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ABSTRACT

Model-based performability evaluation of computer and communication systems requires
accurate and efficient techniques for model construction as well as model solution. Moreover,
as the physical and logical complexity of such systems continues to grow, there is need for
increased care in specifying just what is to be constructed in response to the aims of a
given evaluation study. This presentation thus focuses on specification and construction
aspects of performability modeling, under the assumption that construction (and subsequent
solution) are automated. Concepts and methods are described for each, with emphasis on
specifying/realizing the relation between a base stochastic model and the measures it must
support. Although stochastic activity networks are chosen as the vehicle for base model
specification, many of the techniques employed convey principles that apply as well to other
specification constructs.
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I Introduction

The presentation that follows concerns model-based evaluation of computer and commu-
nication system performability, with emphasis on how models for this purpose are specified
and constructed. Since contemporary systems of this type are seldom autonomous (closed),
generally, such modeling efforts must consider the representation of a total system composed
of:

1) An object system: The system that is the object of (model-based) evaluation, and

2) An environment: Other systems (physical or human) which interact with the object
system during its use.

Given an interacting set of physical and human resources, the distinction between 1) and
2) (although often not made explicitly) depends on which subset of resources is being
investigated as to its ability to perform. These comprise the object system, which in this
context, is often referred to simply as the “system.” The environment is then comprised of
those remaining resources that interact with the object system to an extent that they affect
its performability in some appreciable sense.

Accordingly, the above distinction is actually determined by just what aspects of the
total system structure and behavior are to be assessed via the evaluation process. In
this regard, the discussion that follows presumes that such evaluation concerns an object
system’s “quality” (effectiveness) as opposed to its “cost.” Given this qualification, we make
some further distinctions that conform with current use of terminology in the computing
field. With respect to a designated user-oriented or system-oriented service, performance
usually refers to some aspect of service quality, assuming the system is correct. In other
words, quoting [1], performance is generally indicative of “ ... how well a system, assumed
to perform correctly, works.” (This use is not uniformly adhered to, however, e.g. the
recent text by Kant [2] that treats dependability measures as a special class of performance
measures.) Performance evaluation and, specifically, model-based evaluation of measures
such as throughput, response time, and resource utilization, have long been recognized as
important in the context of computer and communication system design. Moreover, in the
development of theory and techniques for this purpose, there has been remarkable progress
over the past 20 years, particularly with regard to extensions and applications of queueing
network models.

Although historically an equally long-lived concern, the need to evaluate effects of in-
correctness in this context has received less attention. More specifically, we are speaking of
incorrect behavior due to either design faults (mistakes made by humans or automated tools
in the process of specifying, designing, implementing, or modifying a system) or operational
faults (physical or human-made faults that subsequently occur during system operation).
Both types of faults (see [3] for a more thorough treatment of this distinction) can obviously
affect an system’s ability to perform in a designated environment.

Certain measures of such ability are based on the generic concept of dependability, i.e.,
that property of a system which allows “reliance to be justifiably placed on the the service it
delivers” (again see [3]). Measures of dependability thus quantify an object system’s ability
to perform with respect to some agreed-upon specification of desired service, where a failure



of the (object) system occurs when delivered service no longer complies with this specifi-
cation. Special attributes of dependability are defined according to the nature of failure
occurrences and/or their consequences. These include reliability (continuity of failure-free
service), availability (readiness to serve), safety (avoidance of catastrophic failures), and
security (prevention of failures due to unauthorized access and/or handling of information).

However, if performance is degradable then, as has been well documented in the lit-
erature (beginning with [4, 5]), measures of performability are needed to simultaneously
address issues of both performance and dependability. Specifically, with respect to some
designated aspect of system quality, a performability measure quantifies how well the object
system performs in the presence of faults over a specified period of time. (This includes spe-
cial cases of a single time instant at one extreme and an unbounded period at the other.)
Such measures can thus account for degraded levels of performance which, according to
failure criteria, remain satisfactory. They also permit simultaneous (i.e., within the same
model) consideration of distinctions among users with respect to how failures and their
consequences are perceived.

Given a specification of the measures of interest, a stochastic process or simulation
model must represent the object system and environment in sufficient detail to “support”
the solution of each. A model with this property is thus referred to as a base model of the
total system. In other words, based on its probabilistic nature, one is able to determine the
value or values of each specified measure. With regard to the object system, such modeling
considerations are fairly well understood. On the other hand, the importance of realistic
environment modeling is often underestimated in this regard, particularly when different
aspects of the environment have differing effects on various components of the object system.
Moreover, if faults are a concern, an environment model needs to account for more than just
externally imposed workload, e.g., events such as transient fault occurrences, conditions such
as temperature and humidity, and actions of external systems (either physical or human) in
effecting fault repair and recovery. In certain cases, it is possible to view the object system as
being autonomous (relative to the measures in question). For example, much of traditional
structure-based reliability evaluation presumes autonomy of this type, in which case the
environment part of the total system model is null. In most contemporary applications,
however, the environment is nontrivial. In such cases, its modeling calls for the same kind
of care and attention that’s typically devoted to the specification and construction of an
object system model.

