on coverage holes
— areas of the design that had not been explored yet — with the objective that each new abstraction
will improve the current coverage.

In [36], Bertacco et al. attempt to overcome the limitations of the single techniques presented
in this chapter by using collaborative engines: symbolic simulation interacts with logic simulation

in achieving the most coverage of the design within boundaries of time and memory usage, while

42 CHAPTER 2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS

symbolic state traversal is used with abstraction techniques to prove some portions of the design’s
state space as non reachable, and thus prove that could they cannot be covered by the simulation
engines. The result is an integrated software tool that supports the designer in “classifying” the state
space of the IC design into reachable and unreachable and produces efficient and compact tests to

visit the reachable portion of a design.

Even if some of these efforts provide a major contribution in making the symbolic simulation
approach much more attractive for use in industrial settings, there is still a lot to be conquered and
the functional verification of digital systems remains a challenge for every hardware engineering
team. The core observation underlying the work in this thesis is that symbolic simulation traverses
the states of a digital system carrying across each simulation step much more information than it
is needed to verify the system. In fact, it uses complex Boolean expressions to describe each of
the states that can be visited during each simulation step and how they relate to the input symbolic
variables. However, we need much less information in order to achieve our objective to be able to
identify which states can be visited at each time step. In fact, for this latter goal, any encoding of
the set of states reached is sufficient. Thus, the remainder of this thesis develops techniques and
theoretical work to discover new efficient encodings of the state sets involved in simulation. These
new encodings, or parameterization, have more compact representations than the original ones, and
thus allow for a memory efficient symbolic simulation, that presents much better robustness and

scalability characteristics.

Chapter 3

Cycle-Based Symbolic Simulation

This chapter introduces our first technique to address the robustness and scalability limitations of
the traditional symbolic simulation approach. We present an algorithm that can be applied to much
more complex designs using a bounded amount of memory resources. The main focus of this
algorithm is to achieve as much breadth of traversal as possible while maintaining the advantages
of logic simulation, namely scalability and limited memory requirements. In the best situation,
this approach achieves the same breadth of traversal as a pure symbolic simulation algorithm, but
the breadth of the traversal can be reduced if that is required to minimize memory usage. Thus,
Cycle-Based Symbolic Simulation, or CBSS, can be viewed as a hybrid approach that exploits
the tradeoffs between symbolic search and logic simulation. Before diving into the presentation
of this new algorithm, we discuss the motivation for this direction of work, namely the use of

parameterization in symbolic simulation and its advantages for a reduced memory profile.

3.1 Parametric transformations

The central observation underlying the work of this thesis is that the expressions involved in a
symbolic simulation exploration carry more information than the algorithm uses. At the end of each

step, the Boolean expressions representing the state signals are fed back to the sequential inputs of

43

44 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

the gate level network and used for the next simulation step. As we pointed out in Section 2.7.1,
at the end of a generic step k, these expressions represent implicitly all the states that are reachable
by the design in k steps from an initial state Sy. We observe now, that this implicit description of
the set of states Sk is most often redundant. Since the only information that needs to be transfered
across simulation steps is the set of states that have been reached in the previous step, it is generally
possible to define a more compact encoding of this set description, that is, a new parameterization
of the state set. We can then use this new implicit description for the next simulation step. Figure

3.1 shows where the transformation takes place in the simulation flow.

iNpuULS = OUipuls

- -
|

parametric
 transformation

.
1 \
|
|

Figure 3.1: Parameterization of the state vector during symbolic simulation

Consequently, if we can define a new encoding that uses compact BDDs and transforms the
expressions defining the set of reached states at the end of every simulation step based on this new
parameterization, then we can maintain a low memory profile across the process and thus achieve

better scalability and robustness in simulation.

Example 3.1. Consider once again the counter of Example 2.2. When we perform the first step of

symbolic simulation on this design, with reference to Figure 3.2 - step 1, we obtain the following

3.1. PARAMETRIC TRANSFORMATIONS 45

vector of Boolean expressions for the next state functions:

up = 1
x = 0
x31 = 0
Xo = To-Co

By varying the values associated with each of the variables in the expressions, that is, perform-
ing all the assignments {00,01,10,11} for the pair of variables ro and co, we obtain an explicit list
of all the states that can be reached in one step of symbolic simulation. For this example, such state
set is {1000, 1001}. It’s easy to see that this set can be more simply encoded as {100pg}, where pg
is a new Boolean parameter. Note that the new parameterization uses only one Boolean variable

instead of two.

We can now use this new simpler representation of the state set for the second step of simula-
tion and obtain the expressions reported in Figure 3.2 - step 2 after simulating the combinational
portion of the network. The new state expressions depend now on three variables: ry, c¢| and py,
the parameter. Again, by evaluating the expressions for each possible assignment to the Boolean
variables, we only obtain three distinct states: {1000,1001,1010}. These three states can be more

efficiently encoded using only two parameters as:

up = 1

x» = 0

X1 = Do

Xo = Ppo-pP1

As even this small example shows, most often symbolic simulation produces expressions that

are not an efficient encoding of the state set spanned by the traversal. In order to exploit the compact

46 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

o~

Fi¢4Pg
ry (pg@ 01)

state set

Figure 3.2: Three steps of symbolic simulation for the counter of Example 2.2 and possible param-
eterizations of the reached state sets

memory representations allowed by parameterization, we need to find an efficient algorithm that can

discover good parameterizations automatically.

3.2 Parameterizations in symbolic simulation

Cycle-Based Symbolic Simulation is a hybrid approach in the sense that the values that are propa-
gated through the network can be both symbolic expressions or constant Boolean values. Section

2.3.1 showed that BDDs can be used to represent both efficiently.

Our algorithm adds a parameterization phase at the end of each simulation step to basic sym-
bolic simulation, as indicated in Figure 3.1. This parameterization transforms the state vector BDDs
into compact BDDs that use only a small amount of memory resources. It is possible that the set of
parametric BDDs produced spans only a subset of the original state set. This under-approximation
may occur as a trade-off between accuracy of the traversal (that is, producing an exact parame-
terization) and complexity of the expressions produced (which we want to keep at a minimum).
However, even when we settle for representing a subset of the state set, this set is chosen to maxi-

mize the amount of states represented for the amount of memory used.

Previous work has used parameterization techniques in connection with FSM traversal or sym-
bolic simulation to reduce the memory requirements of the algorithms. Often, user interaction is

required to suggest a relation among different signals of the systems under verification which can

3.3. THE CBSS ALGORITHM 47

be exploited for parameterizing the simulation. For instance, in [38], the authors exploit the de-
pendencies among state variables to simplify the traversal of a FSM. such dependencies need to be
suggested by the designer and are verified for correctness during the simulation of the system. [41]
presents a range of techniques to parameterize relations provided by the user. The work in [65]
automatically discovers dependencies among state variables during FSM traversal. Detecting such
dependencies requires checking all the state variables at each step of the traversal and transforming

both the reached set and the transition relation accordingly during every step of the traversal.

Another research direction related to symbolic simulation and parameterizations focuses on
partitioning the search exploration based on circuit related constraints and then performing multiple
simulation for each element of the partition. In this context, parameterization techniques have been
used to express the conditions of each subcase of the partitioned constraints. In particular, Jain et
al. considered in [40] a variety of Boolean formula representations for the constraints and proposed
a method to obtain parametric solutions. Aagaard et al. [1] introduced an alternative method where

the case splitting on the constraints is based on Shannon decomposition.

In contrast, the focus of the algorithm presented here is to be fully automatic in a symbolic sim-
ulation context and to introduce a parameterization that is efficiently computed and produces very
compact results in terms of memory requirements. We compare our approach to logic simulation
and show that while each simulation step is more time consuming, since it manipulates Boolean
expressions instead of constant values, it also produces the equivalent of multiple logic simulations
test vector in a single pass. Experimental results report a quantitative analysis of the performance

of this new approach to logic simulation.

3.3 The CBSS algorithm

Cycle-Based Symbolic Simulation is initialized by setting the state of the circuit to the initial con-

stant vector Sy (see Section 2.4.3 for a definition of Sp). Each of the combinational input signals is

48 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

assigned a distinct symbolic variable IN @9 = {ij@0, " ,im@o}. The simulation proceeds by com-
puting the Boolean expressions corresponding to each node in the combinational portion of the
network, as in the basic symbolic simulation algorithm. At the end of a simulation step, the ex-
pressions representing the next-state functions undergo a parametric transformation. During this
parameterization, a minimal number of inputs could be set to constants. The objective of the se-
lection is to maximize the breadth of the traversal, while keeping the representation of the state set

compact through use of Boolean expressions with a small BDD.

During the simulation, we do not compute a reached set as in symbolic state traversal (Section
2.6.1). This computation is one of the main causes of reduced scalability of symbolic state traver-
sal. Its main advantage is to maintain a history of states previously visited in the traversal, which is
central to 1) discover when all the reachable states have been visited and the traversal is complete
and to 2) select a set of states to use in the next simulation step, possibly with a compact represen-
tation. However, the simulation approach we present here targets circuits whose size is beyond the
capability of symbolic state traversal. In general we don’t expect to complete the simulation within
a few hundreds steps, as it is generally the case for the type of designs that symbolic state traversal
approaches. Moreover, we use a novel parameterization algorithm that does not require reached

set information.

After parameterization, the newly generated functions are used as present state for the next state
of simulation. Figure 3.3 shows how the algorithm just described corresponds to the iterative model
for symbolic simulation. Notice that now we have added two new blocks to those in Figure 2.16.
The outputs of the parametric transformation (PAR-TRF) block are: 1) the parametrized state vector
that is fed to the present state in the next step of simulation and 2) a set of parametric equations that

relate the newly created parameters p @y to the set of combinational inputs {INao," - ,INax}-

The parametric representation of frontier sets that we adopted can be constructed and manipu-
lated very efficiently. The selection of which inputs to tie and to what value is based on the ease of
construction of this representation. Alternatively, the value selection can be left to the user or to the

tool: by evaluating to constant symbolic variables selectively, it is possible to symbolically simulate

3.4. THE PARAMETERIZATION PHASE 49

PAR
TRF|— ™

PAR|
TRF

PAR
TRFI ™

Figure 3.3: Cycle-Based symbolic simulation flow

any neighborhood of an input trace generated by the test bench.

3.4 The parameterization phase

The parameterization technique is based the following observation. In symbolic FSM traversal, the
next state function § can be, in general, complex. The next state functions of symbolic simulation

at time step 0, Sy, can be derived from 9 as:

Si(i@o) 1 1: B" — S: B" = {8(s,i)|s € So,] = INao}, 3.1)

that is, by evaluating the state variables to the initial state values and substituting the combinational
input variables with the input variables of time step 0. Often, because the state variables are eval-
uated to constant, the resulting components of Sy are very simple, such as constants, copies of an
input, or complement of an input. Moreover, an input variable may be copied into several com-
ponents of Sj: there are then functional dependencies among the various state bits. We use these
functional dependencies to obtain a simplified representation PSy of Sy. At each time step k, we
produce a simple, parameterized representation of the next state functions to use for the next step
k+ 1. By always presenting a simple set of functions at the present state signals of the network we

are able to generate next state functions S that are always simpler and more compact than the

50 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

CBSS (network_model) {

assign (present_state_signals, reset_state_pattern);

for (step = 0; step < MAX_SIMULATION_STEPS; steptl) {
input_symbols = create_boolean_variables (m, step);
assign (input_signals, input_symbols);
foreach (gate) in (combinational_netlist) {

compute_boolean_expression (gate);

}

output_symbols read (output_signals);

state_symbols read (next_state_signals);
check_simulation_output (output_symbols) ;

/* the next line also writes out the parametric equations */
parametric state set = parameterize (state_ symbols, step);
assign (present_state_signals, par_state_set);

Figure 3.4: The CBSS algorithm - pseudocode

ones involved in the pure symbolic simulation algorithm.

In practice, we never explicitly build the next function §. Rather, at each clock tick k, we use
the functional dependencies among the components of the next state function Sek at time k to
build a parameterized version, PS @k, for time k+ 1. If, in spite of our efforts, PS @x becomes too
complex to be represented with BDDs within our memory budget, a few symbolic variables are tied

to constant values to simplify it.

Notice that the parametric representation allows us to avoid the computation and representation
of the global next state functions of the circuit as in symbolic state traversal, thereby avoiding a

lengthy simulation set-up time.

3.4.1 Using functional dependencies

We discover and exploit functional dependencies using a parametric representation of the next state

set. Figure 3.3 illustrates the approach. We introduce some intermediate variables p;. At a generic

3.4. THE PARAMETERIZATION PHASE 51

clock tick k, we inspect the BDDs of S @k and build a function PS @k such that (see Definition 2.2):

R (PSex) = R(Sexk)- (3.2)

In practice, we will settle for a PS gk such that 1) the number of parameter variables p is small, and

2) R (PSqk) is a “large” and easily identifiable subset of R (Sak):

R (PSek) € R(Sek)- (3.3)

The set PS @k that we generate has cardinality that is 27, where p is the number of parameters we
introduce during the parameterization phase. The diagram in Figure 3.5 shows the relation between

the whole state space of the system, S @k and PSg.

design state space

frontier set
at step k

Figure 3.5: The parameterized frontier subset PS @k

Section 3.4.2 provides the details on PS@yk and its construction. The BDD of the next state
functions for step k4 1 is then built by simulation of the combinational portion of the circuit. In

terms of the d function, this corresponds to:

Sk+1(i@k+1) I B" =SB = {S(S, i)|s € PS@k,I = IN@k-H} 3.4)

and a new PSk,; constructed by parameterization. Notice that the state variables are effectively

52 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

replaced by the parametric variables p;.

In addition, we build a second mapping PE k. This second mapping expresses each p; as a
function of inputs and intermediates at the previous tick. PE @k should also be “simple”, for the
following reason. Suppose an error is discovered at time k. There is then an assignment of primary
inputs and intermediates at time k that exposes the bug. We need to be able to map the assignment
of intermediates to an assignment of inputs and intermediates at time k— 1, and then iteratively back

to primary inputs at time k —2,--- ,0.

The parametric transformation develops in two phases: the first phase identifies simple variables,
while the second phase parameterizes unbound functions. The pseudocode of the function is shown
in Figure 3.6. It guarantees that & (Sk) can be parameterized in linear time. If this is not the case,
it identifies variables for assignment, and cofactors Sk accordingly. The actual constant values used
for the assignment could correspond to the values provided in a testbench for the design, if this is
available. For instance, if at the third step of CBSS simulation we need to evaluate to a constant
the variable corresponding to input x, we could extract the value assigned at input x in the testbench
at the third step of logic simulation. By choosing values based on this criteria, we guarantee that
our CBSS algorithm produces a design exploration that includes the search corresponding to logic
simulation run on the same testbench. For instance, if there is a testbench that drives the design to a
specific corner case to check it, CBSS can not only check that specific configuration of the system,

but also cover a set of additional configurations that are “close” to the target one in the FSM model.

Whenever a testbench is not available, we can still automatically produce a random value for

the variable assignment. This choice will drive the design through a random walk of the state space.

The pseudocode of the parameterization phase is shown in Figure 3.6. The details of functions
find_.simple_complex_var, find_shared_eqclasses, and remap are described in the
following sections. Function assign_&_cofactor simply takes a vector of expressions and a set
of variables, assigns a value to each of the variables in the set and partially evaluates each expression

based on these values.

3.4. THE PARAMETERIZATION PHASE 53

parameterize (state_equations, step) {
<simple, complex> = find simple_complex_var (state_equations);
state_equations = assign_&_cofactor(state_equations, complex);
remap (state_equations, simple);
append_param_equations (simple, step);
<classes, shared> = find_shared_eqclasses (state_equations);
state_equations = assign_&_cofactor (state_equations, shared);
state_equations = remap(state_equations, classes);
append_param_equations (classes, step);
return state_equations;

state_equations

Figure 3.6: parameterize function - pseudocode

3.4.2 How to classify the components of the state vector

We show how to quickly identify a function PS @ such that R (PS k) is a “large” subset of R (Sek)-
The set of transformations presented in the next two sections can be applied to any Boolean vector
function. For purposes of readability, in the following definitions we will refer to the generic func-
tion V: B" — B™. As explained above, the CBSS algorithm applies such transformation to the next

state vector S k.

Definition 3.1. A variable x is termed simple if there is a component V; of V such that S(V;) = {x}.
Given a function V, let Si denote the set of simple variables. A component V; is termed simple if

S(V;) C i,

Definition 3.2. Let again Si denote the set of simple variables. A non-constant component function

V; is termed complex if:
1. $(Vi)NSi+# 0 and
2. S(V)NSi#0.
For a complex function V;, a variable belonging to S(V;) NSi is also termed complex.

Definition 3.3. A function is unbound if it is neither simple nor complex. Two components V ; and

V; of V are termed equivalent if they are unbound and either Vi =V or V; = V_j holds.

54 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

Definition 3.4. Given an equivalence class € of functions with reference to the previous definition,
we indicate with S(€) the set of variables belonging to the support of any function in €. A variable
x € S(V) is said to be bound if it belongs only to the support of a single equivalence class of V. It

is termed shared if it belongs to more than one class.

Example 3.2. Consider the following function S @k

S@k(X,y) : $2 - $7 = (xa)_cayaOaf(xay)ag(xay)ay)

Its components are only: 1) constants, 2) functions of a single variable, or 3) functions of variables
also appearing as single variables in other components (that is, simple functions).
In this situation, an exact parametric description is obtained by replacing x and y with two

parameters:

PS@k = (pOa%apl707f(p05p1)7g(p05p1)5m)

Notice that PE g is just a data-transfer: po =x, p1 =Y.

Suppose now that PS gk consists only of simple and complex functions. By assigning a value to

complex variables, other complex variables may become simple:

Example 3.3. Consider

S@k(q’ I’,S,X,y) = (x,y,x-i-y-l-q-l-r,s-l—xq).

Sek, and Sex,| are simple. Sek » and Sek 3 are complex, as variables g, r and s are complex. If
we assign q and r as ¢ = 0 and r = 1, component S @k 3 become simple and Sk can have a simple

parametric representation:

PSex(po,p1,p2) = (po,p1, 1, p2)-

3.4. THE PARAMETERIZATION PHASE 55

Simple and complex variables (and functions) are identified in a two-pass scan of the BDDs of
Sek- Figure 3.7 shows the pseudocode for identifying them. We assume that initially, all component
functions are labeled UNBOUND. The first foreach loop finds the support of each component of
Sex and identifies simple variables. The second foreach loop identifies complex variables and

places them in Co. It also classifies the functions whose support is all contained in Si as simple.

find_simple_complex_var (state_equations) {

Si = Co 0;
foreach (eqg) in (state_equations) {
if (support_size(eq) == 1) {

Si = Si U support (eq);
assign_type (eq, SIMPLE);

}
}

foreach (eq) in (state_equations) {
if (support(eq) N si # 0) {
csupp = support (eq) \ Sij;
if (csupp # 0) {
Co = Co U csupp;
assign_type (eq, COMPLEX) ;
} else {
assign_type (eq, SIMPLE) ;
¥

}
}

return <Si, Co>;

Figure 3.7: Classifying simple and complex variables - pseudocode

After complex variables are identified and removed, each component of S g is labeled as either

SIMPLE or UNBOUND. Unbound functions have no support variables in Si.

We then examine unbound functions. The simplest case occurs when one such function has

support disjoint from all other components. For example, in Eq. 3.5 below:

S@k = (f(paq)axayag(x’y))' (35)

56 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

the first component is unbound and has support disjoint from all others. The component can be

replaced by an independent intermediate variable:

PS@k = (p07plap27g(plap2))

where

po=f(p.q): pi=x3 pr=y.

Consider now the more general situation:

Sex = (f(paQ)af(p7Q)ax7y)'

The first and second component of S @k can be replaced by pg, po respectively.

Definition 3.4 partitions the set of unbound functions in S gk into equivalence classes. These
classes can be discovered in a single scan of the array Sek. If a value is assigned to all shared
variables, then the support of each equivalence class will contain only bound variables, so that each

class can be replaced by an independent parameter.

Example 3.4. Consider

Sek = (x+y+z,%Z,Zw,Zw).

By assigning the shared variable z = O, the components of S @x become:

S@k,z:O = (x+y,x+y,w, W)

A parametric representation of R (Sex) is then

PSexk = (po,Po, P1,P1) (3.6)

3.4. THE PARAMETERIZATION PHASE 57

where po = x+y and p; = w.

Figure 3.8 shows the algorithm for finding shared variables. We first group the UNBOUND
state expressions into equivalence classes. Then, we consider each variable in the support of these

expressions, check if it belongs to one or more equivalence classes and tag it consequently.

find_shared_eqclasses (state_equations) {
Sh = EC = 0;
foreach (eq) in (state_equations) {
if (function_type (eq) == UNBOUND) {
class = find_or_make_new_class (eq, EC);
EC = EC U class;
foreach (x) in (support (eq)) {
if (tag(x) == empty) tag(x) = class;
else if (tag(x) # class) tag(x) = shared;

}
}
X foreach (class) in (EC) {

foreach (x) in (support (class)) {
if (tag(x) == shared) Sh = Sh U {x};
}
}

return <Sh, EC>;

Figure 3.8: Classifying shared variables - pseudocode

3.4.3 The remap function

remap generates the new parameters for PS @k based on the results of the previous two routines.
The first call remaps the variables in the simple set. Each of these variables is simply substituted by
a new parameter variable in the state expressions with a single traversal of each of the BDDs. The
second call remaps each equivalence class to a parameter. This operation is even simpler, since it just
requires to represent each state equation with a single parameter based on the equivalence class it

belongs to. The maximum numbers of parameters needed by the two calls is bounded by the number

58 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

of memory elements in the design to simulate. In fact, a new parameter is only assigned to Boolean
expressions that occur at least once as a complete state equation. Thus, after parameterization, for

each parameter, there is at least one equation whose expression is simply the parameter variable.

Example 3.5. Suppose you are given a system to simulate with ten memory elements and eight
inputs. After the first cycle of symbolic simulation, we obtain the following expressions for the state

equations, where each combinational input was assigned a distinct Boolean variable literal a to h:

so=a s3=ab ss=d+e+f ss=f+g
s|1=a s4 = abc 57 2357 s9 = hg
s5=>b ss=b+c

At first, all the equations are assigned the type UNBOUND. With the first pass through the state
equations, we detect the simple variables: a and b and we assign the type SIMPLE to sg, 51 and
s2. The second pass detects that s3 is also simple, and classifies variable c and equations s4 and ss

COMPLEX. After evaluating variable c to 0 and remapping the simple variables, we obtain:

50 = Po 53 = pop1 s¢=d+e+f ss=f+g
51= Do 54=0 57 =def s9 = hg
2 = pi §5 = D1

At this point, we need to identify the equivalence classes for the remaining unbound functions. We
find three equivalence classes: €1 = {s¢,57}, €2 = {ss}, €3 = {s9}. Variables d and e are tagged
with €1, h is tagged with €, and f and g are shared. Consequently, we need to evaluate these last
two variables to a constant value. We choose 0 for f and 1 for g. The set of equations at this point

is:

50 = Po $3 = pop1 s =d+e sg =1
S1 = Po s4=0 s7=de sg=nh

52 = D1 §5 = D1

3.5. IMPLEMENTATION AND COMPLEXITY 59

and after remapping the unbound functions using one parameter for each equivalence class, we

obtain:
50 = Po §3 = pop1 S6 = P2 sg=1
$1=Po s4=0 s7=D2 S9 = p3
$2=pi1 §5 = pi1

Notice that the function in class €, was reduced to a constant, thus we did not need to use a pa-
rameter to remap it. This final set of equation is our new parameterized state vector. The PE gk

equations are:

|
Sy

po=a P11 = pp=d+e p3=h

Note that the number of parameters that are needed during each parameterization is always < n
where 7 is the number of state elements in the design. This is easy to derive based on the fact that for

each parameter p; there is at least one parameterized state equation PS@y ; such that PSax ; = p;.