In the evolution of performability evaluation (see [6], for example), the initial empha-
sis was on solution methods (see [7, 8], for example, for good surveys on these methods).
However, as a consequence of the above considerations, problems encountered in the speci-
fication and construction of performability models have become equally challenging from a
technical point of view. Increased attention in this regard (see [7, 9] for surveys that address
this issue) is also due, in part, to the growing complexity of the systems being evaluated.
With this growth, there is greater need to “match” a model to a few measures of interest,
rather than attempt construction of a model that can support a host of measures In the
analytic case, the latter becomes infeasible due to state space blow-up.

Motivated by the above considerations, the intent of the discussion that follows is to
describe what is meant by model “specification” and model “construction” in the context
of performability evaluation. The nature of the presentation is tutorial in its style, with the



hope of providing a better understanding of both endeavors. This is done via descriptions of
generally defined concepts and techniques, followed by illustrative, concrete examples that
presume the use of stochastic activity networks as a specification method, and the software
tool UltraSAN for construction of the models.

Generally, just what distinguishes specification from construction is somewhat arbitrary.
In high-level terms, we take the view that model specification (in the “action” sense of this
word) provides the “input” needed to construct and solve a model. Model construction
is then the act of realizing the specified base model (analytic, simulation, or possibly a
combination of both types) that, in turn, supports solution of the specified measures. We
assume further that specification, in this context, is essentially a human activity, where the
specifier(s) are sufficiently familiar with both i) the total system being evaluated and ii) the
capabilities of the people and tools responsible for the construction and solution phases.
Further, we assume that these phases are realized by a single software tool, thus permitting
a more easily defined interface between model specification, on the one hand, and model con-
struction/solution on the other. Although this is admittedly a somewhat specialized form
of the general problem, its consideration encompasses most all of the important technical
issues that arise in more generally defined settings.

The ensuing discussion is organized accordingly, with Section 2 devoted to performability
model specification and Section 3 to the the construction of models so specified. Although
performability solution methods lie outside the scope of the discussion, just what is to be
solved (by such methods) is an essential part of the specification and must be accounted
for during construction. Thus, material in Sections 2 and 3 must rely on certain assump-
tions regarding solution capability. Section 4 concludes the presentation with a summary
and some pointers to applications of the specification and construction methods described
herein.

II Performability Model Specification

A specification of a performability model can be regarded as having three major ingre-
dients, namely

S1) Specification of what is to be learned about the object system from its (model-based)
evaluation, i.e., the performability measures of interest.

S2) Specification of a stochastic process on which the evaluation is to be based (a base
model of the total system).

S3) Specification of how S2) relates to S1) in a manner that permits the base model (after
construction) to indeed support solution of the specified measures.

Moreover, given that the recipient of the above is a model-based evaluation tool, languages
used to state S1)-S3) must be sufficiently formal to permit their unambiguous interpretation
and subsequent automated realization by the tool.

A measure, as this term applies to computer and communication system evaluation,
typically refers to some aspect of (object) system quality, e.g., throughput, response time,
time to failure, etc. However, just how this aspect is measured (in a probability-theoretic
sense) is typically implied by the nature of the model, e.g., a performance measure that’s



based on a queueing model usually refers to the expected value of some random variable
under steady-state conditions. However, in the more general setting of performability mea-
sures, it is convenient to specify both the aspect of interest and the precise way it is to be
measured.

Using terminology and notation of the modeling framework introduced in [4, 5], S1)
thus takes the form of one or more random variables Y together with a specification of how
each is to be measured. Such variables are generally referred to as performance variables
(alternatively performability variables), where specification of a particular Y includes:

a) an interval of time (or an instant of time in the degenerate case) over which object
system quality is being observed, and

b) a set A in which Y takes its values (referred to in [4, 5] as the accomplishment set).

Specific interpretations of a) and b) express the intended meaning of Y and, in turn, what is
to be learned about the object system via specified measures thereof. The latter can range
from a complete quantification of performability, as supplied by the probability distribution
function (PDF) of Y, to single-number measures such as moments of Y or, for a specified
set B of accomplishment levels (B C A), a single performability value Perf(B) = P[Y € B].
In what follows, the combination of a specific Y and its specified measure will be referred
to simply as a Y -measure. When unqualified, the term “measure” will subsequently have
this more specific meaning, e.g., it refers to an arbitrary Y-measure or, in contexts where
Y is understood, a particular Y-measure. A more detailed discussion of S1) is treated in
the subsection that follows (Section 2.1).

Regarding S2), we assume that the base model being specified is a discrete-state sto-
chastic process X = {X; | t € T}, where the index set (time base) T" is continuous (typically
the real interval [0, 00)). For any ¢ € T, the value of the random variable X; represents the
state of the total system at time ¢. Note that, once constructed, X may be characterized
in a form that is not literally a stochastic process, e.g., a computer program that simulates
X. For specification purposes, however, this more general view (of what’s being specified)
is advantageous since, among other things, it allows the same specification to be used for
both analytic and simulation model construction. Details concerning S2) are described in
Section 2.2.

S3) is perhaps the the most difficult aspect of performability model specification, par-
ticularly if the techniques employed are to apply to differing types of evaluation (including
strict performance and dependability as well as performability) and, accordingly, a wide
variety of specific base models and Y-measures. Its purpose is to specify how state trajec-
tories (sample functions) of X map to values of Y, thus permitting solutions at the base
model level (e.g., state occupancy probabilities) to determine the desired value(s) of a Y-
measure. (Such a mapping is referred to in [4, 5] as a capability function.) Moreover, S3)
should rely only on knowledge that is explicit in specifications S1) and S2) as opposed, say,
to details that are revealed once the construction of the base model is completed. Although
use of the latter might be possible, it is discouraged by two considerations. First, there
is no guarantee that the resulting base model can support evaluation of the Y-measure(s)
in question. Secondly, even if support is possible, when fully constructed, X may be too
complicated (e.g., have too many states) to deal with effectively in this regard. Hence, our
development (Section 2.3) assumes that S3) is specified directly in terms of S1) and S2).



In addition to the above considerations, the nature of the overall specification must be
such that the subsequent construction phase is indeed feasible, e.g., the base model X can
be characterized within practical limits on computer memory and compile time. In addition
(although solutions are not an explicit concern of the material that follows), the complexity
of the constructed model should admit to feasible and, hopefully, efficient means of solving
the specified Y-measures.

A Measure Specification

If measure specification is to have general applicability, it must be done in a manner
compatible with a general means of relating (per S3)) the base model specification to the
measure specification. To accomplish this, it is advantageous to view the accomplishment
sets A of all performance variables Y as expressing value with respect to a common, un-
interpreted unit of measure. In a stochastic process setting, a unit of this sort is typically
referred to as a unit of “reward” (see [10], for example). Given that elements of A express
reward then, quite naturally, Y can be referred to alternatively as a reward variable (see
[11, 12], for example).

With this unified view of accomplishment, most any aspect Y of object system perfor-
mance (quality) can then be represented by giving reward a more specific interpretation.
Moreover, by our earlier remarks concerning Y specification (see a) and b) at the outset of
Section 2), it remains only to formally specify the time instant at which or time interval
over which reward is being quantified by Y. Here, in concert with how time is represented
in the base model, time instants and durations associated with Y can either be elements
of the real interval [0, 00) or, given that Y has a limiting distribution, the limit as a time
instant or interval duration approaches infinity. Specifically (again as discussed in [11, 12],
but without presuming an already-specified reward structure), three categories of reward
variables can be usefully distinguished according to the nature of this time specification.

A reward variable in the first category, called an instant-of-time wvariable, represents
the reward experienced at a designated time during the object system’s use. A variable in
the second category, referred to as an interval-of-time variable, represents the total amount
of reward accumulated over a specified interval of time. The third category, called time-
averaged interval-of-time variables, are similar to the second except that accumulated reward
is now averaged over the duration of the specified interval. These three categories are at
the first level of the tree depicted in Figure 1.

Interval-of-time variables can then be further classified according to the nature of the
interval. The first type represents the total or time-averaged reward accumulated during
some interval [¢,¢ + ¢]. The second is obtained as a limiting version of the first, where the
duration £ remains finite and ¢ goes to infinity. This type is useful in representing ability to
perform over a bounded period when, initially, the system is operating under steady-state
conditions. The final type is similar to the second except that the initial instant ¢ is fixed
and the duration ¢ goes to infinity.

For any such variable Y, the specification of a Y-measure is completed by stating how
Y is to be measured in a probability-theoretic sense. Just which measures of the latter
sort make sense will typically depend on how reward is interpreted for Y. To illustrate
some choices in this regard, consider the following example of a small total system. (This



Reward Structure

Instant-of-Time Interval-of-Time

Time-Averaged Interval-of-Time

[tI] [t1] [tI1]

lim ast goes
t to infinity
limastgoes limasl goes
toinfinity toinfinity

[t1] [tI] [tI]

limastgoes limasl goes
to infinity to infinity

Figure 1: Variable Specification

example is nevertheless complex enough to exemplify much of what’s discussed throughout
the remainder of the presentation.)

Faulty Multiprocessor Example Consider an object system consisting of IV processing
elements (PEs) that share a common input queue of finite capacity L. The environment
is a serial stream of incoming tasks which arrive as a Poisson process with parameter .
Whenever queue capacity permits, an arriving task enters the object system; if the queue
is full, an arriving task is rejected. Tasks are scheduled to PEs on a FIFO basis, where any
“available” PE (the meaning of this will be explained momentarily) attempts to access the
task at the head of the queue. Just which PE receives the task is assumed to be equally
likely (among those PEs which are available).