3.5 Implementation and complexity

In implementing the algorithm we made some observations that made possible to use the Boolean
variables needed for the simulation efficiently. Since, in general, BDD packages can allow only a
limited number of variables, this has also an impact on how many steps of simulation we can run.
First, since we know that the number of parameters is bounded by the number of memory elements,
we simply reserved an equivalent number of variables in the BDD manager for parameterization.
Second, we noticed that at the end of each parameterization step, the state equations do not
depend on the combinational input variables any longer, but only on the parameters. Thus, we can
reuse the same set of Boolean variables for the combinational inputs at every step of simulation.
It follows that CBSS only needs a constant number of Boolean variables, equal to the number of

inputs plus the number of states of the design to simulate. In contrast, a basic symbolic simulator

60 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

requires a new Boolean variable for each combinational input signal needs at each simulation step.
Thus, a symbolic simulator needs a number of Boolean variables that depends on the length of the
simulation and is equal to the number of combinational input signals times the number of simulation
steps.

During simulation, the parametric equations PE at each step can be stored in BDD form. Since
the variables used for these equations are the same involved in the simulation, sharing among the
BDD nodes is possible and the additional memory required for these equations is not significant.

Moreover, while remapping the simple variables, we assign them in ascending variable order
and we choose the parameters to reflect the same order, so that corresponding BDDs do not need
to be recomputed, but can be simply duplicated and relabeled in a single pass. A more optimized
approach would simply dynamically classify which variables are inputs and which are parameters,
then, without modifying the BDDs at all, simple variables would just be reclassified as parameters
at the next step of simulation and an equivalent number of parameters would become input variables

to assign to the input signals.

The complexity of the algorithm can be computed considering each phase separately. We use
here n for the number of states in the design, and #BDD for the size of the BDDs of the state

equations:

¢ simple variables can be identified in a single pass of the state equations - O(n).

e complex variables can be identified in another single pass of the state equations. We also
need to cofactor each state equation w.r.t. to the complex variables, this can be done with a

specialized cofactor routine that traverses each BDD once - O(n x #BDD).

e remapping simple variables as we mentioned above can be done with a single pass of the

state equations’ BDDs - O(#BDD).

e equivalence classes can again be identified in a single pass of the state equations - O(n).

3.6. EXPERIMENTAL RESULTS 61

e shared variables require similar treatment than complex variables, leading to the same worst

case complexity - O(n x #BDD).

e remapping unbound functions requires only assigning the proper parameter variable to each

equivalence class - O(n).

3.6 Experimental results

The CBSS algorithm was implemented in a C++ program and tested on the largest sequential cir-
cuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark Circuits [16],
including their 1993 additions. Table 3.1 reports results on all but the smallest testbenches of the
two suites (we excluded from the table the circuits with less then 20 memory elements). The test-
benches are grouped by benchmark suite. The experiments were run on a Linux PC equipped with
a Pentium 4 processor running at 2.7Ghz and 2GB of memory and 512Kb of cache. As the underly-
ing ROBDD package we used the CUDD package by Somenzi, [29], for which we set a reordering
threshold of 200,000 nodes. We evaluated the simulator by running it for 5,000 symbolic simulation
cycles on each testbench: at the end of each symbolic simulation step we would run our parameteri-
zation algorithm to simplify the state functions and then proceed to the next step. For the purpose of
evaluating the performance of the approach, we chose a random Boolean value whenever we needed
to evaluate complex and shared variables to constant. However, in a real-world context it is possible
to choose the values based on the test stimulus, if one is available. For each circuit, the table reports
first a few relevant metrics: the number of inputs In, outputs Out, memory elements FF, and internal

network gates Gates.

The next three columns report the results of the parameterizations. The values are the average
over the 5,000 steps of simulation. Our objective is to evaluate how many symbolic parameters we
could find and the average number of states we could reach at each simulation step. To this end, the

first of this group of columns, Param, reports the average number of symbolic parameters that we

62 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

Circuit | In Out FF Gates Parameterization Time (s). Efficigncy Memory(KB)
Params Ass.d Symbols | CBSS Logic ratio CBSS Logic

Logic Synthesis ‘91 - FSM tests

ex1 9 19 20 622 0 0 9| 0.69 0.04 29.68| 4647 312
s1423 17 5 74 830 1.04 12.91 5.14| 2.04 0.06 1.04| 5818 320
s838 35 2 32 59 0.57 152 34.04| 0.93 0.04 7.62-108| 4690 312
s953 16 23 29 658 1.15 6.1 11.05| 1.36 0.04 62.19| 5060 -
Logic Synthesis ‘91 - Addition ‘93

bigkey |262 197 224 9211 0 228 34(163.49 055 5.78.107|38255 516
clma 382 82 33 24482 1 0 383| 75.77 1.5 3.90-10!13| 5078 836
dsip 228 197 224 3893 0 228 0/135.35 0.28 0|21289 404
mm9a 12 9 27 639 3.02 2 13.02| 1.24 0.04 267.95| 4658 -
mm9b 12 9 26 786 0 11.99 0.01| 2.23 0.05 0.02| 5339 -
multiéb | 17 1 30 284 5.83 10.88 11.96| 1.76 0.01 22.59| 5563 308
mult32a | 33 1 32 715 0.21 32.36 0.85| 22.23 0.04 015980

s38417 28 106 1465 23771 47.5 19.66 55.83|190.55 1.67 5.62.10'%|40613 956
s38584 38 304 1426 20281 7.48 25.71 19.771488.99 1.35 2468.29|45244 864
s5378 35 49 163 3232| 14.88 26.17 23.7| 1479 0.22 2.03-10°|13859 384

s838 34 1 32 618 0.5 1 33.5| 0.85 0.04 5.72-108| 4690 -
9234 36 39 135 3019| 16.96 10.48 42.48| 7.56 0.21 1.70-1011| 5093 372
sbc 40 56 27 1143 2.92 22.22 20.7 3.76 0.07 3.16:10*| 6066 324
ISCAS ‘89 - FSM tests

s13207.1| 62 152 638 9539| 56.52 15.12 103.4| 48.95 0.69 1.89.-10%°|24684 568
s$13207 31 121 669 9539| 14.75 4.66 41.09| 4159 069 3.88.109| 9710 568
1423 17 5 74 830 1.05 12.88 517 1.94 0.06 1.11| 5834 -
s156850.1| 77 150 534 11316 29.7 40.07 66.63| 52.45 0.78 1.69-10'8|35961 600
15850 14 87 597 11316 439 2.78 15.61| 35.69 0.74 1.03-103| 9386 604
835932 35 320 1728 23085 1 35 11194.66 1.67 0.02|38938 968
838417 28 106 1636 27648| 48.27 19.81 56.46(190.75 1.94 1.01.10'®|39558 1068
s38584.1| 38 304 1426 24619 7.45 25.75 19.71|475.62 1.68 3025.16|49685 972
s38584 12 278 1452 24619 6.26 6 12.27|271.83 1.65 29.88|45271 968
s5378 35 49 179 3973| 14.86 26.13 23.73| 14.95 0.06 5.59-10*|14226 -
s838 34 1 32 626 0.5 1 33.5| 0.85 0.05 7.1510%| 4690 -
$9234.1 36 39 211 6585| 18.06 19.51 34.55| 16.61 0.43 6.51-10%| 7965 464
9234 19 22 228 6585 1.18 6.9 13.28| 14.09 0.43 303.55| 4964 464

s953 16 23 29 658 1.17 6.16 11.01 1.32 0.04 62.32| 5029 312
ISCAS ‘89 - Addition ‘93

prolog 36 73 136 1845| 29.13 24 41.13| 10.04 0.03 7.20-10°| 9117 -
1269 18 10 37 771 1.83 12.99 6.84| 3.22 0.05 1.78| 6019 312
s1512 29 21 57 990 9.85 5.93 32.92| 229 0.06 2.13-10%| 4960 324
83271 26 14 116 2166 6.3 26 6.3| 18.73 0.15 0.63| 8295 352

s3330 40 73 132 2020| 29.11 24.33 44.79| 12.01 0.13 3.28.101'| 9069 352
s3384 43 26 183 1734| 53.32 17.99 78.33| 10.6 0.14 5.02.10%'|13529 352
s4863 49 16 104 2492 7.72 25.75 30.97 18 0.03 3.50-10°| 8812 -
s$6669 83 55 239 3272| 77.86 68.73 92.13|275.47 0.04 7.87-1023|47362 388
s938 34 1 32 626 0.5 1 33.5| 0.89 0.05 6.82.10%| 4690 312
s967 16 23 29 677 1.25 6.13 11.12] 1.41 0.05 78.98| 5077 -

Table 3.1: Cycle Based Symbolic Simulation results

3.6. EXPERIMENTAL RESULTS 63

generate during a parameterization phase. For our second objective, we used the following reason-
ing: if we never evaluated a variable to constant, the number of symbols we had at each step would
be given by the number of inputs symbols plus the number of parameters. However, since at every
step some variables maybe be assigned to constant, we need to keep this into account by subtracting
this amount from the number of live symbols that we carry across simulation steps. The average
number of states that we reach at each step is then given by 2 to the power of this value, since, af-
ter parameterization each symbol doubles the number of states spanned by the parameterized state
functions. The table shows the results we obtained with this evaluation: the second column of the
group indicates the average number of symbolic variables that we assigned to a constant because
they were classified as complex or shared variables, and the third column counts the number of
live symbols as just described: Symbols = Param + IN - Ass.d. The actual size of the average state
set visited at every step is 2Symbols Thig Jatter value also represents the average number of logic

simulation equivalent traces that we carry on in parallel at every step.

The reminder of the table compares the results we obtained with CBSS to the performance
of a compiled-level logic simulator. We built a logic simulator as described in Section 2.5 and
we simulated again each of the testbenches for 5,000 cycles, providing a random stimuli to each
circuit’s inputs at each step. The two columns labeled Time compare the execution time for the
CBSS simulation to the one for the logic simulator. We did not take into account the time spent
compiling the circuit’s netlist into assembly code for logic simulation. However, we measured
this time and it was not transcurable: above 200s for the seven biggest benchmarks and above 1s
for most of the testbenches. As the table indicates, once the compilation was completed, logic
simulation could execute quite fast. As for the CBSS execution times, we point out that variable
reordering was only triggered by the test s6669 of the ISCAS suite, and thus it was not a factor for all
the other benchmarks. Column Efficiency compares the performance of CBSS to logic simulation in
terms of traces simulated per second of execution. Its value is computed as the ratio Zsymb°|3-(Time-
logic/Time-CBSS). It represents the number of traces visited by CBSS in the time of executing one

logic simulation trace. A value of 1 in this column indicates that CBSS is providing the same

64 CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

performance as a compiled-level logic simulator; when the value is less than 1, the logic simulator
is more efficient; otherwise CBSS is providing “Efficiency” times better performance than a logic
simulator. Note that most of the testbenches show an efficiency of 10-20 orders of magnitude over
logic simulation, and this is particularly true for the most complex designs. Our intuition is that the
more complex designs have more inputs and more memory elements that increase the possibility of
discovering good parameterizations for the state vectors. For instance, the two variations of 573207
in the ISCAS suite, provide very different efficiency results: the second one, having only half the
inputs, can generate many fewer Symbols on average and thus it achieves lower efficiency. When
the parameterization can only produce a small number of Symbols because of the high percentage of
complex and shared variables, the extra time spent by CBSS in manipulating Boolean expressions
makes this approach less attractive compared to logic simulation. This is the case mostly for the

smaller designs, because of their limited potential for parameterizations.

Finally, the last two columns compare the memory profile of the two approaches. Even the
smallest designs require a minumum of 4-5 KB to start the CUDD package in CBSS. However, the
memory profiles are only moderately sensitive to the size of the design. As for the logic simulation
memory column, we were able to collect the memory profile of the simulator only for the medium to
large designs of the suites, and we report a -’ for the testbenches for which we could not gather this
data. This last column can be used to gain an insight on the impact of design size over the memory

profile of logic simulation, which can then be compared to the corresponding one for CBSS.

Overall we see that a high average number Symbols is key to a high efficiency over logic simu-
lation. In general, testbenches that contain highly sequential components (such as counters) have a
lower potential for good parameterizations: if the state bits of a counter take constant value at some
point in time, that is, they are represented by constants, then they will be represented by constants
also at the next clock tick. On the other hand, other circuits are more data-path intensive, they con-
tain several large data-transfer or arithmetic operations, and in this cases it is easier to assign state

bits independently, hence the larger number of parameter variables.

3.7. CONCLUSION 65

3.7 Conclusion

CBSS was published in [10]. This algorithm has shown to improve the scalability of symbolic simu-
lation by providing a quick and memory friendly parameterization technique for the state equations.
It can find quickly a large subset of the frontier set which can be represented very efficiently. The
experimental results shows that in most cases we can achieve 10-20 orders of magnitude or more
better efficiency over a compiled logic simulator.

However, in a few cases we noticed that many variables in the support of the state vector are
complex or shared and need to be evaluated to constant. In those cases the performance is no longer
competitive with logic simulation and the breadth of the state exploration is limited. In order to
improve on the quality of the parameterization, we need to explore better techniques to represent
the state vector through parameters. To this end, the next chapter introduces the theory of disjoint
support decomposition of Boolean functions. This theory will be exploited in Chapter 6 to present
an algorithm that can perform an exact parameterization of the state vector, thus guaranteeing to

achieve the same maximal search breadth of symbolic simulation.

66

CHAPTER 3. CYCLE-BASED SYMBOLIC SIMULATION

Chapter 4

Disjoint Support Decompositions

We introduce now a new property of logic functions which will be useful to further improve the
quality of parameterizations in symbolic simulation. In informal terms, a function has a Disjoint
Support Decomposition (DSD) when it can be expressed by composing two other functions such
that there is no sharing between the variables in the support of each function. Moreover, in general
a function may have multiple distinct DSD.

This chapter defines and characterizes the Disjoint Support Decomposition (DSD) of logic func-
tions. We provide two novel contributions to the theory of DSD. First, we define a canonical form
to represent simulataneously all the DSD of a logic function and we show that any Boolean function
has a unique representation within this canonical form. As we discuss in the next section dedicated
to the previous work, Ashenhurst had shown that, given a decomposition for a function, there is a
unique way of assigning its variables to the support of the component functions in the decomposi-
tion (except when associative operators are involved). Our second result proves that the component
functions are also uniquely determined, once we apply the rules of our canonical form.

The next chapter will make this theory and its properties applicable to any Boolean function that
can be represented through a ROBDD by providing a novel algorithm that automatically exposes all
the decompositions of a function by generating our canonical form . This algorithm takes as input a

ROBDD representation of a function and returns a tree graph that represents its decompositions and

67

68 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

has worst-case complexity that is quadratic in the size of the ROBDD of the function.

4.1 Introduction

Disjoint support decomposability is an intrinsic property of Boolean functions. Given a Boolean
function F(x,...,x,), it is often possible to represent F by means of simpler component functions.
When F can be represented by means of two other functions, say K and J, such that the inputs of
J and K do not intersect, F = K(xy,...,xj—1,J(x},...,x,)), then we say that F has a simple disjoint

support decomposition.

F F F
AND
Jl’—‘ ‘ ‘ ‘ ‘ \—‘Jz]1’—‘ \—‘Jz
X3 X4 X| X,
OR XOR OR || XOR
a) b) c)

Figure 4.1: Decompositions for Example 4.1

Example 4.1. The function F = (x; +x2)(x3 ®x4) has a simple disjoint support decomposition
where K = J;(x3 @ x4) and J| = x| + x; as in Figure 4.1.a. The decomposition K = (x| +x,)J, and
Jo = x3 @ x4 is also a simple disjoint support one (Figure 4.1.b). Note that it is possible to combine

these two decompositions and represent the function as F = K(Jy,J,) where K = j} jo (Figure 4.1.c).

A disjoint support decomposition can also be seen as a way of partitioning the inputs of a
function, each element of the partition being the set of inputs to one of the component functions.
For instance, with reference to the previous example, the decomposition in Figure 4.1.c corresponds
to the partition {{x,x2}, {x3,x4}}. If we consider each of the inputs x; of F, they can belong to the
support of at most one of the component functions, otherwise we would violate the hypothesis of

non-intersection. We can also guarantee that they belong to no less than one function; if that was

4.2. RELATED WORK ON DISJOINT SUPPORT DECOMPOSITIONS 69

not the case, the resulting function would not have x; in its support and thus it could not be equal to
F.

When a function can be decomposed in more than one way, there is always a decomposition of
maximal granularity, that is, a decomposition that imposes a finer partition on the support of F" and
such that the elements of this partition can be composed to generate all the other decompositions.
The last decomposition of Example 4.1 is a maximal decomposition.

We discuss now some previous work on the subject and introduce some formal definitions re-

lated to disjoint support decompositions, before we present our contributions.

4.2 Related work on Disjoint Support Decompositions

Algorithms for extracting disjunctive decompositions are a classic research subject of switching
theory. Ashenhurst and Singer [3, 63] developed the first theoretical framework in the ‘50s. In
particular, Ashenhurst presented in [3] a classification of the various types of disjoint decomposi-
tions. They also introduced an algorithm to detect all the simple decompositions of a function based
on decomposition charts. The method consists in partitioning the support variables of a function
in two sets A and B and detecting if there exist a decomposition such that F(A,B) = L(P(A),B).
The method is efficient for functions of up to six variables and it is exponential in the number of
variables in the support since it needs to try all the possible partitions of the variable support set.
Ashenhurst showed in [3] how simple decompositions can be combined to obtain complex ones
and proved that the partition of the support variables induced by decomposition is unique, with the
exception of functions representing associative operations. Curtis and Karp explore applications for
the theory in the area of synthesis of digital circuits in [30, 44].

In the early ‘70s, Shen et al. , [62], presented an algorithm based on the Jacobian that quickly
rules out some partitions as candidates for a disjunctive decomposition. This method achieves good
performance when used on undecomposable functions. However, it requires even more computation

time for functions which have a decomposition. This algorithm has been implemented recently in

70 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

[60].

Alternative simplified techniques, such as algebraic factorization [14], have been extremely
successful in transforming large two-level covers in multiple-level representations, and have been
extended in various ways to include other forms of decomposition. Algebraic factoring [14] is a
form of disjunctive decomposition. In algebraic factorization, one attempts to decompose a 2-level
cover of F into a product G * H, where G and H have no variables in common. Factoring is a
powerful step in passing from a Boolean cover to a multiple-level representation in multiple-level
logic synthesis [15]. Logic synthesis have been also attempted starting directly from BDD repre-
sentations: In [28] it was shown, for instance, that all implicants of a function could be implicitly
represented in a BDD. A two-level synthesis algorithm, finding an optimal cover of a function from

its BDD, was also developed in [53].

Links between BDDs and multiple-level logic have been explored in [46, 45, 47]. In [47], in
particular, it is shown that particular BDD topologies may lead to the identification of particular
decompositions. For instance, the presence of a two-cut (a partition of the BDD with only two
boundary nodes) leads to the identification of disjunctive, MUX-based decompositions. On the other
hand, the presence and aspect of two-cuts depends on the variable order of the BDD. Therefore,

topological approaches must rely on tailored ordering algorithms.

Decomposition has also been considered in the context of technology mapping [55] and function
representation [8, 7]. Bertacco and Damiani proposed in [7] a new function representation that
merges BDD and a restricted type of decomposition. In that paper, it was shown that a special
decomposition, using only NOR functions, is indeed canonical. If a function F' can be decomposed

into the NOR of disjoint-support components:

F=(fi+-+f) (4.1)

then, provided that no component function f; is itself the OR of other disjoint-support functions, the

functions f; are uniquely determined, up to a permutation.

4.3. TERMINOLOGY 71

This result was used to develop a hybrid normal form (MLDDs) for logic functions based on
Shannon and disjoint-support NOR decompositions. Algorithms for translating BDDs into MLDDs
and for the direct manipulation of MLDDs were also presented. This algorithm is capable of iden-
tifying a NOR-tree decomposition regardless of the variable ordering selected. The ability of dis-
covering decomposition and the efficiency of the representation, however, are impaired by the re-
striction to NOR gates. Finally, a preliminary version of the material presented here and in the next

chapter was developed by Bertacco and Damiani in [9].

4.3 Terminology

This section covers first a few background definitions that are required for the reminder of the pre-
sentation and then provide a formal definition of Disjoint Support Decompositions. For background

definitions on Boolean functions the reader is referred to Section 2.3.

We introduce here a special class of functions which will be helpful for our purposes. It consists
of those functions whose components are the permutations and/or complementations of the input

variables xi,---,x, [22, 51].

Definition 4.1. A function F(xy,--- ,x,): B" — B" is termed a NP-function if for each of its com-

ponents F; either F; = x; or F; =Xj for some j and S(F;) N S(F;) =0,i # k.

Definition 4.2. Two functions F(xi,--- ,x,) and G(x1,--- ,x,) are said to be NP-equivalent if there

is a NP-function NP(xy,--- ,x,) such that

F(x1, -+ ,x,) = G(NP(x1,--- ,x,)) 4.2)

that is, F is obtained by composing G with NP.

We can now define the operation of decomposition of a function F as finding other, simpler

72 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

functions L: B* — Band Ay,---,Ax such that

F(x17x23"' axi’l) = L(Al(xl"" ,Xn),Az(X1,"' ;xn),"' ,Ak(Xl,"' axi’l)) (43)

The following definition classifies the decomposing function L as a divisor of F and introduces the
concept of prime function. In informal terms, a prime function is any function for which no disjoint
support decomposition exists: for instance F = a + b is prime, since it cannot be decomposed by
any simpler function. Another example of prime function is the majority function: F' = ab+bc+ca

has no decomposition through disjoint support components.

Definition 4.3. A function L(yy,---,yi) : B* = B is said to divide a function F (xy,--- ,x,), n >k >

2 if there are k non-constant functions Ay,--- Ay : ‘B" — B such that

F(Xl,"' axn) = L(Al(Xl,"' axn)aAZ(xla"' 7xn)1"') (44)

S(A)NS@A;) = 0 iF]

If n > k, we say that L divides F properly.

F is said to be prime if it cannot be divided properly by any L.

Note that, based on the above definition, any function F can always be divided by itself, although
improperly. We indicate by F/L any ordered list of functions (A,A,,---) satisfying Eq. 4.4. The

list of variables yj,-- -,y and F /L will be termed formals list and actuals list of L, respectively.

Definition 4.4. We call a disjunctive decomposition of F' any pair (L,F /L) that satisfies Eq. 4.4.

We distinguish two situations to define maximal decompositions:

-IfL=y1®y,®...y, and ® is one of the associative operators: OR, AND, XOR, the decom-
position is said to be maximal iff none of the F /L can be further divided by the same operator,

that is the cardinality of the inputs of L is maximal;

- Otherwise the decomposition is maximal iff L is a prime function.

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 73

If a function L divides F, then any other function L' that is NP-equivalent to L will also divide
F: The actuals list F/L' will be a permutation of the original ones, possibly with some functions

A; € F /L complemented.

Example 4.2. Consider the function F = X1x, +X1x3 + x1x4x5. It can be divided by L(y1,y2,y3) =
y1y2 +¥1y3. The formals list is (y1,y2,y3), while the actuals list is (x1,x4x5,x +x3). It can also be
divided by L'(y1,y2,y3) = Y2 3+ Yy2y1. In this second case the formals list is the same as before ,

while the actuals list is (x4Xs,x1,X + x3). Notice that L and L' are NP-equivalent.

4.3.1 Decomposition trees.

As each function in the actuals list F /L may be itself decomposable, the lists associated with the

decomposition of F' and of its actuals, form a tree, hereafter called a decomposition tree for F.
Leaves of a decomposition tree of a function F are labeled by variables x; or their complements

Xi. Nodes of the decomposition tree are labeled by a function L that divides the subfunction rooted

at that node of the tree.

Example 4.3. Consider the function F = h((a®b)-MAJ(c,d,e+ f)-g) +h(k+ j-m). Figure 4.2.
represents its decomposition tree. The node labeled MUX corresponds to the function L(y1,y2,y3) =
v3y1 + Y3y, with indexes of the formals list are increasing left to right for the edges in the picture.
The node labeled MAJ corresponds to the function majority. The other nodes corresponds to AND,

OR and XOR functions.

4.4 The unique maximal Disjoint Support Decomposition

We can now introduce a characterization of decompositions and decomposition trees. In particular,
we show in this Section our first novel result, that, under simple restrictions, every logic function has
a unique decomposition tree, and that, much like its BDD, this decomposition tree is also unique.

In general, it may be expected that any nontrivial function F can be divided by many functions.