All PEs have identical structure and behave as follows. A PE, having accessed a task
when idle, can process it in exponentially distributed time with mean value 1/u. Moreover,
while busy with a single task, it can access a second task and, in turn, simultaneously
complete the processing of both as if they were one, i.e., the two are then processed together
at the single-task rate p. Accordingly, we regard a PE as being awvailable if it is idle or
processing a single task; otherwise it is unavailable, i.e., it is engaged with two tasks and
does not attempt to access a third.

In the case of double-task processing, however, all is not perfect. Specifically, there’s
interference, due to a fault in the design, that results in processing errors. Fortunately,
these are detected at the time both tasks complete, with the likelihood of encountering



errors being given by the probabilities:

p1 = the probability that exactly one of the two tasks is processed erroneously
p2 = the probability that both tasks are processed erroneously

where 0 < p; + po < 1. If a task completes with erroneous processing (we call this an
erroneous completion), it is immediately returned to the PE for reprocessing. Accordingly,
since both jobs may have erroneous completions, we assume further that ps < 1, so as
to eliminate the possibility of live-lock. When the processing of a task completes without
errors (an error-free completion), which may require several processing iterations, it departs
the object system. Thus, any task that enters the system (i.e., is not rejected at the
input) will be eventually accessed by some PE and, in turn, will eventually enjoy an error-
free completion via that PE. In the case where only a single task resides in a PE during
an iteration (either a task that was just accessed or one that was returned internally for
reprocessing) everything works fine and, hence, error-free completion is guaranteed.

In terms of the total system just described, there are a number of Y-measures that
might be considered. For example, due to the finite-capacity of the queue, along with
the slowdown due to reprocessing tasks with erroneous completions, of obvious interest is
the probability that, at some given time ¢, the queue is full. This measure could then be
specified, for example, in terms of an instant-of-time variable V;, where reward is interpreted
as the number of tasks in the queue. (Note that, although referred to generically as a Y-
measure, we take the liberty of using other symbols such as V and W to denote the reward
variable part of the specification; in particular, the symbol V is intended to suggest an
instant-of-time variable.) Hence, when coupled with the interpretation of ¢,

V; = the number of tasks in the queue at time t.

Letting B = {L} be the accomplishment set of interest (a singleton set in this case), the
associated measure is then the performability value

Perf(B) = P[V; = L).

Alternatively, this probability could be specified via the binary-valued reward variable
(indicator variable)

1 if there are L tasks in the queue at time ¢
Vi= .
0 otherwise

coupled with its expected value (mean) as the associated measure. In other words, i.e.,
E[V4] (by virtue of properties of both V; and E) likewise expresses the probability of a full
queue.

To specify the steady-state probability of the queue being full, one considers, instead, a
variable V, whose PDF is the limiting distribution (provided it exists) of its corresponding
Vi variable, e.g., for the first of the two variables considered above,

Vs = the number of tasks in the queue as t — oc.



Then Perf(B), where again B = {L}, gives the desired measure. If, further, tasks are
assumed to arrive as a Poisson process, this also specifies the steady-state probability that
an arriving task will encounter a full queue and, hence, not enter the system.

Measures of productivity of an object system can typically be specified using interval-
of-time variables. For example, relative to a particular PE, if a unit of reward is associated
with each error-free task completion, then the interval-of-time variable Y]o , represents the
number of error-free completions (for that PE) during the time interval [0, £]. If the rate of
error-free completions (as averaged over [0,¢]) is also of interest, this can be specified via
the time-averaged interval-of-time variable

Y0,

W[[]y[} — [67

where Yjg 4 is as above. Corresponding steady-state variables are obtained by considering
limits of these as £ — oco. Performability measures associated with the above could range
from simple mean values to full probability distributions.

B Base Model Specification

Let us turn now to the second ingredient, namely the specification of a stochastic process
or simulation program X on which the evaluation (solution of the measures given by S1))
is to be based. One means of doing this, of course, is to specify X directly, e.g., in the
case of a finite-state, time-homogeneous Markov process, a specification of its initial-state
distribution and its infinitesimal generator. However, the following discussion is aimed at
higher level specifications from which a base model X be can automatically constructed (by
a tool that receives the specification).

Stochastic Activity Networks In the context of performability evaluation, the most
popular vehicle for accomplishing this has been some form of stochastic Petri net (SPN)
[13, 14], which, themselves, are typically called system models. However, as we use them
in the context of S2), such graphical models serve to specify lower level stochastic models
(base models); hence, when there’s need to emphasize this distinction, we will refer to
them more precisely as model specifications. Also, due to space limitations, we choose to
focus on an SPN-variant that is most familiar to us, namely stochastic activity nets (SANs)
[15, 16, 17]. Finally, in keeping with this choice, the tool we presume for construction
purposes is UltraSAN (see [18]). Among other things, this permits discussion and illustration
of hierarchical specification/construction techniques that are not implemented in an earlier
SAN-based tool (METASAN [19]).

Structurally, SANs have primitives consisting of activities, places, input gates, and out-
put gates. Activities (“transitions” in Petri net terminology) are of two types, timed and
instantaneous. Timed activities represent actions of the object system or environment
whose durations impact the measures in question. Instantaneous activities, on the other
hand, represent actions which, for modeling purposes (support of the measures), can be
regarded as having negligible durations. Cases associated with activities permit the speci-
fication of two types of spatial uncertainty. Uncertainty about which activities are enabled
in a certain state is specified by cases associated with intervening instantaneous activities.



Uncertainty about the next state assumed upon completion of a timed activity is specified
by cases associated with that activity. Places are as in Petri nets, and may contain tokens.
An assignment of numbers of tokens to places in the network is a marking of the network.
Input gates have an enabling predicate and function which, as will be seen below, control
the execution of the network. Output gates have only functions, which define the change
in marking of a network upon completion of activities. The use of gates permits greater
flexibility in specifying enabling and completion rules, than with ordinary stochastic Petri
nets.

The stochastic nature of a SAN (to the extent that’s required to determine the base
model it’s specifying) is described by associating an activity time distribution function with
each timed activity and a probability distribution with each set of cases. Generally, both
distributions can depend on the global marking of the network. The activity time distribu-
tion can be any probability distribution function, and is dependent on the marking in which
the activity is “activated” (see below). The probability distribution associated with cases
(known as the case distribution) can depend on the marking of the network at completion
time of the associated activity.

Before describing how a SAN executes in time, it helps to define a few related terms.
In particular, a stable marking of a SAN is one in which no instantaneous activities are
enabled. Conversely, markings in which there is at least one instantaneous activity enabled
are unstable. An activity is enabled if the predicate of each of its input gates is true (holds,
in SAN terminology), and there is at least one token in each of the directly connected input
places (i.e., those place connected by a directed arc from the place to the activity).

Informally, SANs execute in time through completions of activities that result in changes
in markings. Activities complete some period of time after they are activated (i.e., the time
at which an activity becomes enabled, or time of its completion, if it remains enabled), de-
pending on their activity time distribution function. More specifically, an activity is chosen
to complete in the current marking based on the relative priority among activities (instan-
taneous activities have priority over timed activities) and the activity time distributions of
enabled activities. A case of the activity chosen to complete is then selected based on the
probability distribution for that set of cases. These two choices determine uniquely the next
(stable or unstable) marking of the network, which is then obtained by executing the input
gates connected to the chosen activity and the output gates connected to the chosen case.
This procedure is repeated by considering the activities enabled in the new marking.

Activities may also be restarted, or reactivated [16], under certain circumstances. In
particular, for each marking in which an activity may be activated, a set of reactivation
markings can be defined. Then, if prior to completion, one of these markings is reached,
the activity is reactivated, i.e., aborted and then immediately activated. This provides
a mechanism for restarting activities, either with the same or a different activity time
distribution. One can think of this mechanism as a generalization of the execution policies
proposed for other forms of stochastic Petri nets, specified on a per activity basis.

SAN Specification of Single-PE Faulty Multiprocessor To illustrate the use of
stochastic activity networks in the specification process, we consider the faulty multiproces-
sor described in the previous section. More precisely, what we seek here is the specification
of an analytic base model which can support solution of measures of the type illustrated
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Figure 2: SAN Specification
Table 1: Activity Time Distributions
| Activity | Distribution | Parameter values
access exponential
rate | 1000
arrival exponential
rate | 1.5
processing | exponential
rate | 1

earlier in this section. Figure 2 contains a SAN specification of a 1 processor version of
the faulty multiprocessor. In the figure, arrival, access, and processing are timed activities.
Arrival and access have a single case, and processing has 3 cases. Capacity and available
are input gates, and correct is an output gate. Size, queue, and num_jobs are places.

This SAN diagram, together with its activity time distributions (Table 1), case prob-
abilities (Table 2), and input and output gate definitions (Tables 3 and 4, respectively),
precisely specify the object system, workload, and fault environment described informally
earlier. To see this, and illustrate the use of SANs in specifying performability models,
we now describe the functioning of the model. In particular, incoming task arrivals are
modeled by completions of activity arrivael. Upon arrival, a task is represented by a token
in place queue, and the number of tokens in queue is the number of arrived tasks waiting
for service. The finiteness of the queue is represented by input gate capacity, which holds
whenever the queue is not full. This can be seen from the gate’s predicate in Table 3, which
specifies that the number of jobs in the queue must be less than the system capacity, for the
attached activity to be enabled. When an activity completes, a case is chosen (for activity
arrival, there is only one case, so it is chosen by default), the input gates of the activity are
executed, one token is subtracted from each input place, the function of each output gate
connected to the chosen case is executed, and one token is added to each output place of
the chosen case. Activity arrival’s completion thus results in the execution of the function
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Table 2: Activity Case Probabilities

| Activity | Case | Probability

processing 1 | if (MARK(num_jobs) == 1)
return(1.0);
else return(0.81);

2 | if (MARK(num_jobs) == 1)
return( ZERO);
else return(0.18);

3 | if (MARK(num_jobs) == 1)
return(ZERO);
else return(0.01);

Table 3: Input Gate Definitions

| Gate | Definition

available | Predicate
MARK(num_jobs) < 2

Function
/* do nothing x/

7

capacity | Predicate
/* has the buffer capacity been reached? x/
MARK(queue) < MARK(size)

Function
/% do nothing */

U

Table 4: Output Gate Definitions

| Gate | Definition

correct | /+ complete all jobs at the same time %/
MARK(num_jobs) = 0;

11



of input gate capacity (which does nothing, according to its specification), and the addition
of one token to place queue, because of the output arc from the activity to place queue.
The rate of activity arrival specifies the rate of task requests, which may or may not be
serviced, depending on the number of tokens in place queue.