74 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

‘F
MUX
SREW
AND OR

T 5

XOR| |[MAJ |2 X |AND

v iox])

Figure 4.2: A decomposition tree for Example 4.3.

Moreover, for a given divisor L, one may expect that many different functions could contribute to
F /L. This section provides a characterization of the divisors of F: we prove that there is actually a
unique (modulo NP-equivalence - see Section 4.3) prime function L maximally dividing F, possibly
coinciding with F'.

We then show an important property of such prime function, namely, that it divides any other
function M that divides F. This result leads to a partial ordering of Boolean functions based on the
maximal divisor of any function F' and is key to the definition of decomposition tree that is presented
in Section 4.4.3.

In order to show the uniqueness of the maximal DSD, we now need to introduce the concept
of kernel function. Notice first that all the Boolean functions with only two inputs can only be one
of the associative operators: AND, OR, XOR or their complement or one of their NP-equivalent
variants. These functions are also always prime, since they cannot be properly divided by any other
function. If a function F can be divided by a prime function L that is a 2 inputs associative operator:
AND,, OR>, XOR,, we call kernel that function Ky that: 1) divides F', 2) is the same associative
operator as L, but 3) has the maximum number of input operands. For instance if F = a+ be+ cf,
it can be divided by L = x; + xp, but its kernel function is Kg = x; + x» + x3. In the case where
the prime function L has more than 2 inputs, |S(L)| > 2, the kernel function is L itself: Kr = L.

We show in this section that for a given F, there is a unique K, Section 4.4.2 proves that F/Kr

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 75

is unique. The reason why we refer to Kr in our presentation is to disambiguate among the many
similar functions that can divide a function F' that is an associative operator (similar since they differ
only in the number of input operands): we choose to use the one with maximum granularity because
that is the only one that can impose a unique partitioning on the actuals list of F, F /K.

In order to prove the results, we need to introduce some auxiliary terminology.

Definition 4.5. Given a set of variables S, a partition P of S is a collection of disjoint subsets of

S:
P={5,5,",5} 4.5)
Si # 0; i=1,---k
Slm5j207 lajzlak’ l?é.]
Usi=s
Given a partition P of S into k subsets Si,++- S, we call a selection of S a subset ST of S
containing exactly k variables x1,--- ,x;, where x; € ;.

In other words, S¥ contains one representative variable for each subset $; in the partition .

4.4.1 Decomposition by prime functions.

We first show that any function is decomposed by a unique prime function L. Among all the func-
tions that divide a function F, the prime function L is the one with the smallest number of inputs.
We prove here that there is a unique such function L for any F and that any other divisor M with
a larger number of inputs, can be further divided. The following Lemma demonstrates this last

statement and it is used to show the uniqueness of the prime function L in Theorem 4.2.

Lemma 4.1. Consider an arbitrary function F(xy,--- ,x,), n > 2, and let L denote a function divid-

ing F. Then, for any other function M dividing F, if |S(M)| > |S(L)

, M is decomposable.

76 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

Proof. Let Ay,Az,--+,A|5(z) denote the functions in F /L. Recall that such functions are all non-
constant and share no support variables. These properties must also hold for the functions in F /M,

hereafter listed as Py, Py, -+, Pis(m))-

The starting point of the proof is the presumed equality

F=L(A1,Ay,---) =M(Py,P,---). (4.6)

The sets S(P1),- -, S(P sq)) form a partition of S(F). Consider building a selection from this
partition. We indicate with xp, ,xp,, - - - the selected variables, and with Xj, the selection {xp, ,xp,,--- }

just constructed. Notice in particular that |S(M)| = | Xy|.

The selection must satisfy one additional property: Xj; must be such that for at least two func-

tions in F /L, say, A| and A;,

XMHS(Al) 7é 0 and .XMﬂS(Az) ;é 0. (4.7)

It is always possible to construct X3 so that Eq. 4.7 holds, as follows. If Eq. 4.7 is not satisfied
by a current selection Xj, then it must be (say) Xy NS(A2) = 0. Select a variable x4, from S(A3).
Notice that x4, also belongs to the support of some function in F /M, say, to S(P;). By replacing

xp, with x4, in Xj, the new set is still a valid selection, and it satisfies Eq. 4.7.

Consider assigning constant values to the variables not belonging to X, in the following way.
Since xp, € S(P;), it is always possible to assign values to the remaining variables of S(P;) in such a
way that, under this assignment, P; = xp, or P; = Xp_. For our purpose, complementation is irrelevant.

Hence, we will assume for simplicity that this assignment results in P; = xp,.
We indicate with f* a function resulting from another function f after this partial assignment.

By applying the same partial assignment to the left-hand side of Eq. 4.6, we obtain

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 77

L(T,A;,"'):M(XPI,XPZ,"'). (4.8)

Notice that the support of the right-hand side of Eq. 4.8 is precisely Xj;. Because |Xy| =
|S(M)| > |S(L)|, the support of at least one of the functions A},A%,--- must contain 2 or more
variables. Because of the partial assignment, some of the functions A} may actually be constants,
and the function L may simplify to a different function L*. From Eq. 4.7, however, at least two
functions A} are not constant, hence |S(L*)| > 2 and L* is a function of at least two inputs. Eq. 4.8

then indicates that L* divides M and M /L* is the set of non-constant A?. O
We can now prove that the the prime function L dividing F' is unique:

Theorem 4.2. Let L denote a prime function dividing F. Then, L divides any other function M that

divides F.

Proof. Consider a selection Xj, of |S(M)| variables and a sensitizing assignment as in the Proof of

Lemma 4.1. Eq. 4.6 then reduces to:

L(T,A;,"'):M(XPI,XPZ,"'). 4.9)

(remember that f* is the function resulting from a function f after a partial assignment).

By the way of choice of the variables xp;, we know that at least two of the functions A} are not
constant. We now show that, because of the primality of L, actually none of them can be constant.
If, by contradiction, any of the A} were a constant, then L could be replaced in Eq. 4.9 by a function
L* such that |S(L*)| < |S(L)|. L* would also have at least two inputs because at least two A} are
not constant. Hence, Eq. 4.9 would indicate that L* divides M, and therefore it would divide F'.
We would then have two functions, namely, L and L*, with |S(L)| > |S(L*)|, that divide F. From
Lemma 4.1, L would then be decomposable, against the assumption. None of the A} of Eq. 4.9 can

then be constant.

78 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

Suppose first | S(M)| > |S(L)|. At least one of the functions A* must have support size larger
than one. Hence, Eq. 4.9 indicates that L divides M, and M /L = {A}}.

If |S(M)| = |S(L)|, each of the A} must be either a variable x; from the selection or its com-
plement. In other words, (A1,--,A|sz)) = NP(x1,--+,x5(a)). Therefore M is NP-equivalent to

L. O

Example 4.4. Consider the function F(x1,x2,x3,X4) = X1X2X3 +X1X2X4 + X3X4. It can be decomposed
as F = MAJORITY (x1x2,x3,x4). It is easy to verify that MAJORITY is prime. From Theorem 4.2,
F cannot be decomposed with any prime function L other than MAJORITY, while maintaining

arguments with disjoint support. It follows that MAJORITY is the kernel of F.

The following result is a direct application of the previous Theorem. It has relevant applications,

however, in the rest of the present work.

Corollary 4.3. If a function F can be decomposed into the 2-input OR (AND, XOR) of two disjoint-

support functions, then it cannot be decomposed using any of the other two operators.

4.4.2 A characterization of ' /KF.

We complete the uniqueness results by providing a characterization of the functions in F/Kr. The-
orem 4.4 below, in particular, considers the case where the prime L is not an associative operator. It
follows that | §(L)| > 2. As we discussed in the previous Section, in this case Kr = L. We show here
that, in this situation, the functions in F/Kp are unique. The case where |S(L)| =2 and K # L is

then considered in Theorem 4.5.

Theorem 4.4. Let L denote a prime function, with |S(L)| > 2, and let Sp = {A1,A2,-+ , A5}

Sg={B1,B2,- - B .5(L)|} denote two sets of disjoint-support functions such that

L(A17A27"'):L(317327"') (410)

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 79

Then, there exists a NP-function NP such that

(A11A27"'):NP(BlaBZa'“)' (411)

In other words, A1,A>,- -+ coincides with B1,By,- - or their complements.

Proof. We prove the result by contradiction: We assume that two sets of functions exist that satisfy
Eq. 4.10 but violate Eq. 4.11, and draw the conclusion that L is not prime.

The proof mechanism is again based on building a selection from the supports of By, B, --.

We need consider two cases. In the first case, the support partition induced by A1, --- coincides
with that of By, ---. In the second case, it does not.

First case.

It is not restrictive to assume that S(A;) = S(B);S(A2) = S(Ba),---. Consider any assignment
that is complete for the variables in S(A),S5(A3),---, but that does not assign any values to those
variables in S(A). In this case, all functions except A and B reduce to constants. Let ap,as,- -

denote the constant values A3, A%, ---. Eq. 4.10 reduces to

L(A1,az,a3,++) = L(B1,by,-+) . (4.12)
Notice that we can always choose the values aj,as,--- in such a way that

L(Ay,ap,--+) = Ay or L(Aj,ap,---) =Aj. 4.13)
In this case, Eq. 4.12 becomes

AlzL(Bl,bz,---) or A1:Z(Bl,b2,---). (414)

Since A; is, by construction, not a constant, Eq. 4.14 indicates that L(B1,b;,---) is also non-

constant. On the other hand, L has only one non-constant argument, namely, B, and therefore

80 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

L(By,by,---) coincides with either By or with B,. Hence, Eq. 4.14 ultimately implies that

Al :Bl or Al :Bl. (415)

By repeating the same reasoning for all functions in Sy, eventually (A;,A,,---) = NP(By,B2,---)
for some NP function.

Second case.

Suppose the support of one function of S4 (say, Ay) overlaps with the support of (at least) two
functions B; (say, B; and B;). Consider constructing a selection Xp from Sp containing at least two
variables from S(A;). We impose one more requirement on Xp, namely, that for at least another
function A;,i # 2 XgNS(A;) # 0.

It is always possible to construct such a selection. If, for a current selection Xg, XgNS(A;) =
0;i # 2, it would imply Xg C S(A,). Choose then a variable from, say, S(A3). This variable must
belong to the support of some B;. Replace then xp, with this new variable. For the new selection,
XgNS(A3) # 0, and, since | Xp| > 3, at least two variables still belong to S(A3).

Notice that, since at least two variables belong to S(A»), for at least another function of A}, A5, - - -
(say, Ap) XpNS(A;) = 0.

Consider applying a partial assignment, such that all functions By, B»,--- reduce to variables in
Xg or their complements: B} = xp,. Since no variables of A; are included in Xp, A reduces to a

constant ay, and Eq. 4.10 becomes

L(al,A}‘(xBl ,XBZ),A; .) = L(xBl 3XByy ") (4.16)

Notice that, since the left-hand side of Eq. 4.16 must have support Xp :

1. A3 is not a constant;

2. A3 is not a constant;

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 81

Because a; is a constant, however, we can replace L by a simpler function L* :

L*(A;(XBI 3x32)aA§a e) = L(xBl yXByy ") 4.17)

Eq. 4.17 then indicates that we have been able to decompose L using L*, and L/L* = {A3,A}, -+ }.
This contradicts the assumption that L be a prime function. Hence, this second case is impossible,

and F /L is unique. O

Notice that the constraint |§(L)| > 2 is essential to the proof, for if |S(L)| = 2, Eq. 4.16 reduces

to

L(ay,A5(xp,,xB,)) = L(x,,XB,) (4.18)

indicating only that A’ coincides with L or its complement.

Example 4.5. Consider again the function F(x1,Xx2,X3,X4) = X1X2X3 + X1 XoX4 + X3x4. Its kernel
function is MAJORITY . From Theorem 4.4, the only possible elements of the actuals list are A1 =

X1X2, Ay = x3 and Az = x4 or any other NP-quivalent set.

Example 4.6. Consider the function F = x| +xp +x3. It can be decomposed using the function
OR;(a,b) at the root. From Corollary 4.3, no other prime function can be used. The functions
F | ORy, however, are not uniquely identified, as A} = x| + X2, Ay = x3 and Ay = x1, Ay = xa+ x3 are

both legitimate choices.

We now address the case where the prime function L dividing F is a 2-input function. It is
convenient to restrict our attention to the associative operators OR,AND,XOR: All other 2-input
functions are in fact NP-equivalent to one of these operators. Example 4.6 already showed that
the inputs of L are not identified uniquely. Because the operators are associative, however, instead
of decomposing F using only two arguments A,A;, we allow the number of inputs to the divisor
function to be as large as possible and in this case we call K such maximum-inputs divisor function.

To this end, we report here a result derived from [7] :

82 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

Theorem 4.5. Suppose a function F is decomposable using one binary associative operator ®

(where @ = AND,OR,XOR) as

F=A10A8 ---®A, 4.19)

and suppose further that none of the component functions A; is further decomposable using ®; then

the set of functions {Ay,--- ,Ap} is :
e unique in the case of AND, OR decompositions.
o unique modulo complementation for XOR decompositions.

Proof. The proof follows by contradiction. Assume that there exist two distinct sets of compo-
nent functions that decompose F, namely, {A,--+,A,} and {By,---,B,}; we show that this leads
necessarily to the violation of some properties of the functions A; or B;.

Consider first the case where ® = OR. Since the two sets are distinct, at least one of the functions
B; (say, B;) must differ from any of the functions A;. Since {A;},{B;} are both actuals lists for the

decomposition of F, it must be :

Ai+-+A, =B +--+B,. 4.20)

Since all functions B; have disjoint support, it is possible to find a partial assignment of the variables
such that B; =0, j = 2,--- ,¢. Notice that the variables in S(B;) have not been assigned any value.

Corresponding to this partial assignment, Eq. 4.20 becomes:

1+-+A =B 4.21)

In Eq. 4.21, A} denotes the residue function obtained from A; with the aforementioned partial
assignment.

We need now to distinguish several cases, depending on the assumptions on the structure of the

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 83

left-hand side of Eq. 4.21.
1. The left-hand side reduces to a constant. Hence, B is a constant, against the assumptions.

2. The left-hand side contains two or more terms. Since these terms must have disjoint support,B |

is further decomposable by OR, against the assumptions.

3. The left-hand side reduces to a single term. It is not restrictive to assume this term to be A7.
If A = A}, then we have B| = A, against the assumption that B; differs from any A;. Hence,

it must be AT # Ay, and

S(B)) = S(A}) C S(A;) strictly. (4.22)

We now show that also this case leads to a contradiction.

Consider a second assignment, zeroing all functions A;,i # 1. Eq. 4.20 now reduces to

A =Bj+---+Bj (4.23)

By the same reasonings carried out so far, the r.h.s. of Eq. 4.23 can contain only one term.

We now show that this term must be B;.

In fact, if A = B}, j # 1, then by Eq. 4.22 one would have

S(A1) =S(B3) D 5(B)) (4.24)

against the assumption of By, B; being disjoint-support. Hence, it must be A; = B7. In this

case, by reasonings similar to those leading to Eq. 4.22, we get

S(A)) =S(BY) C S(By) strictly (4.25)

which contradicts Eq. 4.22. Hence, B; cannot differ from any A;.

84 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

The case where ® = AND is derived similarly, with the only difference that we choose partial

assignments such that the component functions evaluate to 1.

Finally, for the case ® = XOR, we choose partial assignments such that the component functions
evaluate to 0. Case 1) and 2) are still analogous to the previous derivation above. For case 3), we
may reduce to either By = A} or B| = A_’f . However, in both cases the relation between the supports
still holds, in particular Eq. 4.22 and 4.24 are still valid. From the two equations we can then derive

the contradiction. O

The Corollary below indicates how the decomposition of Theorem 4.5 is the common denomi-

nator of all the other decompositions through an associative operator:

Corollary 4.6. Suppose F is divided by an associative operator ®, and let By,---,B, denote a

collection of disjoint-support functions such that

F=B ®B,®---®B,. (4.26)
Then each function B can be expressed using terms from the actuals list F [Kp:
with ki =0,k; = k. 4.27)

Bj=A41® A

kjt1

In other words, F [Kp forms a base for expressing all possible ways of decomposing F using ®.

Proof. We prove the results only for ¢ =2, ® = OR, the generalizations being straightforward.

Consider the equality

F=B +By=A;+---+A;. (4.28)

Consider two distinct partial assignments leading to B; = 0 and to B, = 0, respectively. Eq. 4.28

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 85

becomes

By= A} 4+ A}; (4.29)
and

By =A7"+--+ A (4.30)

By computing the OR of the two components,

F=Bi+By=A1+AT" + A5+ AS" + -+ AL+ A 4.31)

From Theorem 4.5, there can be at most k terms in the right-hand side of Eq. 4.31. For each function
Aj;, at least one of AF,A7* must be nonzero (or otherwise S(A;) N S(F) = 0). Hence, for each A;,
either A7 = 0 and A]* = A;, or A = A; and A7* = 0. Each term in the right-hand sides of Eq. 4.29
is then either O or coincides with some A;. It is not restrictive to assume that the first k; terms are

nonzero. Hence, Eqs. 4.29 and 4.30 reduce to Eq. 4.27. U

In summary, a function can be decomposed in exactly one of the following ways :

1. By the binary associative operators AND or OR. In this case, hereafter Kr denotes the AND

or OR function with the largest support size and K is unique in the sense of Theorem 4.5.

2. By an XOR operator. Also in his case F/Kr will be taken to denote the finest-grain decom-

position. F /K is unique modulo complementation of an even number of its elements.

3. By a PRIME function of three or more inputs. F/KF is unique modulo complementation of

some of its elements.

Note that the complement of a function has a decomposition that can be derived immediately

from the decomposition of the function: If a function is OR-decomposable, its complement has an

86 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

AND-decomposition where the inputs are complemented and conversely. The complement of func-
tions with XOR-decompositions are also XOR-decomposition with one of the inputs complemented.
Finally, PRIME-decompositions have complements which are PRIME-decompositions with the ker-

nel function Kr complemented.

4.4.3 The normal Decomposition Tree

In Sections 4.4.1 and 4.4.2, we showed that for a given function F, the kernel Kr and the actuals
F /KF are unique, up to complementations and permutations. We now establish some conventions
so as to choose a unique representative of all the decomposition trees corresponding to the same
function F. These conventions will lead to the definition of the normal Decomposition Tree.

In representing decomposition trees, we reference the tree by a pointer to the root node. More-
over, we use signed edges, much like common ROBDD representations ([13]). If a decomposition
tree represents the function F, the tree obtained by complementing the edge to the root node repre-

sents the function F.

Definition 4.6. Given a function, its normal Decomposition Tree is a tree graph and it is denoted
DT(F).

It is defined recursively as follows.

The root node represents F, and it is labeled by the type of decomposition. The root node has
|F /K| outgoing edges, each edge pointing to the root of DT (A;). In order to resolve permutation
ambiguities, the elements of F |Kf are ordered according to the order of their top variable in their
ROBDD representation.

In order to resolve complementation ambiguities, the following rules are adopted:

e [fF has PRIME or XOR decomposition, the set F | K contains functions with positive ROBDD
polarity. In the case of XOR decomposition, the root node will be referred to through a com-

plement edge if necessary.

o [f F has an AND decomposition, DeMorgan rule is applied: the root node is labeled OR and

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 87

will be referred to through a signed edge. The fanout edges of the root node point to the

complements of F [ANDj.

From Theorems 4.2 and 4.4, it follows trivially that with this set of conventions and with the
full labeling of PRIME nodes, there is a one-to-one correspondence between normal decomposition

trees and logic functions.

Example 4.7. Consider the function F = MAJORITY(a® b,cd + e,ITE(fg,h,i)). F has the follow-

ing disjoint-support representation:

F = MAJORITY(G,H,I);
G = adb;

H = L+e

I = ITE(M,h,i);

L = cd,

M = fg

The data structure of its normal decomposition tree is reported in Figure 4.3. Notice that the rep-
resentation is normalized by representing each AND decomposition with it’s dual OR and using
complement edges. Moreover, since the function I is decomposed through a PRIME, all of its ac-
tuals list element must have positive polarity. Thus, the first element A for the decomposition of
1 is the function fg instead of fg and the kernel we use for I is K; = Xgx| + xoxo which takes into

account the polarity change.

The decomposition tree represents concisely all possible disjunctive decompositions of F'. This
property will be useful to the decomposition algorithm presented in the next chapter. In order to
extract a decomposition from a normal Decomposition Tree, we need to define the concept of a
cut of a DT. Given a generic tree graph, a cut is any set of nodes that separates each leaf of the

tree from the root and such that in any path from the root to the leaves there is only one node that

88 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

PRIME| O]
XéR/ GOTII{ I\Pl{lME og@
60 L6 b

Jc
BO

\‘\

CORESS

Figure 4.3: Decomposition representation of the function of Example 4.7

(=)
—_
(=)
—_

belongs to the cut. Since for our Decomposition Trees each node corresponds to a function, we
define cuts as a collection of functions. The last lemma of this chapter shows that there is a one to
one correspondence between divisors of a function F' and cuts through its normal Decomposition
Tree.

To formalize this aspect of decomposition trees, we need to introduce a few definitions, which

will be used again when we describe our decomposition algorithm.

Definition 4.7. We say that a function G(xy,--- ,x,) appears explicitly in DT (F) if one of the
following holds:

1. G=F, or
2. G appears explicitly in DT (A;) for some A; in F | Kp.

In other words, functions appearing explicitly in DT (F) correspond to tree nodes.

We say G appears implicitly in DT (F) if one of the following holds :
1. G=F

2. F =®(Ay,-++,A,) and G = ®(By,--- ,By,), where ® is OR, XOR, and where each B; €

{Ala"' aAn}

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 89

3. F and B; are as above and G = ®(By,--+ ,By,)
4. G appears implicitly in one of the subtrees DT (A;).
Finally, we say G appears in DT (F) if it appears explicitly or implicitly.

Example 4.8. Consider the function F = x1x2x3 + x4x5. A decomposition tree is reported in Figure
4.4.a. Figure 4.4.b depicts the equivalent normal Decomposition Tree (the Figure uses the signed
edges convention to represent the complementation of a node in the tree). The functions G| = F,
Gy = x1xx3, G3 = x4xs, and all the functions corresponding to a simple input variable, appear
explicitly in DT (F) and are indicated in the Figure. Functions G4 = X1 + X3, Gs = X] + X3 and
Gg = X2 + X3 appear implicitly in the decomposition tree by rule (2) on implicit appearance of
Definition 4.7. Moreover, functions G7 = x1x3, G = x1x3 and Gy = xpx3 also appear implicitly by

rule (3) of the Definition.

F F
Gl Gl
(0) (0)

o oo
AND AND OR OR
R R

X1 Xp X3 X4 X5 X1 Xp X3 X4 X35

a) b)

Figure 4.4: Decomposition tree for Example 4.8.

Notice that if a function G appears in DT (F), then every function in DT (G) will also appear in

DT(F).
Definition 4.8. A set of functions C = {A;} is called a cut of DT (F) if the following hold:
1. each function A; appears in DT (F).

2. S(A)NS(Aj) =0, i#

90 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

3. UsecS(Ai)) = S(F).

Example 4.9. A possible cut for the function of Example 4.8 is given by the set {G3,Ga,x3}, that

is, {xaxs,x1x2,x3}. Notice that G4 appears only implicitly.

Lemma 4.7. For every function M dividing F, F /M is a cut of DT (F). Conversely, for any cut C

of DT (F), there is a function M such that F /M = C.

Proof. The first part of the theorem is proved by induction on the number of variables in S(F).
The base of the induction (when |S(F)| = 2) is trivial. For the generic induction step, let m =
|S(M)| and let yy,- - - ,ym denote formal inputs to M.

Since M divides F, there exist m functions P (xj,---),Ps,--- (the actuals list of F /M) such that:

F=M(P,P,---,Py). (4.32)

By assumption, Py,--- , P, are disjoint support and their support must coincide with S(F'). Thus, we

need to show only that Py,--- , P, appear in DT (F).
From Theorem 4.2, the prime function L that divides F, divides also M. Therefore, there exist

I = |S(L)| disjoint-support functions By,B3,-+ ,B; of y1,--+ , ¥, such that

M=L(By,---,B)). (4.33)

It is not restrictive to assume that the support variables y; are numbered so that

S(Bl) = {yb,’,1+la"' 7yb,-} = la al (4.34)

for suitable integers b;, with by = 0 and b; = m.

We now need to distinguish whether L is a 2-input function (i.e. an associative operator), or a

prime function with three or more inputs. The latter case is simpler and we carry it out first.

4.4. THE UNIQUE MAXIMAL DISJOINT SUPPORT DECOMPOSITION 91

By composing Eqs. 4.32 and 4.33 one obtains

F=M(Py,--,Pn) = L(Bi(Pr,- ,Py)s+ ,Bi(Po 415+, Pn)) (4.35)

Since L divides F and it is a prime function, from Theorem 4.2 it must be

Ai=Bi(Py,_,+1, " ,Pp,) i=1,---,1 (4.36)

where {A,--- A} =F/L.

Notice that by definition of decomposition tree, all A; appear in DT (F).

For each function A;, B; is either a single-input function, or a multiple-input function. In the
first case, A; = P, (modulo complementation), and therefore P, appears in DT (F). In the second
case, Eq. 4.36 indicates that A; is decomposed by B;. Since |S(A;)| < |S(F)|, by induction each of
Py, 41, , Py, must appear in DT (A;), hence in DT (F).

Consider now the case where L is an associative operator ®. In this case, one can write

M=Gi(y1, s ym) @ G2 (Ym+15+* ,Ym) (4.37)

for suitable functions G, G>. By substituting the formals y; with the actuals P; in Eq. 4.37 , and

taking into account Theorem 4.5,

F= Gl(Pla"' 1Pm1)®G2(Pm1+l,"' ;Pm) :A1®A2®®Ak (438)

where {Ay,--- ,Ax} = F /Kr. We now focus on G, the same reasoning being then applicable to G,.
Equation 4.38 is the subject of Corollary 4.6: Either G| coincides with some A; (in which case it
appears explicitly in DT (F)), or it is expressible as the sum of some of the A;. In this second case,

we have

Gi(P1, - ,Pn) =A1Q--- QA 2<k <k. (4.39)

92 CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

Let F> denote the function A; @ --- ® Ay,. Notice that F> appears implicitly in DT (F). Hence,
every function appearing in DT (F,) will appear in DT (F). By the inductive assumption, for every
function M dividing F», F»/M appears in DT (F,), hence in DT (F). Eq. 4.39 states precisely that
G divides F, thus Py,--- , P, appear in DT (F;) and consequently in DT (F).

The second statement of the theorem can be trivially proved by building the function M corre-
sponding to the decomposition tree obtained from DT (F) by substituting a distinct variable y; for

each node A; of the cut C. O

Example 4.10. Consider the function F of Example 4.7. The function MAJORITY (x| ®x;,x3,X4) =
(03 4+ x4) (x1 B x2) +x3x4 is a divisor of F and the cut C of DT (F) with reference to the Example is
C={a,b,H,I}.

4.5 On the decomposability of Boolean functions

Shannon proved in [61] that for a sufficiently large support size, |S()| , almost all Boolean func-
tions require an exponential number of elements for their representation. He also showed in the
same paper that the fraction of all functions of a given size support, |5()|, that are decomposable,
approaches 0 as |S()| approaches infinity. Sasao provided some quantitative results on how fast
this limit is approached in [59]. He reports there that at |S()| = 5, the percentage of functions that
are undecomposable is already 99.9%. However, common experience indicates that most functions
representing the functionality of digital systems can be represented by logic networks with much
less than an exponential number of elements. The reason lies in the fact that most functions used in
digital designs are not randomly picked at all, but instead are usually the results of the designers’
natural choice of building complex systems by “adding” together simpler components.

The next chapter presents a new algorithm to expose the disjoint support decomposition com-
ponents of a Boolean function. Because of its scalability, the algorithm has made possible to com-

pute the disjoint decomposition of many complex functions, showing that most functions used in

4.5. ON THE DECOMPOSABILITY OF BOOLEAN FUNCTIONS 93

industrial testbenches are in fact decomposable. It is natural to think that functions that can be rep-
resented by a sub-exponential network are more prone to be decomposable because inputs are less

intertwined together in their path to produce the output value.

94

CHAPTER 4. DISJOINT SUPPORT DECOMPOSITIONS

Chapter 5

A novel algorithm for Disjoint Support

Decompositions

This chapter introduces a new algorithm to expose the maximal disjoint support decomposition of
a Boolean function. The most relevant aspect of this algorithm is that its complexity is only worst-
case quadratic in the size of the BDD representation of a function. Previously known algorithms
had complexity exponential in the size of the support of the function to be decomposed. It is a well
known fact that there exists functions for which the BDD representation is exponential in the size
of their support — for instance, the functions representing the outputs of an integer multiplier [18]:
in such situations our algorithm does not present any mayor complexity benefit. However, most
complex functions that arise in the design and verification of digital circuits have BDD represen-
tations that are sub-exponential, hence the widespread use BDDs. For all these complex functions
the algorithm introduced here below is the first that can find a disjoint support decomposition in
sub-exponential time. Moreover, our algorithm finds the maximal disjoint support decomposition,
and consequently all the other decompositions, since they can be all derived from it, as we showed
in the previous chapter; on the other hand, previous algorithms could only find one or a few decom-
positions for a function, not necessarily the maximal DSD.

The algorithm traverses the BDD representation of a function in a bottom up fashion. At each

95

96 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

node it constructs the decomposition of the function rooted at the node based on the type of de-
compositions of each of the two cofactors of the node. The algorithm works by identifying all the
possible situations that may occur at a BDD node and constructing the proper decomposition. The
central part of this chapter analyzes the cases that may arise and shows what the resulting decom-
position should be for each of them. We present implementation details at the end of the chapter
and results we found by decomposing Boolean functions derived from the functionality of industrial

digital circuit testbenches.

5.1 Building the decomposition bottom-up

The algorithm to expose the maximal Disjoint Support Decomposition starts from a BDD repre-
sentation of the function F — see Section 2.3.1 — and finds all its disjoint support components by

traversing the BDD tree recursively in a bottom up fashion.

Since we are presenting a recursive approach, we assume to know the disjoint support decom-
position of the two cofactors Fy, F] with respect to a variable z. This chapter describes how to build

the decomposition tree DT (F') from the decomposition of the cofactors, DT (Fy) and DT (F}).

In principle, one could build DT (F') by running a case analysis based on the decomposition type
of Fy, F1. Example 5.1 below, however, indicates that this information alone may be not enough,

and additional comparisons need be carried out on DT (Fy),DT (F}):

Example 5.1. Let G, H, J denote three functions, with pairwise disjoint supports. Suppose they all

have a PRIME kernel. Suppose also that the two cofactors of F w.r.t. z are as follows:

F = G

F = G+H

That is, Fy has a PRIME decomposition, while Fy has an OR decomposition. The decomposition for

5.1. BUILDING THE DECOMPOSITION BOTTOM-UP 97

F can be found as follows:

F =xG+xG+xH = G+xH = OR(xH,G)

and Kr is an OR function.

Consider now the case where F| is as above, while Fy = J. Again we have a situation where Fy
and Fy decompose through a PRIME and an OR function, respectively. However the decomposition

of F results as:

F =XJ+xG+xH = MUX (x,G+H,J)

and K is a PRIME function.

Thus, functions with different decomposition types can have cofactors whose decomposition

types are identical.

In practice, in order to build the decomposition, it is necessary to take the specific actual lists of
Fy and Fj into consideration. The resulting analysis involves additional comparisons on the actual
lists that are often numerous and complex. Therefore, we present here a different solution, based on

the following observation:

Example 5.2. Suppose that F has a decomposition with Kr a PRIME function:

FZKF(A1(Z),A2,--- ,A[). (5.1)

The two cofactors will then have decomposition

Fo = KF(Al(Z:O),Az,---,A[) (52)

Fi = Kp(Ai(z=1),A2,---,A)).

98 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

If neither A\(z =0) nor Ai(z = 1) is a constant, the kernels of Fy and Fy coincide, and the two
actuals lists differ in exactly one element. It will be shown below in Section 5.2 that also the inverse
is true: if Fy and F have the same prime kernel and very similar actuals lists, then F will have the
same kernel as Fy and the actuals list can be readily constructed. A similar observation holds also

if F has OR, AND, or XOR decomposition.

Example 5.2 suggests that we may subdivide the problem by distinguishing the case where both
Ai(z=0) and A;(z = 1) are constants, from the case when at most one of them is constant. In
fact, the former will requires a simpler analysis to identify the decomposition of the function F.
For both the two cofactors of A to be constant, A; must have a single variable in its support and it
must be A} =z or A = Z. We refer to this situation as a new decomposition, since in this case we
are starting a new decomposition block that contains the single variable at the top of our bottom-up
decomposition construction. We refer to the other situation as an inherited decomposition, since in
this case we are, generally speaking, expanding a block that exists already in the decomposition of

the cofactors of F' by “adding” the variable z to it.

Definition 5.1. We say that the decomposition of F: (Kp, F/Kp) is inherited if |S(A;)| > 2. It is

termed new otherwise.

It will be shown that in an inherited decomposition, F shares the kernel (and some actuals) with

at least one of its cofactors. In a new decomposition, this is not guaranteed to happen.

LetAjg=A;(z=0)and A;; = A (z= 1), respectively. We further classify inherited decompo-

sitions as follows:
1. Neither Ajg nor Ay is constant, Ajg # A;y, and

(a) F has PRIME decomposition;

(b) F has AND, OR , or XOR decomposition;

2. Exactly one of Ajg, Ay is constant (i.e. A is the OR or AND of z — or 7 — with a suitable

function); and

5.2. CASE 1. NEITHER Ao NORA; IS CONSTANT AND Ao # A1 99

(a) F has PRIME decomposition;

(b) F has AND, OR, XOR decomposition.
3. Ajo=A;; and A is not a constant (i.e. A is the XOR of z with a suitable function); and

(a) F has a PRIME decomposition;

(b) F has AND or OR decomposition.

Notice that since A; has a XOR decomposition, F cannot have a XOR decomposition.

Notice that, in the first type of inherited decompositions, A is essentially an arbitrary function
of three or more variables. A; may of course have a XOR, OR, or AND decomposition, we just
exclude the situation where z (or 7) appears as an element of its actuals list. The three scenarios are
mutually exclusive, and together they cover all the possibilities for inherited decompositions.

Given this classification of decomposition types, we proceed now as follows: Sections 5.2 to 5.4
cover all the three subtypes of inherited decompositions, Section 5.5 analyzes new decompositions.
Each Section shows how to determine which scenario a Shannon decomposition belongs to, and

how to construct DT (F) from DT (Fy) and DT (F}).

5.2 Case 1. Neither Aj(nor A is constant and Ao # A

This case was implicitly described in Example 5.2. We need to distinguish the two subcases where
F is prime and where F is decomposed by an associative operator. The two subcases are addressed

separately by the two Lemmas below:

Case 1.a - PRIME decomposition

Lemma 5.1. A function F has a PRIME decomposition with arbitrary function Ay(z,--+) in its

actuals list if and only if :

1. Fy and F\ both have PRIME decompositions,

100 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

2. the actuals lists Fy/Kr, and F\ | Kr, have the same size, and they differ in exactly one element,

called G and H, respectively;

3. either
F(G=0)=F(H=0) and F(G=1)=F(H=1) (5.3)
or
Fo(G=0)=F(H=1) and Fy(G=1)=F(H=0) (5.4)
must hold.

Moreover, if Eq. 5.3 holds, then F K is obtained from Fy/Kg, by replacing G with A} =ZG +zH,

else by replacing G with A1 =z7G + zH.

Notice that Lemma 5.1 does not require any explicit comparison between Kg, and Kr,. These
comparisons are replaced by the comparison of generalized cofactors. We can thus avoid building

explicit representations of Kr,, KF,.

Proof. To prove the only if part, notice that Eq. 5.2 indicates that K divides Fp and F;. Since
we assumed Kr to be PRIME, Kr will be NP-equivalent to Kp,, Kr,. All elements of F/Kr have
positive BDD polarity, hence, Aj,--- ,A; will appear with the same polarity in F/Kp, and Fi/KF,.
One or both of Ajo, A11, however, may have negative BDD polarity. Therefore, Fy/KF, will actually
contain either Ay or Ajg. The same reasoning obviously applies to Fi/Kr,. We indicate with G,
H the functions actually appearing in Fy/Kg, and F; /KF,, respectively. To verify the third point,
consider taking the generalized cofactors of Fy and F; with respect to G and H. If Ajg and A{; have

the same polarity (say, positive), then Kr, = Kf, and we have:

Fo(Aip=0) = Kpg(G=0,A,---,A;) =Kr(H =0,A2,-- ,A;) = Fi(A11 =0) (5.5)

FolAio=1) = Kg(G=1,A,--- ,A)=F (A =1). (5.6)

5.2. CASE 1. NEITHER Ao NORA; IS CONSTANT AND Ao # A1 101

If Ao and A1 have opposite polarity (say, Ao has negative polarity), then

F(A0=0) = Kr(G=0,A2,--,A;)) =Kp(H=1,Az,---,A)) = Fi(A;1 = 1) (5.7
Fh(Apw=1) = Kg(G=1A--,A))=F (A1 =0). (5.8)

Hence, Eqgs. 5.5 and 5.7 reduce to Eq. 5.3 and 5.4.
To prove the if part, recall that Fy and F; both have PRIME decompositions and that their actuals

list differ in exactly one element (G vs. H). The cofactors of Fy and F; with respect to G and H are

then well defined. Suppose first Eq. 5.3 holds:

Using the decomposition of Fp in Eq. 5.9 :

F =HKp(G=0,A;,--- ,A)) + HKr, (G = 1,Ay,-+- ,A)) = K, (H, A, -+ ,A)). (5.10)

Eq. 5.10 indicates that K, divides F7 as well, hence Fp and F; have the same decomposition type.

From Eq. 5.3 it also follows that

F =7Fy+zF\ = 7Kg, (G,A2, -+ A1) + zKg, (H,A2, - ,A1) = K (ZG+zH,Az,--- ,A;) (5.11)

Eq. 5.11 indicates precisely that /* has PRIME decomposition (its kernel being Kr,), and that
F/Kp={zG+zH,As, -+ ,A;}, which is what we needed to prove.

The case where Eq. 5.4 holds can be handled in the same way, just by replacing H with H. [

Example 5.3. The function F = azb+ ezb+ cb & d has kernel Kp(x1,x2,x3,X4) = X1x2 + X3%2 D X4
and actuals list (az+ eZ,b,c,d). By computing the cofactors w.r.t. z, we obtain Fy and Fy with kernel
identical to Kp and actuals lists: Fy/Kg, = (e,b,c,d) and F\/Kp, = (a,b,c,d), respectively. Since

the two cofactors satisfy all the three conditions of Lemma 5.1, we can find the decomposition of F

102 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

from their kernels and actuals lists.

Case 1.b - Associative decomposition

The case where F' is decomposed by an associative operator is slightly more complex. Therefore, we
first provide the intuition, and then prove formally a criterion for identifying such a case. Suppose

F has a (say) OR decomposition:

F = ORk(Al(Z),Az,"' aAk)

The two cofactors will also have OR decomposition:

Fy = ORi(A10,A2,--- ,Ax) and F; = ORi(A11,Az,--- ,Ax)

Notice, however, that one or both of A1g,A;; may have a OR decomposition as well. Let

AlO = ORZ(Bl,Bz,--- ,Bl) and A11 = ORm(Cl, ,Cm) where l,m > 1.

Therefore, KFO = ORk,H_[, F()/KF0 = {Bl, s ,B[,Az, T ,Ak} and I(F1 = ORk71+m, FI/KF1 = {Cl, T ,Cm,
Az,---,Ar}. Notice that all the functions B; must differ from all of the C;, and that the two actuals
lists still have at least one element in common (Aj,---,A;). These observation are formalized in

Lemma 5.2 below:

Lemma 5.2. A function F has an OR decomposition with arbitrary function A (z,---) in its actuals

list if and only if:
1. both Fy and F| have OR decompositions;

2. the set of common actuals A, = {Ay,--- ,Ax} is not empty;

3. Fo/Kp,— 3. #0 and Fy [Kp, — 4. # 0.

5.3. CASE 2. EXACTLY ONE OF Ayg, A11 IS CONSTANT 103

Proof. The only if part of the proof follows immediately from the previous observations. For the if

part, let By, , B; denote the functions in F/Kg, — 4., and Cy,--- ,C,, those in F; /Kp, — 4. Then,

Fo = Okal+l(Bla"' ,Bl,Az,--- ,Ak) and Fl = OkaH»m(Cla"' ,Cm,Az,- . ,Ak)

Hence,

F = ZIFO-I'ZFl = ORk(ZOR[(Bl,-'- ,B[) -I-ZORm(C1,"- ,Cm),Az,-'- ,Ak) (5.12)

We need to show now that ZOR;(By,--- ,B;) + zOR,,(Cy,--- ,Cy,) does not have an OR decompo-
sition. Suppose, by contradiction, that it has an OR decomposition. Then, some of the terms
(B1,---,B;) would coincide with some of the (Cy,---,C,), against our assumptions. Hence, Eq.

5.12 indicates that F has a OR; decomposition. U

Identical results can be shown for the AND and XOR cases.

5.3 Case 2. Exactly one of A1, A1 is constant

We now assume that exactly one of Ajg, A;; is a constant. We consider only the case Ajg = 0, so
that effectively A; = zA|;. The other cases can be handled similarly. In this scenario we need to
consider separately the case where F' will have a PRIME decomposition, and the case where F' will

be decomposed by an associative operator.

Case 2.a - PRIME decomposition

In this case :

F =Kp(A1,A,---,A))

104 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

where K is a PRIME function. Recalling that A| = zA||, the two cofactors are:

Fo=Kr(0,A,---,A;) and Fy=Kp(A11,A2,-+-,A)) (5.13)

Eq. 5.13 indicates that:
1. K is also the kernel of Fj;
2. F, /K differs from F /K in exactly one element (A;; va. Ay).
3. Kp is not the kernel of Fj.
Again, the following Lemma helps us avoid comparing kernels explicitly:

Lemma 5.3. A function F has a PRIME decomposition with Ay = zG in its actuals list, for a

suitable non-constant function G if and only if :
1. Fy has a PRIME decomposition;
2. there exists a function G € F| /K, such that F\(G = 0) = Fp.

Proof. For the only if part, recall that Eq. 5.13 indicates that F| has the same kernel as F. The
second point also follows immediately from Eq. 5.13, using G = Ay;.

For the if part, notice that, since Fy = F;(G = 0),

F= ZIF0+ZF1 = ZIKFl(OaAZa"' ,Al) +ZKF1(G5A2,"' aAl) = KFl (ZG,AZ,"' aAl)

indicating precisely that K, is also the kernel of F', and that A| = zG . O

It is worth noticing that Lemma 5.3 does not indicate which function in F; /KF, needs be chosen

for the cofactoring. Indeed, all functions A; € F}/Kp, such that S(A;) NS (Fy) = 0 are candidates.

5.3. CASE 2. EXACTLY ONE OF Ayg, A11 IS CONSTANT 105

Case 2.b - Associative decomposition

Since we assumed at the beginning of Section 5.3 that A; has an AND decomposition, zA;, F' can
have only OR or XOR decomposition. We focus here on OR decompositions, the XOR case being
conceptually identical.

Again, we need to consider the case where A itself may have an OR decomposition.

Let

A1y = OR((By,-++,B;) 1>1.

The case where Aj; does not have a OR decomposition is implicitly addressed by [= 1. The

decomposition of F can then be written as :

F = ORk(ZA117A27"' 7Ak) k22
Fy = ORi_i1(A,---,Ap) (5.14)

Fi = OR(Ai1,A2,-+ ,Ax) = ORiyi—1(B1,--- ,B1, Az, -+ ,Ay) (5.15)

Equation 5.15 indicates that F; will also have an OR decomposition. Fp, however, may have a
different decomposition: in fact, in the special case k = 2, Eq. 5.14 simplifies to Fy = A, and A,
does not have an OR decomposition by hypothesis. In the general case, all the actuals of Fy/ORy—;
will belong to F/ORy4;—1. In the special case k = 2, Fj itself will be an element of Fi/ORy4;—1.

These observations are formalized below:

Lemma 5.4. A function F has an OR;, decomposition with Ay = zG in its actuals list, for a suitable

non-constant function G if and only if:
1. F| has an ORyy;—1 decomposition withk > 2 and [> 1;

2. either k > 2 and Fy has an ORy_; decomposition and Fy/Kr, C F1/Kr,; or k=2 and Fy €

106 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

F\/KF,.

Proof. The only if part follows directly from the above observations. For the if part, suppose:
Fi = ORy—11/(B1,-++ , B, Az, ,Ag)

and
Fy = ORy—1(Az,--- ,Ap).

Consequently, we have:

F = ZFy+zFi = ORy(ORy—1(Az,--- ,Ar),zOR/(G1,--- ,G}))

= ORy(zOR/(Gy,---,Gy),Az,--- ,Ax)

which is what we needed to show. Notice that the algebra holds also for the corner case k =2. U

54 Case3.A;p=A;; and A is not a constant

In this scenario A; has XOR decomposition : A} = z@ Ajg. It is not restrictive to assume that Ao has
positive BDD polarity. Again, we need to address the case where F' has a PRIME decomposition

separately from the other cases.

Case 3.a - PRIME decomposition

If F has PRIME decomposition, then
Fo = Kp(Ai0,A2,---,A;) and Fi = Kr(A10,A2,--+ ,A) (5.16)

Again, K, and Kr, are NP-equivalent to Kr, hence, Fp and F; have PRIME decompositions. More-

over, Fy/Kg, and F /KF, are identical (because of the definition of normal Decomposition Tree - see

54. CASE3.Aj9g=A;; ANDAy IS NOT A CONSTANT 107

also Section 4.4.3). Another consequence of Eq. 5.16 is that:

The following Lemma provides necessary and sufficient conditions for identifying this case:

Lemma 5.5. A function F has a PRIME decomposition with A\ = z® G in its actuals list, for a

suitable non-constant function G if and only if:

1. Fy and F| have PRIME decompositions,
2. F()/[(F0 = FI/KFl;

3. there exists a function H in Fy/Kp, such that:

Fo(H=0)=F(H=1) and Fy(H=1)=F(H=0) (5.17)

In this case, either G=H or G =H.

Proof. The only if part follows directly from the introduction to this case. For the if part, observe

that if Eq. 5.17 holds, then:

F = HF()(H: 1)+HFO(H:O)
F = ZFy+zF =zHFy(H =0)+ZHFy(H = 1)+ zHFy(H = 1) + zHFy(H = 0)

= (H+zH)Fy(H =0)+(zH+zH)Fy(H=1) = Fy(H =z®H).

Hence, F has the same kernel as Fp, and its actuals list coincides with that of Fj, except for

one element, namely, H, which is being replaced by either z H or by (z® H), depending on the

polarity of the BDD representation. U

Notice that Lemma 5.5 does not indicate which function of Fy/KF, needs to be XOR-ed with
z. Unfortunately, there is no way of knowing other than checking each function until Eq. 5.17 is

verified.

108 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Case 3.b - Associative decomposition

The difference from Case 3.a lies again in the fact that the candidate H may have the same decom-
position type (AND, OR) as F. The way to handle this difference has been described already in

Sections 5.2 and 5.3 for the other cases. Therefore, we omit it from the present analysis.

5.5 New decompositions

We now consider the case where A| =7 or A; = z. We need to distinguish three subcases, namely,
(a) F has an AND or OR decomposition;

(b) F has an XOR decomposition;

(c) F has a PRIME decomposition.

These cases will be handled separately in the three paragraphs below.

Case a - AND or OR decomposition

F = OR(z,G) , then the two cofactors are F; = G and F, = 1. Conversely, if F, = 1, then F =
FZ+ 1z = OR(z, Fs). Hence the decomposition is inferred by verifying that one of F, is the constant
1. Since z € S(Fg), F has a OR decomposition with z € F/OR. The second case can be treated
similarly showing that F has an OR decomposition with 7 € F/OR if and only if the cofactor F5 is
the constant 1. The case of AND decomposition is symmetrical, with the constant O replacing the
constant 1. In summary, a new AND or OR decomposition is discovered if one of the two cofactors

Fy or Fj is a constant:

Fi=1->F=z+F,.

Fh=1->F=Z7+F.