Attempts to access the PE are represented by activity access, whose activity time (see
Table 1) represents the time to assign a task to a PE. The enabling of this activity is
controlled by input gate available, which enables the activity if the processor is “available.”
Activity processing represents the processing time of tasks, as described in the informal
description of the model. Specifically, when processing completes, the action taken depends
on whether one or two jobs were processed. This choice is reflected in the cases of activity
processing (see Table 2), whose probability distribution depends on the marking of place
num_jobs. If only one job was processed, processing was correct with probability 1, and
case 1 (the topmost case, in the diagram) is always chosen. When this occurs, one token is
removed from num_jobs, because of the input arc from the place, and output gate correct
is executed.

If there were two jobs that completed their processing, the action is probabilistic, as per
the informal specification given earlier. In this situation, the three cases of activity process
correspond to the three possible actions:

1. both jobs were processed correctly, and hence leave the system,

2. one job was processed correctly, and hence leaves, while the other must remain to be
reprocessed, or

3. both jobs were processed incorrectly, and hence must remain to be reprocessed.

The probabilities associated with each of these actions is given in Table 2, and the actions
are carried out by the arcs and output gate connected to the activity. For example, if two
jobs complete processing, with probablity .01, they were both processed incorrectly. If this
occurs, the third case of the activity is chosen, and the token that was removed from place
num_jobs by the input arc attached to processing is returned via the output arc attached to
the case.

The example just presented illustrates the specification of a single processor system as
a SAN. While multiple processor versions could be specified directly as a SAN through the
use of additional activities, places, and gates, this would be cumbersome for large systems.
Furthermore, structures (such as symmetries) in the SAN that could be exploited in the
construction process would be difficult to detect, and hence make use of. Composition
methods for SAN specifications address both of these concerns, and are now discussed.

Composed Models As pointed out in the previous paragraph, large systems are cum-
bersome to express directly in terms of a single SAN specification, and can lead to models
whose solution is difficult, due to the complexity of the resulting specification. Composed
model specifications permit hierarchial composition of SAN models, and their corresponding
reward variable specifications (to be discussed in the next section) in an iterative manner.
This composition is done using two operations: replicate and join. The composition acts on
the reward structure(s) of a SAN, as well as the SAN itself, to preserve properties needed
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Figure 3: Composed N-PE Faulty Multiprocessor Specification

in the subsequent construction process. Formally, the resulting specification is known as a
composed SAN-based reward model (composed SBRM) [20].

The replicate operation replicates a SAN and associated reward structure a certain
number of times, holding some subset of its places, called its “distinguished” or “com-
mon” places, common to all resulting submodels. Replicated submodels interact through
these common places, and although identical in their specification, can each have their own
marking. Each replica will have the same reward structure(s) (see the next section for their
specification) as the original submodel.

The join operation allows the combination of several different submodels. Informally,
the effect of the operation is to produce a composed model which is a combination of the
individual submodels. Again, distinguished places play an important role in the operation.
In this case, however, a list of places is associated with each component submodel. The
first place in each of the lists is merged to form a single place, the second place is merged
to form another place, and so on. Particular elements on the lists can be null, permitting
the case where certain places are created from a proper subset of the joined submodels.

Composed Model for N-PE Faulty Multiprocessor A composed model specification
of an N-PE faulty multiprocessor is given in Figure 3. The nodes at the leaves of the tree are
SANs, together with their reward structures. These SANs represent the workload offered
to the multiprocessor (queue) and the processing at a single PE (processor), as shown in
Figure 4. Note the similarity with the single processor version described earlier. Since we
now consider a IN-processor version, we must replicate the processor specification IV times.
Replication is done via the “Rep” node in Figure 3. The Rep specifies that its child node
(processor) should be replicated N times, holding the place queue common among all the
replica submodels. This operation creates a specification consisting of N processors, all
sharing a common place queue. Specification of the model is completed by joining the N
processor specification to the buffer submodel, using the Join node in Figure 3. This node
specifies that the place queue, in the N-PE submodel, is to be made common with place
queue in submodel buffer.
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Figure 4: SAN Submodels in Composed Model Specification

C Reward Structure Specification

This section describes the link between a SAN specification and the measure specification
method outlined earlier. The link is made using a reward structure, similar to that used
for Markov reward models, but specified at the SAN level. A reward structure typically
consists of two types of rewards: an impulse reward that is associated with each state
change, and a rate reward that is associated with the time spent in a state. This idea was
extended in [11, 12] to the SAN level, where impulse rewards can be assigned to activity
completions, and rate rewards can be assigned to particular numbers of tokens in places. A
similar extension was made by Ciardo, Blakemore, and Chimento [21] in defining “stochastic
reward nets.”