FR=0—F=z-F=7+F,.

FIF=0—->F=z-F=z+F.

5.5. NEW DECOMPOSITIONS 109

Case b - XOR decomposition

If F = XOR(z,G), then Fz = G, F, = G, and conversely, if F, = F%, then F has XOR decomposition

with z € F /XOR. For this case, the decomposition is inferred by checking that F, = F.

Case ¢ - PRIME decomposition

This case is by far the most complex of all. There are no necessary and sufficient conditions for
identifying this case : It is determined by failing to construct any other type of decomposition. As
mentioned, we do not need to keep track of the particular PRIME function used in the decomposi-
tion. Therefore, the task at hand is just to identify the actuals list F /K. Unlike the previous cases,
in order to build this list, we will need to compare not just the actuals lists Fo/Kp,, F1/KF,, but the
entire trees. Fortunately, this comparison can still be carried out efficiently. The rest of this section
contains the details of this construction and the theoretical justification.

Consider once again the Shannon decomposition of a function F with disjunctive decomposition

F :KF(Z,AQ,Aj,,--- ,Al) .

I%:KF(OaAZaA%”') FZ:KF(laA27A37"') (518)

Let Ly (y2,---,¥m) and Ly, (y2,...,ym) denote the functions Kz (0,y2,..,ym) and K¢ (1,y2,..,¥m),

respectively. Eq. 5.18 can then be written as

Fzr = Lyr(Ag,A3,--) Fo=Ly (A2,A3,-++) (5.19)

In general, Ly; and Ly, may be further decomposable. Moreover, they may depend on only a
subset of y,, - ,y,,. For this reason, in order to determine the decomposition of F, it is not sufficient
to compare the actuals list of Fz, F;. However, from Eq. 5.19, Lj divides Fz. From Lemma 4.7, the
set of functions {A,,A3,---} forms a cut of DT (F;) and thus F /K also contains a cut of the same

decomposition tree. Similar reasoning applies to F;.

110 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

The definition of uniform-support is needed to identify which functions from the two decompo-

sition trees of the cofactor we need to select as components of DT (F):

Definition 5.2. Given a function F and a variable z € S(F), a function A appearing in DT (Fz) or in
DT (F;) is said to have uniform-support if it has positive polarity and exactly one of the following

is true:

1. S(A) C S(F:)NS(F.) and A appears in DT (F;) only;

2. $(A) C S(Fy) NS(F.) and A appears in both DT (Fz) and DT (F,);

3. S(A) CS(Fx)NS(F.) and A appears in DT (F) only.

A is also termed maximal if for no other uniform-support function B appearing in DT(Fs) or

DT (F.), we have S(A) C S(B).

For a given pair of decomposition trees DT (F), DT (F;), we denote by Max(F;,F;) the set of
maximal uniform support functions. It is this set of functions, togheter with the top variable z, that
we will use as the actuals list for the decomposition of F. Theorem 5.6 shows that this is the correct

set of functions for F /K.

Example 5.4. Consider the function F of Figure 5.1. The decomposition of the two cofactors
Fo and Fy is shown by its normal Decomposition Tree (which includes signed edges to indicate
complementation of the function rooted at the signed node). The set Max(Fz, F;) for this function
is {x1 +x2,X3,%4X5,%6 }. Notice that x| + x, appears implicitly in DT (Fy) by rule (2) of Definition
4.7, while it appears implicitly in DT (Fy) by rule (3) of the same Definition since the first element
of Fi/KF, is A| = x| +x2+ Xe.

The first three elements of the maximal set satisfy condition 2 of the definition of uniform support,

while the last element satisfies condition 1.

As we mentioned, the set Max(Fz, F;) effectively represents the actuals list of F. This is stated

by the following Theorem:

5.5. NEW DECOMPOSITIONS 111

F
1O}
/0’/ \\l\

MUX OR
S N BT S
OR || OR %, | OR || OR
Thry Tt

Figure 5.1: PRIME decomposition.

Theorem 5.6. For a function F with decomposition F |Kr = {z,A1,--- ,A;}, the actuals list is given

by {z} UMax(F;, F).
We first illustrate the result with an example and then prove the Theorem.

Example 5.5. Based on Theorem 5.6, the actuals list for the decomposition of the function in Figure
5.11is given by {z,x1 +x2,X3,X4x5,%6 }. The kernel function can then be easily derived by substituting

the corresponding element of the formals list for each element of the actuals list. The formals list is

{¥1,52,53,4,¥5} and the kernel is Kp = YIMUX (y2+3,y4,¥5) + 1 ((y2 +s) + y4).
The proof of Theorem 5.6 requires the proof of some properties of uniform-support functions.

Lemma 5.7. Any two maximal uniform-support functions of DT (Fz) or DT (F,) have disjoint sup-

port.

Proof. We prove the Lemma by contradiction by showing that if two uniform-support functions
A1,A; share support variables, then at least one of them is not maximal. Notice, first of all, that
there must be at least one decomposition tree where both functions appear. In fact, if one function
only appeared in DT (F;) and the other only appeared in DT (F;), then, by definition of uniform-
support, they would also be disjoint support. For sake of simplicity, we assume that both functions
appear in DT (F;).

We need now to distinguish a few cases.

112 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

e Both A; and A; appear in DT (F;) explicitly. It is easy to see that, in order for the supports
to overlap, either A| appears as a node in the subtree DT(A;), or A, appears as a node in the
subtree DT(A1). In the first case, S(A;) C S(A;), while in the second case S(A;) C S(A}).

In either case, one of the two functions is not maximal, as we intended to show.

e One of the two functions (say, A1) appears only implicitly, while A, appears explicitly. Then

it must be:

A= B k>2 (5.20)

where ® is one of AND, OR, XOR , and B; are disjoint-support functions. Moreover, there is

a function Q, appearing explicitly in DT (F;) such that

01 =@" ,B; 2<k<m (5.21)

Notice that Q does not need to be uniform-support. A, shares support variables with A1, thus,
either A, appears explicitly in DT (Q;) or Q appears explicitly in DT (A;). If Q; appears

explicitly in DT (A;) or if A, = Qy, however, S(A,) D S(A;), and A; is not maximal.

A, must then appear explicitly in DT (Q}), i.e.in exactly one of DT (B;), i = 1...m. Butif A,
appears explicitly in any DT (B;),i = 1,--- ,k, then S(A;) C S(A) and A, is still not maximal.
Finally, if A, appears explicitly in any DT (B;),i = k+1,--- ,m, then S(A;) NS(A;) = 0,

against the hypothesis.

e Finally, suppose that both A; and A, appear implicitly. Then there must be an associative

operator @ = AND, OR or XOR such that

Ay =0l_,C:. (5.22)

5.5. NEW DECOMPOSITIONS 113

Moreover, there must be a function Q, appearing explicitly in DT (F;) such that

0, =0 ,C; 2<I<n. (5.23)

As both Q; and Q; appear explicitly in DT (F;), exactly one of the following must hold :
1. 5(0Q1)NS(Q2) =0. Butthen S(A1) C5(Q1)NS(Q2) 2 S(A2) = 0, against the hypoth-
esis.

2. Q appears in DT (C;) for one of the functions C;,i < [. But, from Eq. 5.22, §(A;) C

S(C;) C 5(A), and again one of the functions (A1) is not maximal.

3. Q; appears in DT (C;) for some C;,I < i < n. This case is also impossible since it would

be S(A1) C S(C))NS(A2) = 0.

4. Q1 = Q. Then, the operator ® of Eq. 5.20 must coincide with @, and the functions C;

in Eq. 5.23 must coincide with the functions B; in Eq. 5.21. Hence, A, can be written as
Ay=Q}_;B; forl <j<k<I<m. (5.24)
Consider then the function
U=®_B;. (5.25)

U contains all the functions in the decomposition of A;/® and of A,/®. Hence, U has
uniform support, and S(U) D S(A1),S(U) D S(Az), showing again that at least one of

Aj,A; is not maximal.

In summary, in all cases, the assumption that A;,A; share variables leads to the conclusion that at

least one of them is not maximal, as we intended to prove. U

Lemma 5.8. The set Max(Fz, F;) contains a cut of DT (Fz) and of DT (F).

114 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Proof. We only prove that Max(DT (F;),DT(F,)) contains a cut of DT (F;), the second part being
entirely symmetrical.

Consider the collection C of functions A; € Max(DT (F;),DT(F;)) such that S(A;) N S(F;) # 0.
From the definition of uniform support, for each such function, S(A;) C S(F.) and they appear in

DT (F;). From Lemma 5.7, they are disjoint-support. Therefore,

U s(4) C S(F,). (5.26)
A;eC

It remains to be shown that the containment relation 5.26 is actually an equality. To this regard,
notice that for each variable x; € S(F;) , the function x; is trivially uniform-support. Either it is
maximal, or there exist a maximal uniform-support function X; appearing in DT (F;) whose support
contains x;. This function must then belong to Max(DT (F;),DT (F;)) and therefore x; must belong

to the left-hand side of Eq. 5.26. This completes the proof. U

We define now a bi-cut as a set of uniform-support functions that provides a cut for the cofactors’

decomposition trees:

Definition 5.3. Given a function F and a variable z € S(F), a collection of uniform support func-

tions (not necessarily maximal) C; = {A;} is termed a bi-cut if the following holds:
1. S(A)NS(Aj))=0 fori#j;
2. G contains a cut of DT (Fz) and of DT (F}).

Example 5.6. Consider a function F such that F; = (x; +x2)x4 and F, = (x| + x2 + x3)x5 as in
Figure 5.2 (we present a non-normal decomposition tree for improved readability). A possible bi-
cut for such function is Cy = {x| +x2,X3,%4,Xs }. Note that the set C = {x| +x2 +x3,X4,Xs5} is not a

bi-cut since it does not contain a cut of DT (Fz).

From Lemma 5.8, Max(DT (F;),DT(F.)) is a bi-cut. It is also straightforward to verify that
Max(DT (F;),DT (F,)) has minimum size among bi-cuts. We now show that bi-cuts have a one-to-

one correspondence to decompositions. These facts will be enough to prove Theorem 5.6.

5.5. NEW DECOMPOSITIONS 115

Figure 5.2: Function for Example 5.6.

Lemma 5.9. Let M denote any function dividing F, such that F /M = {z,A,,--- ,Ap}. Then, the
subset Co = {Aa,--+ ,Apn} is a bi-cut of F w.rt. z. Conversely, for each bi-cut C, there exists a

Sfunction M such that F /M = {z} U .

Proof. Eq. 5.19 shows that (; contains a cut of DT (F;) and of DT (F;). The functions A; are
all disjoint-support, and each of them appears in at least one of DT (Fz),DT (F,) (or else F would
be independent from the variables in S(A;)). We also need to show, however, that each A; has
uniform support. To this end, suppose, for the sake of contradiction, that the support of one of the
functions (say, S(A,)) is not uniform. It is not restrictive to assume that A, appears in DT (F;). Then

S(A2) C S(F). Since we take A, to be not uniform, it must be

S(A2)NS(F) #0 (5.27)

otherwise A, would be uniform by condition 1 of the definition of uniform-support; and

S(A2)NS(F) #0 (5.28)

otherwise A, would be uniform by condition 2. Let C indicate a subset of , forming a cut of

116 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

DT (F,); it follows that

S(0) = | S) =S(F); (5.29)
AieC

The last equality being valid by definition of cut.

From Eq. 5.28, if A, € C, then S(C) ﬂm # 0, contradicting Eq. 5.29. Hence, A, cannot
belong to C. We now show that A, cannot be left out of C either: From Eq. 5.27, there is a variable
xin S(A2) NS(F;). Since all functions of ¢ are disjoint-support, x cannot be in the support of any
other function of the bi-cut ;. Hence, if A, is left out of C, x ¢ S(C) and C is not a cut of DT (F).
In summary, A, could not be in a cut of DT (F;), but it could not be left out, a contradiction. Hence,
A, must have uniform support and (is a bi-cut of F' w.r.t. z.

We now show that for any given bi-cut C; we can construct a decomposition of F'. Consider
the subset () = {Az,-+,A} of (; forming a cut of Fz. From Lemma 4.7, there exists a function
Lo(y2,--,¥e,) such that Fz/Ly = (. Let also (1 = {A,,- -+ ,An} denote the subset of ; forming a
cut of DT (F). There exists then a function L;(yc,,---,yn,) such that F;/L; = (. It is then easy to

verify that the function L(y1 XN ,J’m) = y_1Lo(y2, e ,yco) +yi1Ly (yCl oot ,ym) satisfies
L(ZaAZa"' aAm) :Fa (530)

that is, we have constructed a decomposition of F' from (. O
Finally, the proof of Theorem 5.6 follows:

Proof. - Theorem (5.6) - From Lemma 5.9, a function L can be found such that F/L = {z} U
Max(F;, F,). Then, from Theorem 4.2, F /Ky cannot contain more elements than {z} UMax(F;, F;).
Since Max(Fx,F,) is a bi-cut of minimum size, F/Kp cannot contain fewer elements either, and
consequently F /K and F /L must have the same size. In this case, however, from Theorems 4.2
and 4.4, Ky must be NP-equivalent to L and F /K must coincide with {z} UMax(F;, F,), modulo

NP-equivalence. U

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 117

5.6 Putting it all together: The DSD procedure

We detail now the decomposition procedure. This description sets the stage for the complexity
analysis presented in Section 5.7.

The algorithm traverses the nodes of the BDD of F in a bottom-up fashion. During the sweep,
each node is inspected, and the decomposition tree of the function rooted at this node is determined
from the decomposition of its cofactors and the top variable using the results presented earlier in
this chapter.

The BDD node is then labeled with a signed — see Section 4.4.3 — pointer (DEC *) to the root

of its decomposition tree.

void decompose_node (BDD* node) {

node = NodeRegular (node) ;
if (node->dec != NULL) return;
var z = node—->topVar;

BDD *cof(0 = node—->cofactor0;

BDD *cofl = node->cofactorl;
decompose_node (cof0) ;

decompose_node (cofl);

DEC *dec(O = GetDecomposition (cof0);
DEC *decl = GetDecomposition(cofl);
DEC *res = decompose(z,dec0, decl);
node->dec = res;

return

The function GetDecomposition simply extracts the DEC pointer from a BDD node, and
complements it if the BDD node was complemented. The call to decompose is the decomposition

procedure proper:

118 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

DEC *decompose (var z, DEC* decO, DEC* decl) {
res = decompose_INHERITED (z, dec0, decl); // cases 1 2 3
if (res) return(res);
res = decompose_NEW(z, decO, decl);

return(res);

We attempt the decomposition as an inherited or new decomposition. Each subroutine then
considers all the corresponding cases from the previous section.

A DEC node contains a .type field and an .actuals list. The type field has four possible
values: VAR (for simple variables), OR, XOR and PRIME; and it represents the decomposition type
of the function rooted at that node. The actuals list is a list of signed pointers to BDD nodes. Each
pointer represents a function in F/Kp.

It is worth noting that decompose_INHERITED, decompose NEW are just switches, activat-
ing other procedures. In addition, since we must succeed with at at least one type of decomposition,
the return value of decompose is guaranteed to be non-null. Finally, when two or more cases
require a similar analysis, we group them in the same procedure so that portion of the computation

can be shared; this is especially exploited in building inherited decompositions:

DEC* decompose_INHERITED (var z, DEC* dec(O, DEC* decl) {
// case 1.b 2.b 3.b for AND/OR dec.
res = decompose_INHERITED_OR_123.b(z, decO, decl);
if (res) return(res);
// case 1.b 2.b for XOR dec.
res = decompose_INHERITED_XOR_12.b(z, decO, decl);
if (res) return(res);
//case l.a 2.a 3.a

res = decompose_INHERITED_PRIME_1l.a(z, decO, decl);

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 119

if (res) return(res);
res = decompose_INHERITED_PRIME_2.a(z, decO, decl);
if (res) return(res);
res = decompose_INHERITED_PRIME_3.a(z, dec0, decl);

return(res);

DEC* decompose_NEW (var z, DEC* decO, DEC* decl) {
res = decompose_NEW_OR(z, dec0, decl); //case 4.a
if (res) return(res);
res = decompose_NEW_XOR (z, decO, decl); //case 4.b
if (res) return(res);
res = decompose_NEW_PRIME (z, dec0O, decl); //case 4.c

return (res);

Since the maximal decomposition is unique, the calling order of the various subprocedures is ir-
relevant; with the following exception: since we only detect a new PRIME decomposition by failing
all other cases, the procedure that builds a new PRIME decomposition, decompose NEW PRIME,
must be kept last. In practice, we exploit this level of freedom by ordering the procedures based
on the amount of analysis that they require, the fastest ones first; and disregarding even the group-
ing of new decompositions and inherited ones. For instance, Cases 4.a and 4.b are the fastest,
and our implementation of decompose node executes first of all decompose NEW_OR and

decompose NEW_XOR.

In the reminder of this section, we will not discuss complement edges for BDD and DEC nodes
any further. In particular, the segments of pseudo-code consider only nodes with positive polarity
for simplicity, the extensions to include also nodes with negative polarity being straightforward.

We now analyze the subprocedures of decompose in detail.

120 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

5.6.1 Inherited decompositions
OR decompositions

decompose_INHERITED_OR_123.Db groups the constructions described in Sections 5.2, 5.3 and
5.4 for identifying OR decompositions. For all of the three cases, we need to consider the actuals
lists of the two cofactors and identify the common elements, which will be part of the resulting
actuals list. To this list, we need to add a new element obtained by calling the second prototype of
decompose_node with the node’s top variable and the reminder OR decompositions as cofactors.
Notice that this new element must be the first element of the resulting actuals list, based on the
definition of normal Decomposition Tree from Section 4.4.3.

This procedure is successful as long as at least one of the two cofactor has an OR decomposition
and there is at least one element in common between the actuals lists of Fy and Fj. If, the actuals list
of one cofactor is a proper subset of the other, then we have a Case 2.b decomposition. Otherwise
we have a Case 1.b or 3.b decomposition.

Moreover, if one of the cofactors does not have a OR decomposition, for the purpose of this
analysis, we consider its actuals list to have only one element, the cofactor function itself: Lemma

5.4 shows how to treat this situation in its special case of k = 2.

DEC* decompose_INHERITED_OR_123.b(var z, DEC* decO, DEC* decl) {

DEC* res, decO_residue, decl_residue;

list common = list_intersect (decO->actuals, decl->actuals);
if (list_size(common) > 0 &&
decO->type == decl->type == OR) {
decO_residue = buildDecNode (OR, decO->actuals — common) ;
if (list_size (decO_residue->actuals) == 0)

decO_residue = CONST_O0;
if (list_size(decO_residue—->actuals) == 1)

decO_residue = getFirst (decO_residue—->actuals);

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE

// equivalently for right_residue

G = decompose (z, decO_residue, decl_residue);

res = buildDecNode (OR, { G, common}); //constructs node

return res;

}
else if (list_intersect (decO->actuals, decl) ||
list_intersect (decl->actuals, dec0))
// build resulting decomposition
// similar to above case
}

else return 0;

XOR decompositions

Inherited XOR decompositions can arise only from Cases 1.b and 2.b of Section 5.2.

121

Similarly to what has been discussed in the previous section, we need once again to check that

at least one of the two cofactors is an XOR decomposition and that there is at least one element

in common between the two actuals lists. The rest of the construction corresponds to the one for

inherited OR decompositions.

PRIME decompositions

The first type of inherited PRIME decomposition is Case 1.a. The conditions for that case require

that the two cofactors be both PRIME decompositions, the actuals lists differ in exactly one element

and the cofactors w.r.t. those two elements match.

Example 5.7. Consider again the function of Example 4.7 and assume that the top variable in its

122 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

BDD representation was g. We consider available the decompositions of the cofactors w.r.t. g:

Fy = MAJORITY(G,H,i);

G=adb;
H=L+e;
L=cd,

Fi = MAJORITY(G,H,N);

N = ITE(f,h,i);

Both Fy and Fy are decomposed by the same PRIME function MAJORITY . Their actuals lists
are (G,H,h) and (G,H,N), respectively. They differ in exactly one element, namely, N instead of h.
We then check if Eq. 5.3 or 5.4 holds. This check can be carried out by computing Fo(i = 0),
Fy(i=1), (N =0), Fi(N = 1), and verifying that Fy(i =0) = F|(N =0), Fp(i=1) =F (N =1).
We then form a representation of the function I = g'i+ gMUX (f,h,i) and construct the decompo-
sition of F as MAJORITY (G,H,I). Note that, unless the decomposition of I is already known, we

need to build that, too using the second prototype of decompose node.

The following pseudocode checks if Eq. 5.3 or 5.4 hold. It returns the decomposition of F' if

the tests are successful:

DEC* decompose_INHERITED_PRIME_1l.a (var z, DEC* decO, DEC* decl) {
DEC* res;

BDD* left_el, right_el, 10, x0;

if (decO->type != decl->type != PRIME) return 0;

if (list_size(decO->actuals) != list_size (decl->actuals))
return 0;

common = list_intersect (decO->actuals, decl->actuals);

if (list_size(common) != size (decO->actuals) -1) return 0;

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 123

// the two functions differ in exactly one argument
left_el = decO->actuals - common;
right_el = decl->actuals - common;

10

cofactor (decO, left_el, 0);

r0

cofactor (decl, right_el, 0);

// compute also 11 and rl

if (((10 == r0) && (11 == rl)) ||
((11 == r0) && (10 == rl))) {
G = decompose (z, left_el->dec, right_el->dec);
res = buildDecNode (PRIME, { G, common });
return res;
}

else return 0;

Case 2.a has a more complex set of comparisons. As the reader may recall from Section 5.3,
Lemma 5.3 does not indicate precisely which is the function G to use to cofactor F;. Instead we
have a pool of candidates which are all the functions A; € F; /K, such that S(A;) NS(Fy) = 0.

Thus we can detect such decomposition by considering the generalized cofactors (see Definition
2.3) of F; with respect to a subset of its actuals list elements and compare the result with Fj to check
if there is an element that satisfies the condition 2 of the Lemma.

It is important to note that each of these cofactor operations have complexity that it is only linear
in the size of the BDD of Fj (instead of quadratic). The reason for this simplified operation lies in
the fact that the functions that we use in the cofactor operation are one in the decomposition of the
other. To see this, consider a function F = L(G,...) and suppose we want to compute the cofactor

w.rt. G= 1. Then, Fs_; = K¢(1,...). To compute the last expression, we just need to consider any

124 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

combination of inputs of G such that G = 1, for instance a cube that satisfies G. We can then take
the cofactor of F w.r.t. this cube to obtain our result, which is a linear time operation.

In general, we need to identify all the candidate A; € F1/Kp, functions, and for each of those
compute two generalized cofactors: Fj(A; = 0) and F;(A; = 1) until we find a match. In the worst

case, this entails the computation of 2 x n cofactors, where n is the number of candidate elements.

Example 5.8. Consider the functions Fz = ITE(A,CD,B+ C),F, = CD. The actuals list of Fz
contains A, B, C, D, of which only A and B are disjoint support from F,.

We observe that by assigning B = 1, however, F; = A+ CD # F,, and that assigning B =0
results in Fz = C(A+ D) # F,. The function B is then discarded. Assigning A = 1 instead results in
F-=ITE(1,CD,B+C) =CD = F.. A new function Z= A+ z is constructed, and F is decomposed
as ITE(Z,CD,B+C).

The following pseudocode reflects the observations above:

DEC* decompose_INHERITED_PRIME_2.a (var z, DEC* decO, DEC* decl) {
DEC* res;
BDD* 10,11;
tree_tag(decl->actuals);
// find the untagged elements in the left actuals list
tryset = list_untagged(decO->actuals);

foreach (BDD* argument in tryset) ({

11 = cofactor(decO, argument, 1);
10 = cofactor(decO, argument, 0);
if (11 == decl) {

G = decompose (z, argument->dec, CONST_1);
list actuals = decO->actuals - argument + G;
res = buildDecNode (PRIME, actuals);

return res;

5.6. PUTTING IT ALL TOGETHER: THE DSD PROCEDURE 125

} else if (10 == decl) {

// similar to above.

}

// 1if unsuccessful, repeat by labeling the left tree

Case 3.a can be carried out analogously to case 1.a, with the difference that now instead of
checking that the lists differ in exactly one element, we expect them to be identical. Once again the

candidate function H with reference to Lemma 5.5 can be any of the actuals list elements.

5.6.2 New decompositions
OR and XOR decompositions

decompose NEW_OR and decompose NEW_XOR implement the checks of Sections 5.5 and 5.5.
In the general case we create a new decomposition tree node of type OR or XOR and with an actuals
list of length 2. However, note that it is possible that the non-constant cofactor has already a decom-
position of the same type. If we detect this situation, the decomposition node will have an actuals

list that is the same of its cofactor with the new element z prepended.

PRIME decompositions

In order to implement the construction of a new PRIME decomposition, we need to construct the
set Max(Fy, Fy) as shown in Theorem 5.6.

Construction of Max(G,H)

This operation allows us to find the set of maximal uniform support functions of two functions G,

H whose decomposition is known. We show now how to construct a decomposition tree whose

126 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

root node has as its actuals list precisely the set of functions Max(G,H). We call this tree also
Max(G,H).
Given two normal Decomposition Trees DT and DTy, representing the decomposition of two

functions G and H, respectively, the tree Max(G,H) is the tree obtained as follows:

1. Max(G,H) contains each node appearing in both DT and DTy;

2. Max(G,H) contains each arc appearing in both DT and DTy;

3. if anode N of DT represents a function Fy, such that S(Fy)NS(H) = 0, then the tree rooted

at N belongs to Max(G,H). Similarly for nodes of DTy.

4. there is a node N labeled OR (X OR) for each pair of nodes Ng € DT, Ny € DTy labeled OR
(XOR) and such that S(Fy,) N S(Fy,) # 0. The actuals of N are the actuals common to Ng

and Ny. The node N is suppressed if it has fewer than two actuals.

5. aroot node is added. There is an arc from the root node to each node with no ancestors.

The construction above takes trivially time linear in the size of the two trees.

Example 5.9. Figure 5.3 illustrates two decomposition trees DTg and DTy and the construction of
Max(G,H). In the graph we represent AND nodes as AND instead of complemented OR only for
readability.

The node OR and node [belong to the intersection by rule 3. The tree rooted at PRIME by rules

1 and 2. The two nodes AND follow rule 4 producing the AND in the Max(G,H) tree.

To build a new PRIME decomposition, we simply need to build the Max(Fy, F) tree and label

the root node with type PRIME.

Example 5.10. Consider the case Fy = ITE (abc,d+e+ f,g®h), Fy =ITE(ab,e+ f +g,h®c).

5.7. COMPLEXITY ANALYSIS AND CONSIDERATIONS 127

DTg DTy Max(G,H)

PRIME XOR

’ 1 RN

OR | |AND||PRIME - @

ég\ ¢

©
ol

Figure 5.3: Two functions and the construction of their Max(G, H) tree.

The set Max(Fy, Fy) is given by:

A = ab;
E = e+ f;
Ma'x(FO7F1) = {A7E7C7d7g’h}'

Thus, the decomposition of F =ZFy+ zF) is given by F = Kp(z,A,E,c,d, g,h).

5.7 Complexity analysis and considerations

This section analyzes the complexity of the algorithm, given a function F' whose BDD representa-
tion has #BDD nodes and whose support |Sr| has #VAR variables.
Notice, first of all, that the length of any actuals list in DTF is bound by the number of variables

in the support of the function,

F/Kp| < |Sr|. We now analyze the complexity of each procedure in
decompose.
The new decomposition procedures decompose NEW_OR and decompose NEW_XOR require

only constant time operations: O(k). decompose NEW_PRIME requires only building the set

128 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Max(Fy,Fy). As pointed out previously, the complexity of this operation is linear in the size of the
decomposition trees involved. The number of nodes in a decomposition tree is bound by #VAR;
thus the complexity for this procedure is O(#VAR).

Inherited decomposition procedures involve recursive calls to decompose. The inherited pro-
cedures for OR and XOR decompositions require intersecting two actuals lists, operation linear in
their length, and performing a recursive decomposition call. Note that, at each recursive call, the
support of the function to decompose has at least one fewer variable, since the common portion of
the final actuals list must have at least a support of size one. In conclusion, for these two procedures,
we can write a recursive equation of their complexity: O(|Sr|) = O(#VAR) + O(|Sp|—1).

decompose_INHERITED PRIME_1.a has a similar treatment, with two differences: 1) In
addition of intersection the actuals lists, we need to compute also 4 generalized cofactors. As we
showed in Section 5.6.1, these are special cofactors operations whose complexity is linear with the
size of the BDDs involved. 2) At each recursive step, the support of the function to decompose now
has at least two fewer variables, since we are dealing with PRIME nodes which have at least three
inputs. The recursive operation for this procedure is thus: O(|Sr|) = O(#VAR) +4 - O(#BDD) +
O(|SF| —2).

decompose INHERITED PRIME_2.aand decompose INHERITED PRIME 3. arequire
a list intersection, a number of cofactors operations, up to twice the length of the actuals lists and a
recursive call to decompose. However, in this case the call is guaranteed to be terminated by a new
OR decomposition whose complexity, as we saw, is constant: O(#VAR) +2- O(#BDD - #VAR) +
O(k).

By solving the recursive equation of decompose INHERITED PRIME_1.a, we obtain a
complexity of O(#BDD - #VAR), which cannot be made worse even by terminating any of the
recursive steps. with a decompose INHERITED PRIME 3. a call. Thus this is also the worst
complexity of decompose.

Since we need to call this procedure for each BDD node in the representation of F, the overall

complexity of our algorithm is: O(#BDD?-#VAR).

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 129

Previously known algorithms — see Section 4.2 — had exponential complexity in the size of Sr
and would compute only one of the many decompositions of a function. The complexity of our
algorithm is dominated by the size of the BDD that represents the function F, not by the num-
ber of variables in its support. Moreover, it has the advantage of computing the finest granularity
decomposition, from which all others can be derived.

For those functions whose BDD representation has size exponential in the number of the input
variables, our algorithm has no better complexity than previously known ones. However, it is known
that most functions representing digital circuit have corresponding BDDs whose size is much more
compact and thus it is possible to build such BDDs even for some very large functions. Using
our algorithm it is practically always possible to find the maximal disjunctive decomposition of a

function, once a BDD has been built.

5.8 Experiments on the decomposability of industrial testbenches

The algorithm described in this chapter was implemented in a C++ program and tested on the
circuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark Circuits
[16], including their 1993 additions. We report results on all the testbenches of the two suites. The
testbenches are grouped by benchmark suite and by group within the suite: the Logic Synthesis suite
includes two-level combinational circuits, multi-level combinational networks, sequential circuits
and the tests added in ‘93. The ISCAS ‘89 suite includes a set of core sequential testbenches and
additional circuits from ‘93. For all the sequential circuits, we considered only the combinational
portion of the tests, we created an additional primary output for each latch input net and an additional
primary input for each latch output. For each testbench, we first built the ROBDDs representing each
output node as a function of the primary inputs, and then we attempted the decomposition of this
functions.

The decomposition results are reported in 5.1. Next to the testbench’s name we indicate how

many of the output functions we could decompose: Output corresponds to the number of outputs of

130 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

the circuit, DEC reports how many of this output functions have a disjoint support decomposition.
Output functions that are constant or a copy of a single input signal are considered decomposable.
When not all of the outputs could be decomposed, we also looked at the non-decomposable outputs
and checked if any of the two cofactors w.r.t. the top variable were decomposable. Column Dec Cof
reports in how many cases at least one of the two cofactors resulted decomposable. We report a “-”
in this column when all the outputs of the circuits were decomposable and thus the decomposability
of the cofactors is not meaningful. By just glancing at the table, it’s easy to notice that the column

Dec Cof has a - for most of the circuits, meaning all of the outputs for that testbench are found to

be decomposable.

Often, if a function is not decomposable, its cofactors are, and thus it is still possible to obtain a
representation that has almost all the advantages and properties of disjoint support decompositions,
except for a non-disjoint multiplexer corresponding to the node with the top variable of the specific
BDD. Notice that even fairly big functions have a disjoint decomposition in most cases. For visual
reference to the more complex testbenches, the table reports in boldface those circuits whose BDD

construction, before starting the decompostion, required building more than 10,000 nodes.

The following two columns report the number of inputs of the circuit (Inputs) and the maximum
number of inputs to any block in the decomposition tree of the output functions for that testbench
(Fanin). Tt is worth noticing that in many cases, even the most complex, decomposition can reduce
considerably the largest fanin to any block in the network’s representation, while keeping each
block disjoint support from the others. Then we indicated the total number of blocks in the normal
decomposition trees. These latter two values are helpful in giving an indication of the amount of

partitioning possible in the routing of the benchmark circuit.

The last four columns provide performance information. The first time/memory pair reports
the time in seconds and the amount of memory in kilobytes required to produce the ROBDDs of
all the output functions of a testbench. The second pair indicates the additional time and memory
required to construct the normal decomposition trees from the ROBDDs. All the experiments were

run on a Linux PC equipped with a Pentium 4 processor running at 2.7Ghz and 2GB of memory

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 131

and 512Kb of cache. In running the tests, we used a proprietary ROBDD package. In particular,
our ROBDD package records the support of the functions associated to each ROBDD node. While
this feature is convenient because of the number of support operations and tests we need to per-
form, its efficiency could be optimized. Moreover, our decomposition package has also room for

implementation improvements.

Circuit |Outputs DEC D€C|inputs Fanin|Blocks | BDP performance | DEC performance
Cof Time (s) Mem (KB) | Time (s) Mem (KB)
Logic Synthesis ‘91 - Two level tests
5xp1 10 9 0 7 7 20 0.00 13 0.00 1
9sym 1 0 ©0 9 9 1 0.00 59 0.00 1
alud 8 1 0 14 14 10 0.04 417 0.01 22
apexi 45 43 0 45 30| 224 0.02 373 0.02 37
apex2 3 3 - 39 29 16 0.17 1384 0.02 22
apex3 50 39 2 54 42| 200 0.01 399 0.02 23
apex4 19 5 0 9 9 22 0.01 384 0.01 23
apex5 88 88 - 117 14| 463 0.03 377 0.01 59
bw 28 15 4 5 5 57 0.00 11 0.00 3
clip 5 0o 2 9 9 5 0.00 62 0.00 3
cont 2 0o 2 7 6 2 0.00 2 0.00 0
duke2 29 24 3 22 17 91 0.00 108 0.00 13
e64 65 65 - 65 2| 2080 0.01 83 0.00 5
misex1 7 1 0 8 7 8 0.00 4 0.00 1
misex2 18 17 1 25 7 105 0.00 10 0.00 3
misex3c 14 2 5 14 14 20 0.01 186 0.00 11
misex3 14 2 1 14 14 16 0.07 410 0.00 15
064 1 1 -| 130 2 129 0.00 85 0.00 8
rd53 3 1 1 5 5 6 0.00 7 0.00 0
rd73 3 1 0 7 7 8 0.00 41 0.00 1
rd84 4 2 0 8 8 16 0.01 84 0.00 1
sao2 4 4 - 10 8 12 0.00 41 0.00 2
seq 35 35 - 41 33 198 0.08 385 0.02 41
vg2 8 8 - 25 24 23 0.00 95 0.00 4
xor5 1 1 - 5 2 4 0.00 5 0.00 0
Logic Synthesis ‘91 - FSM tests
daio 6 5 1 6 3 4 0.00 1 0.00 0
ex1 39 39 - 30 23| 677 0.00 67 0.01 54
ex2 21 21 - 22 18| 340 0.00 37 0.00 8
ex3 12 12 - 13 10 98 0.00 10 0.00 9
ex4 23 28 - 21 8| 283 0.00 14 0.00 5
ex5 11 11 - 12 10 78 0.00 10 0.00 4
ex6 16 12 4 14 13 58 0.00 15 0.00 8
ex7 12 12 - 13 11 97 0.00 13 0.00 3
s1196 32 24 6 33 21 68 0.01 59 0.00 34
s1238 32 24 6 33 21 68 0.01 64 0.00 35
s1423 79 77 2 92 32| 330 0.01 376 0.06 348

Table 5.1: Disjoint Support Decomposition results - continued on next page

132 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Circuit |Outputs DEC DP€C|inputs Fanin|Blocks | BDP performance | DEC performance
Cof Time (s) Mem (KB) | Time (s) Mem (KB)
s1488 25 23 2 15 12 59 0.01 77 0.00 11
s1494 25 23 2 15 12 59 0.01 77 0.00 11
s208 10 10 - 20 3 53 0.00 10 0.00 3
s27 4 4 - 8 2 11 0.00 1 0.00 0
s298 20 17 3 18 8 32 0.00 9 0.00 3
s344 26 23 O 25 7 37 0.00 11 0.00 3
s349 26 23 0 25 7 37 0.00 10 0.00 3
$382 27 27 - 25 7 70 0.00 11 0.00 5
s386 13 13 - 14 9 67 0.00 12 0.00 3
s400 27 27 - 25 7 70 0.00 11 0.00 4
s420 18 18 - 36 3 113 0.00 25 0.00 10
s444 27 27 - 25 7 70 0.00 25 0.00 6
s510 13 5 3 26 19 24 0.00 25 0.00 9
s526n 27 24 2 25 8 66 0.00 16 0.00 4
s526 27 24 3 25 8 66 0.00 15 0.00 4
s641 42 42 - 55 18 150 0.00 37 0.01 25
s713 42 42 - 55 18 150 0.00 42 0.01 28
s820 24 22 A1 24 17 109 0.00 29 0.00 7
s832 24 22 A1 24 17 109 0.00 30 0.00 7
s838 34 34 - 68 3| 233 0.00 46 0.01 67
s953 52 47 2 46 17 97 0.01 54 0.00 13
Logic Synthesis ‘91 - Multi level tests
9symm| 1 0 O 9 9 1 0.00 37 0.00 1
alu2 6 4 0 10 10 8 0.00 78 0.00 5
alu4 8 4 0 14 14 14 0.01 199 0.00 11
apex6 99 99 -| 135 14| 369 0.00 77 0.00 24
apex7 37 37 - 49 9 155 0.00 44 0.00 13
b1 4 3 1 3 3 2 0.00 1 0.00 0
b9 21 21 - 41 8 54 0.00 15 0.00 4
C1355 32 0 ©0 41 41 32 0.23 1545| 73.57 41689
C17 2 1 1 5 4 4 0.00 0 0.00 0
C1908 25 7 0 33 32 93 0.05 754 2.40 5787
C2670 140 119 1| 233 78 187 0.05 666 1.36 8017
C3540 22 14 0 50 50 49 0.53 2301 2.05 16348
C432 7 1 1 36 36 23 0.01 329 0.07 489
C499 32 0 ©0 41 41 32 0.16 1406| 100.61 40187
C5315 123 80 10| 178 66 186 0.04 371 0.12 1032
C7552 108 107 1 207 118 295 0.18 1148 0.25 1899
C880 26 26 - 60 41 96 0.02 373 0.41 3374
c8 18 10 8 28 3 69 0.00 19 0.00 2
cc 20 20 - 21 4 32 0.00 7 0.00 2
cht 36 36 - 47 3 74 0.00 12 0.00 4
cm138a 8 8 - 6 2 40 0.00 1 0.00 1
cm150a 1 1 - 21 20 2 0.00 8 0.00 2
cmi5ia 2 2 - 12 11 2 0.00 3 0.00 1
cmi52a 1 0 0 11 11 1 0.00 2 0.00 1
cm162a 5 5 14 4 19 0.00 5 0.00 1
cm163a 5 5 - 16 3 26 0.00 3 0.00 1

Table 5.1: Disjoint Support Decomposition results - continued on next page

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 133

Circuit |Outputs DEC DP®C|Inputs Fanin|Blocks | BDP performance | DEC performance
Cof Time (s) Mem (KB) | Time (s) Mem (KB)
cmd2a 10 10 - 4 2 30 0.00 1 0.00 1
cm82a 3 3 - 5 3 6 0.00 2 0.00 1
cm85a 3 3 - 11 3 20 0.00 6 0.00 1
cmb 4 4 - 16 2 33 0.00 10 0.00 1
comp 3 3 - 32 3 63 0.00 24 0.00 19
count 16 16 - 35 3 168 0.00 7 0.00 2
cu 11 11 - 14 6 43 0.00 4 0.00 1
decod 16 16 - 5 2 64 0.00 2 0.00 1
des 245 245 -| 256 14 560 0.07 373 0.02 77
example2 66 49 17 85 11 281 0.00 25 0.00 12
f51m 8 8 - 8 7 13 0.00 17 0.00 1
frg1 3 3 - 28 19 12 0.00 77 0.00 4
frg2 139 139 -1 143 17 519 0.01 336 0.01 60
k2 45 43 2 45 30 224 0.01 353 0.02 38
lal 19 19 - 26 2 89 0.00 11 0.00 3
ldd 19 18 1 9 5 60 0.00 8 0.00 2
majority 1 1 - 5 4 2 0.00 1 0.00 0
mux 1 1 - 21 20 2 0.00 13 0.00 2
my_adder 17 17 - 33 3 48 0.00 67 0.00 9
pair 137 137 -1 173 28 724 0.03 374 0.06 275
parity 1 1 - 16 2 15 0.00 5 0.00 1
pcler8 17 17 - 27 3 99 0.00 12 0.00 4
pcle 9 9 - 19 3 62 0.00 5 0.00 2
pmi 13 13 - 16 3 46 0.00 5 0.00 1
rot 107 104 3 135 42 351 0.04 621 0.25 2114
sct 15 14 1 19 3 63 0.00 11 0.00 2
tcon 16 8 8 17 3 8 0.00 2 0.00 1
term1 10 10 - 34 10 66 0.00 69 0.00 5
too_large 3 3 - 38 29 16 0.06 587 0.01 16
ttt2 21 18 2 24 8 66 0.00 31 0.00 3
unreg 16 16 - 36 3 48 0.00 7 0.00 3
vda 39 29 10 17 17 81 0.00 121 0.01 15
x1 35 35 - 51 17 181 0.01 192 0.00 16
X2 7 7 - 10 6 24 0.00 4 0.00 1
x3 99 99 -1 135 14 369 0.01 121 0.00 22
x4 71 71 - 94 8 207 0.00 48 0.00 13
z4ml 4 4 - 7 3 9 0.00 14 0.00 1
Logic Synthesis ‘91 - Addition ‘93
b12 9 8 0 15 8 31 0.01 58 0.00 2
bigkey 421 194 3| 487 10 232 0.19 371 0.02 83
clma 115 115 -1 416 36 532 24.25 373 0.01 38
cordic 2 2 - 23 8 18 0.09 349 0.00 3
cps 109 109 - 24 15| 1147 0.03 210 0.01 66
dalu 16 15 1 75 31 227 0.12 373 0.02 33
dsip 421 194 3| 453 12 232 0.18 372 0.03 85
ex4p 28 28 -1 128 15 46 0.06 363 0.01 15
ex5p 63 54 2 8 8 271 0.04 195 0.00 8
i10 224 224 - 257 74| 1098 0.64 3294 14.21 102333

Table 5.1: Disjoint Support Decomposition results - continued on next page

134 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Circuit |Outputs DEC DP€C|inputs Fanin|Blocks | BDP performance | DEC performance
Cof Time (s) Mem (KB) | Time (s) Mem (KB)
i1 13 13 - 25 3 43 0.00 4 0.00 2
i2 1 1 - 201 6 187 0.00 154 0.00 17
i3 6 6 -| 132 2 126 0.00 28 0.00 8
i4 6 6 - 192 2 186 0.00 53 0.00 37
i5 66 66 -| 133 2 132 0.01 19 0.00 7
i6 67 1 29| 138 5 69 0.00 45 0.01 8
i7 67 3 64| 199 6 72 0.01 64 0.00 12
i8 81 18 63| 133 17 93 0.05 372 0.04 35
i9 63 0 ©0 88 13 63 0.01 93 0.01 58
mm4a 16 16 - 20 13 52 0.00 60 0.00 8
mm9a 36 36 - 40 28 117 0.03 386 0.26 2110
mm9b 35 35 - 39 29| 293 0.03 384 0.35 1892
mult16a 17 17 - 34 3 64 0.00 61 0.00 7
mult16b 31 31 - 48 3 61 0.01 13 0.00 4
mult32a 33 33 - 66 3 128 0.04 381 0.01 105
s208 9 9 - 19 3 46 0.00 5 0.00 4
s38584 1730 1611 113| 1465 36| 5146 9.92 946 0.17 887
s5378 212 211 0| 199 52| 784 0.11 242 0.02 154
s838 33 383 - 67 3| 562 0.01 33 0.00 65
s9234 174 169 5| 172 40| 509 0.10 280 0.01 59
sbc 83 83 - 68 21 404 0.02 110 0.01 44
sqrt8ml 4 4 - 8 5 11 0.00 11 0.00 1
sqrt8 4 4 - 8 7 7 0.00 11 0.00 1
squarb 8 4 2 5 5 14 0.00 8 0.00 1
t481 1 1 - 16 2 15 0.02 190 0.00 1
table3 14 0 2 14 14 14 0.01 176 0.02 152
table5 15 3 2 17 17 25 0.01 169 0.02 130
ISCAS ‘89 - FSM tests
s1196 32 24 6 32 21 68 0.00 59 0.00 34
s1238 32 24 7 32 21 68 0.00 69 0.01 56
s13207.1 790 783 7 700 42| 1805 1.01 371 0.03 97
s13207 790 783 7| 700 42| 1805 1.04 371 0.03 96
s1423 79 77 2 91 32| 330 0.01 191 0.01 148
51488 25 23 2 14 12 59 0.01 77 0.00 11
s1494 25 23 2 14 12 59 0.01 77 0.00 11
s$15850.1 684 651 33| 611 148| 2074 1.9 1059 0.62 2606
s15850 684 651 33| 611 148| 2074 2.13 813 0.58 2349
s208 9 9 - 18 3 46 0.00 5 0.00 7
s27 4 4 - 7 2 11 0.00 1 0.00 0
5298 20 17 2 17 8 32 0.00 7 0.00 2
s344 26 23 0 24 7 37 0.00 10 0.00 3
s349 26 23 0 24 7 37 0.00 10 0.00 3
35932 2048 2048 -| 1763 6| 3371 8.00 371 0.01 135
$382 27 27 - 24 7 70 0.00 10 0.00 3
s38584.1 1730 1611 113| 1464 36| 5146 12.53 801 0.16 959
s38584 1730 1611 113 | 1464 36| 5146 11.32 824 0.14 912
s386 13 13 - 13 9 67 0.00 14 0.00 4
s400 27 27 - 24 7 70 0.00 11 0.00 5

Table 5.1: Disjoint Support Decomposition results - continued on next page

5.8. EXPERIMENTS ON THE DECOMPOSABILITY OF INDUSTRIAL TESTBENCHES 135

Circuit |Outputs DEC DP€C|inputs Fanin|Blocks | BDP performance | DEC performance
Cof Time (s) Mem (KB) | Time (s) Mem (KB)
s420 17 17 - 34 3 154 0.00 16 0.00 11
s444 27 27 - 24 7 70 0.01 23 0.00 6
s510 13 5 5 25 19 24 0.00 23 0.00 4
s526n 27 24 2 24 8 66 0.01 15 0.00 4
s526 27 24 3 24 8 66 0.01 15 0.00 4
s5378 213 212 0| 214 51 795 0.10 288 0.03 211
s641 42 42 - 54 18 150 0.00 54 0.01 55
s713 42 42 - 54 18 150 0.01 46 0.00 41
s820 24 22 1 23 17 109 0.00 30 0.00 7
s832 24 22 1 23 17 109 0.00 30 0.00 7
s838 33 33 - 66 3 562 0.00 37 0.00 100
s9234 250 245 4| 247 48 707 0.42 372 0.05 250
s953 52 47 2 45 17 97 0.01 58 0.00 12
ISCAS ‘89 - Addition ‘93
prolog 158 152 4| 172 67| 424 0.03 175 0.00 101
s1196 32 24 6 32 21 68 0.01 59 0.00 34
s1269 47 30 9 55 35 97 0.01 231 0.03 115
s1512 78 78 - 86 18 285 0.01 136 0.00 33
s3271 130 102 28| 142 15 353 0.03 198 0.01 38
s3330 206 199 5| 172 67| 424 0.03 199 0.02 159
s3384 209 172 37| 226 39 373 0.03 151 0.01 202
s344 26 23 0 24 7 37 0.00 10 0.00 3
s4863 88 66 2| 153 22 190 1.96 4231 9.03 43400
s499 44 44 - 23 5| 423 0.00 41 0.00 9
s635 33 33 - 34 2 591 0.00 16 0.00 4
s6669 269 194 44| 322 16 380 0.92 2237 1.66 7848
s938 33 33 - 66 3 562 0.01 37 0.00 100
s967 52 47 2 45 17 97 0.01 59 0.00 11
s991 36 36 - 84 54 53 0.01 102 0.00 21

Table 5.1: Disjoint Support Decomposition results

In most cases the additional time to decompose a function is small compared to the time required
to build the initial ROBDDs. However, there are a few cases where this is not the case: specifically
C1355 and C499 of the Logic Synthesis suite cannot find a decomposition for any of the primary
outputs, yet the algorithm is very time consuming. These circuits are very similar, they have the
same number of inputs and outputs and they are both error correcting circuits as reported in [68].
By inspecting the two circuits we found that the intermediate nodes of these circuits up to about half
way in the bottom-up construction were often decomposable; then the repetitive application of the
algorithm decompose NEW_PRIME, Section 5.6.2, made so that the top half of the construction

produces almost invariably a PRIME decomposition with a kernel identical to the function itself.