Formally, as in [12], an activity-marking oriented reward structure of a SAN with places
P and activities A is a pair of functions: C : A — IR where for a € A, C(a) is the reward
obtained due to completion of activity a, and R : P(P,IN) — IR where for v € P(P,IN),
R(v) is the rate of reward obtained when for each (p,n) € v, there are n tokens in place p.
IN is the set of natural numbers and P(P, IN) is the set of all partial functions between P
and IN. An element v € P(P, IN) is referred to as a partial marking. The marking is partial
in the sense that natural numbers are assigned some subset of P, namely the domain of the
partial function v.

Informally, impulse rewards are associated with activity completions (via C) and rates
of reward are associated with numbers of tokens in sets of places (via R). We use the con-
vention, in practice, that rewards associated with activity completions and partial markings
are taken to be zero if not explicitly assigned otherwise. Performance, dependability, and
performability variables can then be easily defined in terms of these rewards, using the
measure specification method discussed earlier in this section (see Figure 1).

Reward Structure Specification for Faulty Multiprocessor To illustrate the use
of reward structures in specifying measures, consider the reward structures in Table 5, for
the composed N-PE faulty multiprocessor. Following the convention used in UltraSAN,
we specify rate rewards using multiple predicate-function pairs. The interpretation of each
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Table 5: Reward Structure Specification for Faulty Multiprocessor

| Variable | Definition

probability non—blocking

Rate rewards
Subnet = buffer
Predicate:
MARK(queue) < MARK(size)
1

Impulse rewards
none

utilization

Rate rewards
Subnet = processor
Predicate:
MARK(num_jobs) > 0
Function:
1.0/ N

Impulse rewards
none

number of jobs in queue

Rate rewards
Subnet = buffer
Predicate:
1
MARK(queue)

Impulse rewards
none

number of jobs in system

Rate rewards
Subnet = buffer
Predicate:
1
Function:
M ARK (queue)
Subnet = processor
Predicate:
1
M ARK (num_jobs)

Impulse rewards
none
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predicate-function pair is as follows. When the predicate is true, reward is earned at the
rate specified by the function. The total rate at which reward is accumulated by a variable
is then the sum of the reward contributed by each predicate-function pair. Furthermore,
as per the functioning of the replicate operation described in the previous subsection, a
reward structure is replicated along with its SAN. The contribution to the total reward by
the replicated SAN is thus obtained by summing the reward from each individual SAN.
Impulse rewards (although not illustrated here), specify fixed amounts of reward to be
accumulated upon an activity’s completion.

For example, consider the first reward structure in Table 5, which specifies a reward
structure for an indicator random variable. This variable is used to determine the probability
that the queue is not full (i.e., non-blocking). In this case, a reward is earned at rate 1
whenever the queue is not full, and at rate 0 when the queue is full. Using this structure
to build an instant-of-time variable, we obtain the status of the queue at a particular time
t, or in steady-state. The expected value of this variable is thus (since it is an indicator
r.v.) the probability that the queue is not full. The second variable illustrates the use of a
reward structure to specify the utilization of the N-processor system. Utilization is defined
such that it is 1 (fully utilized) if all processors are processing at least one job, and k/N, if
k < N processors are processing at least one job. This definition is directly reflected in the
reward structure of Table 5.

The third variable in Table 5 illustrates the use of a reward structure whose predicate is
true (specified as “1”, in UltraSAN) for all markings, and whose function changes depending
on the marking. This reward structure is used to obtain the number of jobs that are waiting
in the queue, and is defined on the buffer submodel. Together with an instant-of-time
variable, the reward structure results in a variable whose value takes on the the number of
tasks in the queue at a particular time or in steady-state. The final variable illustrates the
use of multiple predicate-function pairs in different SANs, to determine the number of tasks
in the N-PE faulty multiprocessor system. Counting the number of tokens in place queue,
and all the places num_jobs determines this number.

ITT Performability Model Construction

Given a specification of a performability model, its construction can take many forms,
depending on the amount of detail required in the base model, and the type of solution
method employed. Broadly speaking, model solution can either be by numerical analysis,
or simulation. In the case of numerical analysis, model construction implies building a
feasible stochastic process (one that supports the desired variables, and is solvable) from
the specification. In the case of solution by simulation, it implies building an appropri-
ate discrete event simulator, which when executed, produces the desired estimators of the
specified performance variables. In this case, the simulator itself is the base model.

With either solution technique, there are many feasible base models for a given per-
formability model specification, differing in the level of detail they preserve relative to the
specification. At one extreme, the models can be very detailed, preserving all the details of
the SAN and composed model, and supporting all possible variables specifiable within the
specification method. At the other extreme, a base model can be the least refined model
that supports the specified performance variable, and is solvable. Models which are at the
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detailed end of the spectrum are called, appropriately, “detailed base models,” and those
near the other end of the spectrum are called “reduced base models.”