136 CHAPTER 5. A NOVEL ALGORITHM FOR DISJOINT SUPPORT DECOMPOSITIONS

Circuit i/0 from Logic Synthesis ‘91 - Addition ‘93 instead, requires times and memory resources
above average because of the long actuals lists that are produced during the computation. Table
5.1 reports decomposition results for all the circuits in the test suites mentioned above with two
exceptions: we could not apply the decomposition algorithm to circuit C6288 (a 16-bit multiplier)
since we run out of memory building the initial ROBDDs for it; circuit s38417 runs out of memory
during the decomposition because of its large support size and long intermediate actuals lists in-
volved. We hope to be able to tackle this latter testbench with a more clever implementation of the
decomposition algorithm. We summarized the results and found that we could decompose 16,472
functions out of a total of 18,584. The total time spent constructing the ROBDDs was 79.63s, while

the time spent after that to attempt the functions’ decompositions was 209.11s.

5.9 Conclusion

We presented in this chapter a novel algorithm that can generate the maximal disjoint support de-
composition of a Boolean function represented by its BDD. The worst case complexity of this
algorithm is only quadratic in the size of the BDD representation, while previously proposed algo-
rithms has exponential complexity on the number of variables in the support of the function. We
found it very fast in practice as we were able to obtain the decomposition of most testbenches in
time comparable to the construction of their BDD. Experimental results indicate that the majority
of functions representing the behavior of digital systems are indeed decomposable and the maxi-
mal disjoint decomposition has a fine granularity, as indicated by the support size of the biggest
component block.

The next chapter will exploit these encouraging results in devising a new type of parameteriza-
tion for symbolic simulation. This time the parameterization is exact, meaning that we generate a
set of parameterized functions whose range matches exactly the frontier set of represented by the

state vector.

Chapter 6

Exact Parameterizations for Symbolic

Simulation

The theory of disjoint support decompositions provides important insights on the structure of a
Boolean function and on the role and influence of each of its support variables. Moreover, the algo-
rithm presented in the previous chapter allows us to take advantage of such insights very efficiently.
We saw at the end of Chapter 3 that the parameterization technique of Cycle-Based Symbolic Sim-
ulation is computationally very efficient, but not exact. Often we may need to compromise by
exploring only a subset of the possible set of states of the design under verification in order to main-
tain simulation efficiency. In some cases, this trade off produces simulation performance that is
comparable to plain logic simulation in terms of vectors simulated per second.

Here we present a new parameterization technique that, by exploiting the disjoint decomposition
properties of the functions in the state vector, can produce an exact parameterization, that is a new
set of functions spanning the exact same state set as the original state vector. These new functions
have smaller support than the original ones, and thus a simpler BDD representation.

In other words, if the parameterization of CBSS was building a function PS @i such that

R(PS@k) - R(S@k)a

137

138 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

the algorithm presented in this chapter builds a parameterized vector function such that

R (PSex) = R(Sex)-

We call the new algorithm DSD-based Symbolic Simulation, (DSD-SS).

6.1 Re-encoding the state function

This new technique for improved scalability and robustness in symbolic simulation is similar to
CBSS in that it inserts a parameterization phase in the feedback look of symbolic simulation as
indicated in Figure 3.1. However, now we take a completely different approach to how we perform
the parameterization.

In order to generate the parametric state vector for DSD-SS, at each step of simulation we
start by generating the disjoint support decomposition representation for each of the component
functions of the state vector. While each element of the vector has a tree decomposition with no
reconvergence, as described in Chapter 4, it is now possible that two or more elements intersect at
some intermediate node of their trees.

Figure 6.1 shows an example of a decomposed state vector for a small design with only four
memory elements. The dashed line delimits the decomposition of component s to show that each
single component function is represented by a tree. We call this structure a decomposition graph.

The decomposed representation is generated dynamically during the simulation. We then use
this representation to generate a parameterization of the state vector. The parameterization we
propose is based on the observation that at each symbolic simulation step k, it is possible to substitute
the state function S @) : B" — B" with a new function PS g such that R (Sek) = R (PSek) without
affecting the results of the simulations; namely: 1) The set of outputs that can be generated by the
circuit and 2) the set of states the circuit can reach at each cycle. If we can find a suitable function
PS @k that also has a smaller BDD representation (i.e., fewer BDD nodes), then we can control the

size of the Boolean expression and improve the performance of symbolic simulation.

6.1. RE-ENCODING THE STATE FUNCTION 139

PRIME

X16 X17 X18

Figure 6.1: A decomposed state vector for a small design

The relationship between the set of states spanned by the new PS @k vector function versus the
original state vector and the entire search space is reported in Figure 6.2. It is worth comparing it

with the corresponding Figure 3.5 of the CBSS parameterization of Chapter 3.

In the following sections we present various transformations that we apply to the decomposi-
tion graph to accomplish the objective of producing an exact parameterization with a more compact
representation than the original state vector. For each of these transformations, we show that the
function vectors before and after the transformation span the same identical range. The first tech-
nique, called reduction at free points, is independent of the type of decomposition node it applies
to. Prime function elimination is specific to PRIME nodes, while non-dominant variable removal

refers to variable inputs that fan out to associative operators nodes.

In presenting the techniques, we will refer to the generic vector function F instead of S @ since
such transformations can be applied to any Boolean vector function. Moreover, we will use the terms

decomposition graph F and function F interchangeably to refer to the multiple output function F.

140 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

design state space

\

A

Figure 6.2: The parameterized frontier set PS @k

<

.

6.2 Reduction at Free Points

The first transformation, called reduction at free points, aims to simplify the decomposition graph
by finding nodes which constitute a single cut-point. In other words, the output of such nodes is
only affected by a set of variables which don’t influence any other portion of the graph.

We first provide the definition of a free point and we show an example transformation. Then we
provide proof that the transformation does not affect the range of the vector function.

The following definition is also illustrated in Figure 6.3:

Definition 6.1. A free point p in a decomposition graph of F is a function corresponding to an
output of a block in the graph. It has the property that, if we substitute the sub-graph rooted at the

point with a new input variable w, the new function G has disjoint support with the function rooted

at p:

F(xla"' axm) = G(Waxp+la"' ,xm)op(xla"' ,xp) 6.1)

and S(G)NS(p) =0.

Figure 6.3 shows three free points with darkened circles. Note that the output of p is a free point

since none of the variables in the support of p appears in the support of other parts of the graph. On

6.2. REDUCTION AT FREE POINTS 141

Figure 6.3: A vector function and its free points

the other hand, the dashed circle at the output of g is not a free point since, if we split the graph at
that node, the two functions obtained, H and g with F = H o ¢, would still share the input ¢g.

The following theorem shows that we can use free points to simplify the decomposition graph:

Theorem 6.1. Given a decomposition graph for a multiple output Boolean function F(xy,--- ,xy) :
B™ — B", a free point p(x1,++ ,x,) : BP — B in it, and the function G(p,xp+1,+++ %) : B" P —
B", obtained by substituting the function p() with the new input variable p in the graph of F,
R(F) = R(G).

Proof. Consider the function F(xy,---x,,) and compute its range by splitting on the input variables

[27]:
R(F) = R(Fz=0) U R (Fy,=1)

By applying this equation recursively over all the variables (xy,---x,) in the support of p, we

obtain:

R(F) = U R,(Fxlzil,xzziz,m ,xl,:il,) (62)

(il ye 7i[))€$ﬂ

142 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

Using Equation 6.1:
Fxl:i17x2:i27"'7x[):i]7 = Gp:iw where i, = p(il,- .. ,ip) € {0, 1}
since p evaluates to a constant. Substituting in Eq. 6.2 we finally obtain:

RF) = |J R(Gp=i,)=R(G)

iwe{0,1}

Thus, we can substitute all the free points with new variables and generate a new state function
G with a smaller representation.

A simple traversal of the graph is sufficient to discover all the free points with maximal support,
that is, all the free points whose support is not contained in any other free point of the decomposition

graph:

Definition 6.2. A free point p() is said to have maximal support if its support S(p) is not a proper

subset of any other free point in the graph.

The transformation of free sub-graphs with new variables produces a new function G, with

[S(G)] < [S(F).

Example 6.1. Consider the decomposition graph of Figure 6.4. Figure 6.4.a shows all the free
points of the graph with filled circles. The free points surrounded by a dashed circle are also
maximal and we can substitute the portion of the graph rooted at these nodes with a new parameter,

without affecting the range of the graph. Figure 6.4.b shows the new, reduced graph obtained.

Note that, anytime we perform a free point reduction we remove a set of input variables from the
support of the vector function F. Thus, we can reassign any of these variables from a combinational

input variable role to a parameter variable role and use it as the parameter assigned to the free point.

6.3. ELIMINATION OF PRIME FUNCTIONS 143

+ + + (a) (b)

Figure 6.4: Free points elimination for Example 6.1
6.3 Elimination of Prime functions

As mentioned in Section 4.4.3, each block of a decomposition is either termed a PRIME function
or it is an associative operator. We found that, if a PRIME function satisfies certain conditions, we
can remove it from the decomposition graph, along with all of its sub-graph and substitute it with a
fresh input variable.

In order for the substitution to be acceptable, the output node of the PRIME block has to be
almost a free point, in the sense that up to one input of the PRIME block can be a node shared with
rest of the decomposition graph. As the proof shows, in this special case, the tree rooted at the
PRIME block can still be removed. In fact, PRIME blocks inherently guarantee that their output
cannot be kept constant by assigning any single one of their input signals. It follows that, no matter
what is the value for the node that is shared with the rest of the decomposition graph, the output of

PRIME block can still assume both values 0 and 1, and thus has full range.

Theorem 6.2. Given a prime function r(ry,--- ,r,) in a decomposition graph F, if all of its inputs,
except at most one, are free points, than the decomposition graph G obtained by substituting the

new variable r for function r(),

F(xi, - xn) =G(ry,- - xp) or(ry,---1,)

144 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

is such that

Proof. We distinguish two cases:

1. All the inputs of the prime block are free points. Then the output of the free block is also a

free point and the theorem reduces to the hypothesis of Theorem 6.1.

2. The prime block » has one input that it is not a free-point, say r;, without loss of generality.
All the other inputs to the prime function: (r,,---,r,) are still free points and we can assume

that have been reduced to input variables by Theorem 6.1.

In the most general case, r; is a single output function of other input variables that are in the

support of both G and r: §(r1) = (a1,--- ,a,). The function F has then the form:

F(al’...ap’rz’...rr’...xm) :G(r’al’...ap’rl’...xm)or(rl’...rr)orl(al’...ap) (63)

Let’s proceed again by computing the R (F) by recursively splitting on the input variables:

RE) = U RFu=ia=i, ap=i,) (6.4)
(i1, ip)€BP
For each different assignment (iy,--- ,i,), | evaluates to a constant value:

ir:rl(il,---,ip) E{O,l}.

Substituting the expansion of F as in Eq. 6.3, we obtain:

Foi=it, o a,=ip = Galzily"':ap:ip:rlzirl OTr =i, (6.5)

Note that we cannot drop the cofactors w.r.t. the a; in G because ry is not a free point and thus

6.3. ELIMINATION OF PRIME FUNCTIONS 145

its inputs fan out to other nodes of the graph.

Now, the function Tri=iy, (ra,---,ry) is a free point and as such it can be substituted by a new
free variable r. We show now that it is not possible that Fri=i, (ra,---,rr) reduces to a constant
for any value of i,,. In fact, if that was the case, r could be expressed as r = r; @ ryes(r2, =+ , 1),
where ® is either AND or OR and S(r1) N S(rrs) = 0. r would then have a disjoint support

decomposition through an associative operator and would not be a PRIME function.

By carrying on the substitution r = r,, —;,, (r2,+-+,rr), Eq. 6.5 reduces to:

Fal=i1,tl2=i2,"',ap=ip = Gal:i17a2:i27“'7ap:ip

which substituted into Eq. 6.4 proves the theorem.

(b)

Figure 6.5: General case for prime function elimination: (a) before and (b) after

A possible structure for the graph F is represented in Figure 6.5.a: All the inputs to block r
are free points, except for r;. We can then remove the block r and substitute it with a new input
variable obtaining the graph in Figure 6.5.b without affecting the range of the function. Note that

input variables 7, and r3 are not needed anymore.

146 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

Example 6.2. The testbench s1196 from the IWLS suite contains the blocks reported in Figure 6.6
in its next state function at step 10 of symbolic simulation. The variables names are just indices
corresponding to the variables in the support of the state function. Since the prime function r has
the two inputs x3s and x39 that are free points and only one input that has multiple fanout, we can

completely eliminate this portion of the graph and just substitute it with the input variable r.

X35 7,,'3'3!:""5
X19— I"’U/.J
AND

X17 —
OR To other
blocks

X16 —

Figure 6.6: Prime elimination for Example 6.2.

6.4 Removal of non-dominant variables

Under certain conditions, an input variable can be removed from the decomposition graph without

affecting its range.

Example 6.3. Consider the following 3-outputs function:

fl = AND(bae)

f AND(e,OR(a,b,d))

f3 = XOR(a,c)

The range of this function is B>\ {101,100}. We can remove the variable a from the function,

by cofactoring all the components w.r.t. a = 0 without changing the range spanned by F. The result

6.4. REMOVAL OF NON-DOMINANT VARIABLES 147

is:

fi = AND(b,e)
f» = AND(e,OR(b,d))

i = ¢

and it still has range B>\ {101,100}.

We could do the simplification in the example because the range of the function for a =1 is a

subset of the range for @ = 0. The following definition formalizes the situation:

Definition 6.3. An input variable of a decomposition graph has a non-dominant value 0 iff it fans
out only to blocks that are decomposed through OR or XOR associative operators. It has a non-
dominant value 1 iff it fans out only to blocks that are AND or XOR decompositions. Otherwise it

does not have a non-dominant value.

Note in particular that a variable may have a non-dominant value 0 and a non-dominant value
1 simultaneously if it fans out only to XOR decompositions. The theorem below shows that in the
most general case, a variable that fans out only to associative operators can be removed from the

decomposition graph if it has a unique non-dominant value for the whole graph.

Theorem 6.3. If a decomposition graph F has an input variable v with non-dominant value k €
{0,1}, and each of the blocks (i.e., intermediate single-output functions) that have v in their fanin

have at least one other input in their fanin that is a free point, then: R (F) = R (F,—)

Proof. For a generic function F, we have:

R (F) = R(Fyt) UR(F, ;) (6.6)

We now show that under the conditions specified:

R(F,_z) € R(F=k) (6.7)

148 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

and Eq. 6.6 reduces to R (F) = R (F,—).
Let’s consider first the case where kK = 0 and let’s label each of the functions that have v in

their fanin x(v, p,x1,---xy), (v, @, y1,---yy), w(v,,wi,---wy,) ... Where p, g, r ... are the free points
in each of them and x;, y;, w; ...are other variables the functions depend on. The x(), y(), w(),

... functions by hypothesis can only be OR or XOR decompositions.

We can then express F using the composition of these functions:
F= G(x’yawa"' 3 X1 Xy, V1 "'yya"'WWa'")OX(vapaxla"'xx) oy(anayla"'yy)'“

Note that, in general, x;, y;, w; ... are also in the fanin of G. Let’s now compute the two cofactors of

F wrt. v:

Fv_():G(_x’y’W’... ’xl...xx’yl...yy’...ww’...)ox(o’p’xl’...xx)Oy(o’q’yl’...yy)o...

FV_I :G(_x’y’w’... ’xl...xx’yl...yy’...ww’...)ox(l’p’xl’...xx)oy(l’q’yl’...yy)o...

In order to show the inclusion of the ranges of Eq. 6.7, we are going to represent each range
as a union of ranges by cofactoring the variables in the support of x, y, w, ...one function at a time
starting with x():

R(FVZO) = U K(G(xaya"'xl"' ayl"')ox(oapaxl"')Xlzixlf")

(x1+xy)EBY

REF)= | RAGE 1 31w ox(, Pt)y o)

(x1--xy)€ B

We distinguish two cases for each x, y, w, ... function:

1. x is a OR decomposition. When all the (xy,---,x,) are zero, for F,—;, x evaluates to the
constant value 1. For F,—g, x = p. In all the other cases x evaluates to 1. By grouping all the

component ranges so that to distinguish the special case from all the others , we can simplify

6.4. REMOVAL OF NON-DOMINANT VARIABLES 149

the expressions:

R(Fi=0) = R(G(p,y,+0--0,-)) U R(G(L,y, -1+ 2 =iy o

(xlr'"7xx)7é0
R(Foot) = R(G(Ly, - 0--0,)) | RAG(yeox1-+ ey iy o
(1, %) #0

It can be easily seen that the first range for F,— is a subset of the corresponding range for

F,—o, while the rest of the expression is identical.

2. x is an XOR decomposition. For the 1-cofactor, F,_;, x = XNOR(p, xi,--- ,x,). In the case

of the O-cofactor, F,—¢, x evaluates to the complement: x = XOR(p,x,--- ,x,). We can again
group all the component ranges so that to distinguish the cases where XOR(x1,--+ ,x,) =0
from the ones where XOR(xy,- -+ ,x,) = 1:

R(FVZO) = U K(G(paya"'xl '”)Xlzixl e U K(G(p_aya"'-xl "')xlzixl,---

XOR(x1,+x,)=0 XOR(x1,+x,)=1
R(szl) = U K(G(p_aya"'xl"')xlzixl;n U K(G(paya"'xl"')xlzixl,m
XOR(x1,x,)=0 XOR(x1,+x,)=1

And it can be observed that the two components of each expression match. It follows:

K(FV:O) = K(szl)-

This procedure can be applied recursively for each of the other functions y, w, ..., by computing
and grouping all the cofactors for the sets of input variables (y;---yy), (Wi --wy),

For the case where k = 1, the functions x, y, w, ... can now only be AND or XOR decompositions.
The corresponding proof can be obtained by substituting AND for OR and 1 for O in the proof just
discussed. Finally, for the case where the input variable v has both a non- dominant value 0 and 1,

we can just use any of the two value- specific proofs. U

150 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

fr | f3 fr |) f3 My

oL OOOrIc

\C% |] AT
ANDJA‘ND T AND @

XOR

X4 X2 X3
(@) (b)

Figure 6.7: Non-dominant variable removal for Example 6.4

Example 6.4. Figure 6.7.a shows a system with two non-dominant variables: x| has a non-dominant
value 1, since it only fans out to AND and XOR nodes, while x3 has a non-dominant value 0, since
it fans out to OR and XOR. After removing of these two non-dominant variables and eliminating the
nodes left with only one input, we obtain the system in Figure 6.7.b. Note that at this point we can

apply the free point reduction technique to the graph of F.

6.5 DSD-SS Implementation

Our implementation of the Disjoint Support Decomposition based Symbolic Simulator performs the
parameterizations at the end of each symbolic simulation step. We first generate the decomposition
graph for the state vector Sek and then attempt the three transformations described above. Often,
the graph produced by applying one of the transformations enables further simplifications through
some of the other transformations.

Even when all of the transformations fail, we still want to maintain a compact representation for
the state function Sgk, so that we can make further progress with the simulation. Thus, when the
state function exceeds a threshold value, we choose a variable to set to a constant value. The variable

with fanout to the maximum number of blocks is selected becuase by simplifying this variable we

6.6. EXPERIMENTAL RESULTS 151

eliminate the largest interdependency among the nodes of the graph and thus we maximize the
likelyhood of creating a graph where our techniques can be applied in future simulation steps. When
computing the fanout of a primary variable that is candidate for elimination, we only consider those
decomposition blocks which have other input variables in their fanin. The intuition behind this
choice is that those blocks are closer to become free points, since some of their inputs are already
free points.

We found experimentally that often, after eliminating a variable by setting it to constant as

described, we could discover additional free points or variables with non-dominant values.

6.6 Experimental results

The algorithm presented in this chapter was implemented in a C++ program called Disjoint Sup-
port Decomposition based Symbolic Simulator (DSD-SS). We tested this approach on the largest
sequential circuits from the Logic Synthesis Benchmarks suite [68] and the ISCAS’89 Benchmark
Circuits [16], including their 1993 additions, as we did for the previous CBSS technique in Chap-
ter 3. Table 6.1 reports results on all but the smallest testbenches of the two suites (we excluded
from the table the circuits with less then 20 memory elements). The testbenches are grouped by
benchmark suite. The experiments were run on a Linux PC equipped with a Pentium 4 processor
running at 2.7Ghz and 2GB of memory and 512Kb of cache. We linked the DSD-SS to the CUDD
package [29] as the underlying BDD manipulation library for the combinational portion of the sim-
ulation and a proprietary BDD package for the parameterizations. We set the reordering threshold in
CUDD to 80,000 nodes. Each testbench is run for 100 simulation steps and, at the end of each step,
DSD-SS performs the decomposition of the next state symbolic vector and applies the transforma-
tions described in Sections 6.2-6.4. Whenever the transformations are not sufficient to provide an
exact small representation for the state vector, we resort to pick a variable to evaluate to a constant
value, in order to guarantee a compact representation. The variable is chosen based on the criteria

described in the previous section. After a few experiments, we chose 2,500 nodes as a reasonable

152 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

value to use for the upper limit for the size of the state vector. We noticed that, generally speaking,

this value can be used to trade-off simulation breadth vs. time.

For each circuit, the table reports first the same relevant metrics that we presented before in
Table 3.1: the number of inputs In, outputs Out, memory elements FF, and internal network gates

Gates.

The next three columns report how many times we were able to apply our transformations: FP
is the cumulative number of free point substitutions, PE is the number of prime function elimina-
tions, NVD the number of non-dominant variables removals over all the symbolic simulation steps.
The next column of this group, Null, counts the cumulative number of times where no exact trans-
formation could be applied, but the state vector was within the limit size (of 2,500 nodes), and
thus DSD-SS advanced to the next step of simulation without applying any parameterization. Note
that during a single simulation step we may apply more than one technique until we reduce the
state vector within limits or until no additional exact parameterization is possible. The values of
Table 6.1 indicate that the conditions that allow an exact parameterization of the state vector are
frequently met in almost all the circuits. In particular, in most cases the transformations can be
applied successfully multiple times during each same simulation step. Free point elimination is the
parameterization that achieves the best results across all the testbenches producing a total 2,417 ex-
act simplifications over 4,200 simulation steps (42 testbenches, each run for 100 steps). The second
most successful technique appears to be the non-dominant variable removal, which was applied for
a total of 1,243 times, while prime function elimination satisfied the necessary conditions for exact

parameterization only 139 times.

The purpose of the next group of columns is to compare the breadth of the state exploration
between DSD-SS and a pure symbolic simulator that does not include parameterization. To this
end, we built a plain symbolic simulator and we constrained it to have the same upper bound for
the size of the state vector at the end of each simulation cycle as DSD-SS. While the only reduction
technique available to the plain symbolic simulator was approximation of the state vector by eval-

uating symbolic variables to constant values, DSD-SS would attempt first exact parameterization,

6.6. EXPERIMENTAL RESULTS 153

and default to approximation only as a backup method. The number of variables approximated to
constant provides an indication of how much the search breadth has been restricted: every time a
variable is set to constant, we cut in half the amount of equivalent simulation traces checked by the
exploration. Thus, in this section of the table, a bigger value indicates a more aggressive approxi-
mation and a smaller breadth of search. DSD-SS greatly outperformed a pure symbolic simulator
in all but three testbenches. The situation of a test such as 5635, can arise because DSD-SS chooses
the variable to approximate so to maximize the chance of being able to perform additional exact pa-
rameterizations. This may not be the choice that leads to the smallest BDD vector size with the least
number of approximations. However, in all the other cases, even with this disadvantage, DSD-SS
avoids the elimination of many symbolic variables and propagates through the simulation a factor
of 2 to 10 times more symbols over a plain symbolic simulator, when the same amount of memory
is available. The situation of test bigkey is exceptional in this sense: because of the exact parameter-
izations, DSD-SS could avoid the evaluation to constant of more than 11,000 symbols over a plain

symbolic simulator.

The last column reports the execution times of DSD-SS. The current implementation of DSD-
SS at this point is fairly poor, since we need to transfer the data back and forth between the two
BDD packages many times during the simulation. The proprietary BDD package that we currently
use to perform the parameterizations has special functionalities for linking to the Disjoint Support
Decomposition library. Execution times are also penalized by multiple variable reorderings in the
CUDD package that are triggered by many of the testbenches. We hope in the near future to be able
to directly link the DSD library to the CUDD package; we expect this connection to provide great
improvements in the performance of DSD-SS. At this point, the plain symbolic simulator executes
faster than DSD-SS since it can rely simply on the usage of the CUDD package. Still, in a few
cases DSD-SS can gain enough advantage from a compact representation to be faster than the plain
simulator, for instance, in the case of test bigkey.

@ 9

Finally, the testbenches with a mark indicate that either the plain symbolic simulator or

DSD-SS run out of the allotted time of one hour of execution. For these testbenches we only report

154 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

Circuit | In Out FF Gates |Fartechniques | Symbol reductions | e (o)
FP PE NDV DSD-SS PlainSym.

Logic Synthesis ‘91 - FSM tests

ex1 9 19 20 622 0 O 0| 100 0 0 0.3
1423 17 5 74 830 5 O 3| 18 156 659| 48.78
s838 35 2 32 59| 0 1 1] 98 0 0 7.98
s953 16 23 29 658| 67 O 1 6 555 677| 108.37
Logic Synthesis ‘91 - Addition ‘93

bigkey 262 197 224 9211| 28 0 47| 1 178 11781 30.17
clma 382 82 33 24482 9 0 20| 69 12 10 17.46
dsip 228 197 224 3893| 24 0 of 1 395 13043 | 428.48
mm9a 12 9 27 639 0 0 14| 27 110 71 11.93
mm9b 12 9 26 786 2 0 3 7 211 277 62.18
mult16b 17 1 30 2841 63 O 78 1 1185 1229 | 107.55
mult32a | 33 1 32 715 0 O o 1 2003 -1 9507.86
s38417 28 106 1465 23771 49 1 13 6 148 867 7.75
s38584 38 304 1426 20281|138 1 34| 9 516 1755| 86.18
s5378 35 49 163 3232136 0 30| 1 636 1145| 615.63
s838 3 1 32 618 0 O 0| 51 52 61 66.21
s9234 36 39 135 3019|156 1 117| O 297 477| 48.69
sbc 40 56 27 1143|183 1 28| 1 1086 1314| 244.3
ISCAS ‘89 - FSM tests

s13207.1| 62 152 638 9539| 53 1 12| 8 607 1080 35.1
s13207 31 121 669 9539 27 0 2| 3 96 189| 26.15
s1423 17 5 74 830 5 O 3| 18 156 637| 52.17
s15850.1| 77 150 534 11316(103 23 100| O 994 2615| 326.22
s15850 14 87 597 11316 2 0 98| O 55 120 9.93
s35932 35 320 1728 23085 0 O 0| 16 245 1183| 18.68
s38417 28 106 1636 27648 | 47 1 12| 6 155 1293 6.52
s38584.1| 38 304 1426 24619(124 0 51 9 500 1624| 61.15
s38584 12 278 1452 24619| 21 0 0 9 141 458 19.27
s5378 35 49 179 3973|150 0 58| 1 680 1027 | 388.27
s838 3 1 32 626 0 O 0| 51 52 61 72.76
S9234.1 | 36 39 211 6585|204 1 104| 3 682 1096| 110.46
s9234 19 22 228 6585 88 0 11| 18 311 437| 41.78
s953 16 23 29 658| 38 O 1 7 547 764 | 110.97
ISCAS ‘89 - Addition ‘93

prolog 36 73 136 1845130 6 10| O 459 1201| 169.99
s1269 18 10 37 771 13 O 3| 2 - 1306 -
s1512 29 21 57 990|136 95 113| O 278 931 34.54
s3271 26 14 116 2166 0 O 1] 16 714 1469 | 23.37
s3330 40 73 132 2020|144 5 51 0 472 1460| 83.77
s3384 43 26 183 1734| 61 2 3| 4 1551 2565| 297.18
s4863 49 16 104 2492(163 0 149| O - 2400 -
s635 2 1 32 38| 31 0 0| 35 82 5| 55.74
$6669 83 55 239 3272| 17 22 of 1 - 6262 -
s938 3 1 32 626 0 O 0| 51 52 61 70.76
s967 16 23 29 6770 0 0 50| 50 0 731 2.56

Table 6.1: Disjoint Support Decomposition-based simulation results

6.7. SUMMARY 155

the number of transformations that we were able to complete.

6.7 Summary

This chapter introduced a new parameterization technique for symbolic simulation, DSD-SS. This
work was published in [11]. Its core contribution is in exploiting the disjoint support decomposition
properties of the state vector to generate a compact parameterization during symbolic simulation.
The major advantage of this approach is that it is a loss-less transformation, that means we
can generate a compact representation of the state vector, without losing any of the information it
carries between simulation steps. Results show that, within a fixed amount of memory resources
dedicated to represent the frontier set, we can keep a much broader search space than pure symbolic

simulation.

156 CHAPTER 6. EXACT PARAMETERIZATIONS FOR SYMBOLIC SIMULATION

Chapter 7

Conclusion

This thesis presents two major theoretical contributions:

1. Techniques were developed for the parameterization of Boolean functions, so that, given a
vector function, we can generate an alternative more compact representation that spans the

same range as the original one, and

2. Novel contributions were made to the theory of disjoint support decomposition of Boolean
functions by providing a new canonical form to represent the unique maximal disjoint de-
composition of a logic function and a novel and efficient algorithm that can automatically

discover this decomposition in polynomial time.

Both of these theoretical contributions were applied to the problem of formal verification of
digital systems and two new techniques were developed for the use symbolic simulation in verifying
digital systems. These approaches expand the robustness and scalability of symbolic simulation and

expand its accessibility for adoption in current industrial design practices.

7.1 Parameterized approaches in symbolic simulation

Parametric representations help to control BDD explosion in symbolic simulation, which is the

central problem in formal verification. Based on our parameterization techniques, we have shown

157

158 CHAPTER 7. CONCLUSION

simulation results on industrial design blocks that show the significant performance gains that these
techniques can achieve both over logic simulation and symbolic simulation. In particular we have
shown how CBSS (Cycle-Based Symbolic Simulation) provides many orders of magnitude better
performance, measured in test vectors simulated per second, over logic simulation. At the same
time, CBSS does not require any change in the verification user model, and thus can replace logic
simulation in a transparent fashion. The same checks, or assertions, that are used to verify the
outputs of logic simulation — see Section 1.1 — can be used in the context of CBSS to verify the
expressions for the output of the digital system. DSD-SS (Disjoint-Support Decomposition based
Symbolic Simulation) provides an exact parameterization technique, and we have shown that for a
fixed amount of memory resource it can explore a much broader search space compared to a pure
symbolic simulation approach. DSD-SS also provides a significant performance gain over logic
simulation.

The two new solutions presented can be viewed as trade-off points in a search breadth vs. sim-
ulation scalability plane as indicated qualitatively in Figure 7.1: logic and symbolic simulations
are at the extremes of scalability and search breadth, while CBSS and DSD-SS provide additional
trade-off points between the two parameters. A major advantage of DSD-SS is that the memory

resources required for the simulation can be traded off for reduced search breadth.

7.2 Disjoint support decompositions

Disjoint support decompositions (DSD) are a useful property of Boolean functions that can be used
in many areas of computer-aided design automation. The ability to partition a function into blocks
that depend only on a small portion of the support set of the function is valuable for decreasing the
computational complexity of the function. Applications of DSD to the synthesis domain span from
the routing arena, where the decomposition suggests the clustering of input signals that only affect a
portion of the circuit, to multi-level synthesis, where it provides an automatic way of moving from a

flat representation to a hierarchical one based on the decomposition tree. In this thesis we explored

7.3. THE FUTURE OF THIS WORK 159

search breadth

algorithmic scalability

Figure 7.1: Trade-offs of in the breadth vs. scalability plane

some aspects of the benefits that decompositions can provide in verification and, in particular, sim-
ulation. Here, we exploited the fact that DSD exposes the inherently parallel components in the
computation of a function and we used this fact to generate a simplified function. DSDs can also
be used to generate a good initial variable order for the BDD of a function, by clustering inputs
togheter that affect the same blocks.

In our experiments with the algorithm we introduced, we found that most functions, at least
among the ones related to industrial designs, have meaningful decompositions, which is a promising
starting point for the possible applications we have outlined and others that we have not thought

about.

7.3 The future of this work

This work, as with most research, suggests future directions of research. From a practical standpoint,
the efficiency of the implementations can be considerably improved. Such improvements would not
only increase the robustness of the algorithms, but also provide even better results when comparing

the performance to other simulators. Currently, the front-end of the simulators is limited to a simple

160 CHAPTER 7. CONCLUSION

logic intermediate language. Supporting standard hardware description languages would increase
the ease of experimenting with current industrial designs and provide better insights on the strengths
and weaknesses of our techniques.

The robustness of the parameterization techniques introduced could only be evaluated accurately
by building a usage framework around the raw simulations engines we have, so that a user can
provide assertions, or specify correct behaviour for the design under simulation, and available test
vectors to direct the search when the simulator needs to approximate.

Parameterization is a general technique that can be applied in other phases of the simulation
flow. We would like to explore the additional robustness that we could obtain by deploying these
or other parameterizations in the simulation of the combinational network in order to reduce the
memory resources required there.

The application of the theory of disjoint support decompositions to other areas of design au-
tomation such as the ones indicated above is a direction that promises to lead to a broad range of
problems and solutions. The few cases where DSD can not break a function into sufficiently small
components suggest that there are more complex types of decomposition for which a canonical form
has yet to be defined.

In a broader spectrum, the verification of digital designs is becoming the hardest problem in
design automation and the immediate bottleneck to remove in order to maintain the growth trends
that the IC industry has seen in the past 40 years. Current verification methods are struggling to
handle the complexity of a single component module in a digital system on a chip design. We believe
that the answer to this problem will come from two directions: improved scalability of verification
algorithms on one end, and a modular verification methodology on the other. Parameterization
techniques are one way of improving such scalability; however, we can se how, even only within
the symbolic simulation approach, other techniques are needed to improve scalability and robustness

during the whole verification flow.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

Mark Aagaard, Robert Jones, and Carl-Johan Seger. Formal verification using parametric rep-
resentations of Boolean constraints. In DAC, Proceedings of Design Automation Conference,

pages 402407, June 1999.

Aharon Aharon, Dave Goodman, Moshe Levinger, Yossi Lichtenstein, Yossi Malka, Charlotte
Metzger, Moshe Molcho, and Gil Shurek. Test program generation for functional verification
of PowerPc processors in IBM. In DAC, Proceedings of Design Automation Conference, pages

279-285, June 1995.

Robert L. Ashenhurst. The decomposition of switching functions. In Proceedings of the

International Symposium on the Theory of Switching, Part I 29, pages 74-116, 1957.

Zeev Barzilai, J. Lawrence Carter, Barry K. Rosen, and Joseph D. Rutledge. HSS - a high-
speed simulator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, pages 601-617, July 1987.

Janick Bergeron. Writing Testbenches: Functional Verification of HDL Models. Kluwer Aca-

demic Publishers, 2nd edition, 2003.

Jules Bergmann and Mark Horowitz. Improving coverage analysis and test generation for large
designs. In ICCAD, Proceedings of the International Conference on Computer Aided Design,
pages 580-583, November 1999.

161

162

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Valeria Bertacco and Maurizio Damiani. Boolean function representation based on disjoint-
support decompositions. In ICCD, Proceedings of the International Conference on Computer

Design, pages 27-33, October 1996.

Valeria Bertacco and Maurizio Damiani. Boolean function representation using parallel-access

diagrams. In Proceedings of the Sixth Great Lakes Symposium on VLSI, March 1996.

Valeria Bertacco and Maurizio Damiani. The disjunctive decomposition of logic functions.
In ICCAD, Proceedings of the International Conference on Computer Aided Design, pages
78-82, November 1997.

Valeria Bertacco, Maurizio Damiani, and Stefano Quer. Cycle-based symbolic simulation
of gate-level synchronous circuits. In DAC, Proceedings of Design Automation Conference,

pages 391-396, June 1999.

Valeria Bertacco and Kunle Olukotun. Efficient state representation for symbolic simulation.

In DAC, Proceedings of Design Automation Conference, June 2002.

Beate Bollig, Martin Lobbing, and Ingo Wegener. Simulated annealing to improve variable
orderings for OBDDs. In International Workshop on Logic Synthesis, pages 5.1-5.10, May
1995.

Karl Brace, Richard Rudell, and Randal E. Bryant. Efficient implementation of a BDD pack-

age. In DAC, Proceedings of Design Automation Conference, pages 40-45, 1990.

Robert K. Brayton and Curt McMullen. The decomposition and factorization of boolean ex-
pressions. In ISCAS, Proceedings of the International Symposyium on Circuits and Systems,

pages 49-54, 1982.

Robert K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R. Wang.
MIS: A multiple-level logic optimization system. [EEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 6(6):1062—-1081, November 1987.

BIBLIOGRAPHY 163

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Franc Brglez, David Bryan, and Krzysztof KoZmiriski. Combinational profiles of sequential
benchmark circuits. In ISCAS, Proceedings of the International Symposyium on Circuits and

Systems, pages 1929-1934, May 1989.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. /EEE Transac-

tions on Computers, 35(8):677-691, August 1986.

Randal E. Bryant. On the complexity of vlsi implementations and graph representations of
boolean functions with application to integer multiplication. /EEE Transactions on Computers,

40:205-213, 1991.

Randal E. Bryant. Symbolic boolean manipulation with ordered binary—decision diagrams.

ACM Computing Surveys, 24(3):293-318, September 1992.

Randal E. Bryant, Derek Beatty, Karl Brace, Kyeongsoon Cho, and Thomas Sheffler. COS-
MOS: A compiled simulator for MOS circuits. In DAC, Proceedings of Design Automation

Conference, pages 9-16, June 1987.

Jerry R. Burch, Edward M. Clarke, David E. Long, Ken L. MacMillan, and David L. Dill.
Symbolic model checking for sequential circuit verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 13(4):401-424, 1994.

Jerry R. Burch and David E. Long. Efficient boolean function matching. In ICCAD, Proceed-

ings of the International Conference on Computer Aided Design, pages 408—411, November

1992.

Gianpiero Cabodi, Paolo Camurati, Luciano Lavagno, and Stefano Quer. Disjunctive parti-
tioning and partial iterative squaring: an effective approach for symbolic traversal of large

circuits. In DAC, Proceedings of Design Automation Conference, pages 728—733, June 1997.

164

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

BIBLIOGRAPHY

Gianpiero Cabodi, Paolo Camurati, and Stefano Quer. Improved reachability analysis of large
finite state machine. In ICCAD, Proceedings of the International Conference on Computer

Aided Design, pages 354-360, November 1996.

Srihari Cadambi, Chandra S. Mulpuri, and Pranav N. Ashar. A fast, inexpensive and scalable
hardware acceleration technique for functional simulation. In DAC, Proceedings of Design

Automation Conference, pages 570-575, June 2002.

A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B. Rosen, M. Mullen, J. Yoon,
R. Armoni, D. Geist, and Y. Wolfsthal. AVPGEN - a test generator for architecture verification.

IEEFE Transactions on Very Large Scale Integration (VLSI) Systems, 3(2):188-200, June 1995.

Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification of synchronous
sequential machines based on symbolic execution. In Automatic Verification Methods for Fi-
nite State Systems, International Workshop, volume 407 of Lecture Notes in Computer Science,

pages 365-3. Springer, June 1989.

Olivier Coudert and Jean Christophe Madre. Implicit and incremental computation of primes
and essential primes of Boolean functions. In DAC, Proceedings of Design Automation Con-

ference, pages 3639, June 1992.

CUDD-2.3.1. http:/Nisi.Colorado.edu/ Jabio.

Herbert A. Curtis. A New Approach to the Design of Switching Circuits. Van Nostrand,
Princeton, N.J., 1962.

Charles J. DeVane. Efficient circuit partitioning to extend cycle simulation beyond syn-
chronous circuits. In ICCAD, Proceedings of the International Conference on Computer Aided

Design, pages 154-161, nov 1997.

BIBLIOGRAPHY 165

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Masahiro Fujita, Hisanori Fujisawa, and Nobuaki Kawato. Evaluation and improvements of
boolean comparison method based on binary decision diagrams. In ICCAD, Proceedings of

the International Conference on Computer Aided Design, pages 2—5, November 1988.

Craig Hansen. Hardware logic simulation by compilation. In DAC, Proceedings of Design

Automation Conference, pages 712-716, June 1988.

Faisal 1. Haque, Khizar A. Khan, and Jonathan Michelson. The Art of Verification with Vera.

Verification Central, 2001.

Scott Hauck. Multi-FPGA Systems. PhD thesis, University of Washington, Dept. of Computer

Science and Engineering, 1995.

Pei-Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula, Robert Damiano, Valeria Bertacco,
Jerry Taylor, and Jiang Long. Smart simulation using collaborative formal and simulation
engines. In ICCAD, Proceedings of the International Conference on Computer Aided Design,

pages 120-126, November 2000.

Yoav Hollander, Matthew Morley, and Amos Noy. The e language: A fresh separation of
concerns. In Technology of Object-Oriented Languages and Systems, volume TOOLS-38,
pages 41-50, March 2001.

Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional dependencies. In

DAC, Proceedings of Design Automation Conference, pages 266-271, June 1993.

Gérard Huet. Higher order unification 30 years later. In Theorem Proving in Higher Order
Logics, volume 2410 of Lecture Notes in Computer Science, pages 3—12. Springer-Verlag,

August 2002.

Prabhat Jain and Ganesh Gopalakrishnan. Hierarchical constraint solving in the parametric
form with applications to efficient symbolic simulation based verification. In ICCD, Proceed-

ings of the International Conference on Computer Design, pages 304-307, October 1993.

166

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

Prabhat Jain and Ganesh Gopalakrishnan. Efficient symbolic simulation-based verification
using the parametric form of boolean expressions. [EEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 13:1005-1015, August 1994.

Steven Johnson. View from the fringe of the fringe. In CHARME, volume 2144 of Lecture

Notes in Computer Science, pages 1-12. Springer-Verlag, September 2001.

Michael Kantrowitz and Lisa M. Noack. I’'m done simulating; now what? verification cover-
age analysis and correctness checking of the DECchip 21164 Alpha microprocessor. In DAC,

Proceedings of Design Automation Conference, pages 325-330, June 1996.

Richard M. Karp. Functional decomposition and switching circuit design. Journal of the

Society for Industrial and Applied Mathematics, 11(2):291-335, 1963.

Kevin Karplus. Representing boolean functions with if-then-else dags. Technical Report

UCSC-CRL-88-28, Baskin Center for Computer Engineering & Information Sciences, 1988.

Kevin Karplus. Using if-then-else dags for multi-level logic minimization. In Proceedings of

Advanced Research in VLSI, pages 101-118, 1989.

Kevin Karplus. Using if-then-else dags to do technology mapping for field-programmable
gate arrays. Technical Report UCSC-CRL-90-43, Baskin Center for Computer Engineering &

Information Sciences, 1990.

James C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385-394, July 1976.

Tommy Kuhn, Tobias Oppold, Markus Winterholer, Wolfgang Rosenstiel, Marc Edwards, and
Yaron Kashai. A framework for object oriented hardware specification, verification and syn-

thesis. In DAC, Proceedings of Design Automation Conference, pages 413—418, June 2001.

Oded Lachish, Eitan Marcus, Shmuel Ur, and Avi Ziv. Hole analysis for functional coverage

data. In DAC, Proceedings of Design Automation Conference, pages 807-812, June 2002.

BIBLIOGRAPHY 167

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Frédéric Mailhot and Giovanni DeMicheli. Algorithms for technology mapping based on
binary decision diagrams and on boolean operations. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 12:599-620, May 1993.

Sharad Malik, Albert Wang, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Logic
verification using binary decision diagrams in a logic synthesis environment. In /CCAD, Pro-

ceedings of the International Conference on Computer Aided Design, pages 69, November

1988.

Patrick C. McGeer, Jagesh V. Sanghavi, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. ESPRESSO-SIGNATURE: A new exact minimizer for logic functions. In DAC,

Proceedings of Design Automation Conference, pages 618—624, June 1993.

In-Ho Moon, James Kukula, Kavita Ravi, and Fabio Somenzi. To split or to conjoin: The
question in image computation. In DAC, Proceedings of Design Automation Conference, pages

23-28, June 2000.

Rajeev Murgai, Yoshihito Nishizaki, Narendra V. Shenoy, Robert K. Brayton, and Alberto
Sangiovanni-Vincentelli. Logic synthesis for programmable gate arrays. In DAC, Proceedings

of Design Automation Conference, pages 620-625, June 1990.

Gregory F. Pfister. The yorktown simulation engine: Introduction. In DAC, Proceedings of

Design Automation Conference, pages 51-54, January 1982.

Kavita Ravi and Fabio Somenzi. High density reachability analysis. In ICCAD, Proceedings

of the International Conference on Computer Aided Design, pages 154—158, November 1995.

Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IC-
CAD, Proceedings of the International Conference on Computer Aided Design, pages 42-47,
November 1993.

168 BIBLIOGRAPHY

[59] Tsutomu Sasao. Totally undecomposable functions: Applications to efficient multiple-valued

decompositions. In ISMVL, pages 59-65, 1999.

[60] Tsutomu Sasao and Munehiro Matsuura. DECOMPOS: An integrated system for functional

decomposition. In International Workshop on Logic Synthesis, pages 471-477, 1998.

[61] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical

Journal, 28(1):59-98, 1949.

[62] V. Yun-Shen Shen, Archie C. McKellar, and Peter Weiner. A fast algorithm for the disjunctive
decomposition of switching functions. /EEE Transactions on Computers, C-20(3):304-309,

1971.

[63] Theodore Singer. The decomposition chart as a theoretical aid. Technical Report BL-4, Sec.III,

Harvard Computational Laboratory, 1953.

[64] Hervé Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using BDDs. In ICCAD, Pro-

ceedings of the International Conference on Computer Aided Design, pages 130—133, Novem-

ber 1990.

[65] C. A. J. van Eijk and Jochen A. G. Jess. Exploiting functional dependencies in finite state
machine verification. In ED&TC, Proceedings of the European Design and Test Conference,

pages 9-14, March 1996.

[66] Laung-Terng Wang, Nathan E. Hoover, Edwin H. Porter, and John J. Zasio. SSIM: A software
levelized compiled-code simulator. In DAC, Proceedings of Design Automation Conference,

pages 2—8, June 1987.

[67] Chris Wilson and David L. Dill. Reliable verification using symbolic simulation with scalar

values. In DAC, Proceedings of Design Automation Conference, pages 124—129, June 2000.

BIBLIOGRAPHY 169

[68] Saeyang Yang. Logic synthesis and optimization benchmarks user guide, version 3.0. Techni-

cal report, Microelectronics Center of North Carolina, January 1991.

[69] Jun Yuan, Kurt Schultz, Carl Pixley, Hiller Miller, and Adnan Aziz. Modeling design con-
straints and biasing using bdds in simulation. In ICCAD, Proceedings of the International

Conference on Computer Aided Design, pages 584-590, November 1999.