In the remainder of this section, we first describe algorithms that are necessary and com-
mon to both detailed and reduced base model construction. We will then discuss particular
examples of detailed and reduced base model construction methods.

A Marking Change Algorithms

Regardless of the type of model construction method employed, there are several algo-
rithms that are common to both detailed and reduced base model construction methods.
Generally speaking, these algorithms convert the execution of SAN and composed model
from the very detailed level a SAN executes at (discussed in the previous section), to a level
of detail appropriate for constructing base model representations. As with most decisions
regarding model construction algorithms, just what is “appropriate” is motivated by what
we would like to know about the specified system. Examination of the performance variable
specification method and, in turn, method for specifying reward structures suggests that we
would like to preserve information regarding timed activity completions and times spent in
stable markings. Information about particular sequences of instantaneous activities which
might complete, or sojourns in unstable markings need not be preserved, since neither of
these occurrences contribute to the value of a reward variable.

Thus, we are interested, at the most detailed level, in possible sequences of timed activity
completions and reached stable markings. We would like to determine, for each stable
marking, each timed activity which may complete in that marking, and each case that
may be chosen, the probability distribution on possible next stable markings. After the
completion of a timed activity and choice of a case, a next stable marking can be reached in
two ways. In the first, execution of the gates and arcs connected to the chosen case results
immediately in another stable marking, so no additional work is required. The probability
associated with this possible next stable marking is simply the probability associated with
the case.

The situation is much more complicated if an unstable marking is reached upon execu-
tion of the gates and arcs associated with the chosen case. In this situation, two questions
must be addressed:

1. Does there exist a sequence of subsequent instantaneous activity completions and
unstable markings such that a stable marking is never reached?

2. If more than one instantaneous activity is enabled, does the probability distribution

on next stable markings depend on which instantaneous activity is chosen to complete
first?

The answer to the first question determines whether a next stable marking distribution
exists for this marking, timed activity completion, and case selection. In SAN terminology,
if the answer is no for all reachable stable markings, activities which may complete in these
markings, and cases of these activities, we say that the SAN is stabilizing [17]. Unfortunately,
it is not decidable if a SAN in a particular initial marking is stabilizing [17]. While this is
unfortunate from a theoretical viewpoint, it is not particularly disturbing, since arbitrary
length sequences of intervening instantaneous activity completions and resulting unstable
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markings could not be held in a computer with finite memory anyway. In practice, then, one
just sets a limit on the number of subsequent instantaneous activities that will be allowed,
and declares a SAN to be stabilizing if no sequences longer than this length exist.

Given that a SAN is stabilizing, then, the answer to the second question becomes im-
portant. In this case, the answer determines whether the next stable marking distribution
is unique, or depends on instantaneous activity choices that are made while generating the
next stable marking distribution. Recall that with SANs, choices made upon completion
of an activity are made using cases, not by specifying a distribution on completion of one
or more instantaneous activities enabled in a marking (a “random switch,” in GSPN ter-
minology [22]). This cleanly separates choices that the modeler is aware of, and should
be probabilistically specified, and choices that he is not aware of, and should not matter.
Thus, we would like the probability distribution on next stable markings to not depend
on choices among concurrently enabled instantaneous activities. When such choices do not
matter, we say that a SAN is well specified [17]. SANs that are well specified are completely
probabilistically specified, in the sense that the chosen activity time distributions and case
distributions completely specify the probabilistic behavior of the SAN. Since we wish to use
probabilistic methods to evaluate a SAN’s behavior, being well specified is a prerequisite to
constructing a base model.

Fortunately, algorithms to determine whether a given SAN in some initial marking is
well specified do exist, and are constructive, in the sense that while determining whether
instantaneous activity choices matter, they determine that probability distribution, if it
exists [17]. Informally, determining whether such choices matter involves enumerating all
possible “paths,” i.e. sequences of instantaneous activities and unstable markings, that are
reached before reaching a stable marking, and grouping together those where the same
choices among concurrently enabled instantaneous activities were made. Note that this
grouping defines a compatibility relation on the set of possible paths, not an equivalence
relation. Once the grouping is done, the set of possible next stable markings is computed
for each compatibility set, by looking at the stable marking that results from each path’s
execution. The probability distribution within each compatibility set is then computed by
summing the probability of each path that results in a particular stable marking within the
set. Finally, the probability distributions of each compatibility set are compared with one
another. If they are identical, then possible instantaneous activity choices that are made
do not matter, and this common distribution becomes the next stable marking distribution
for the original timed activity and case in the starting marking. If they are not identical,
then the choices do matter, and the SAN is not well specified [17].

Given that a SAN is stabilizing and well specified, the above algorithms give us a method
for jumping from stable marking to stable marking, recording the timed activity completion
that caused the transition. Note that this computation can be done on the fly; there is no
need to keeps sets of stable and unstable markings, which are later used to compute a state-
transition matrix, as is done with GSPNs [22]. The next step in developing performability
model construction methods is to determine an appropriate notion of state, and this choice
is the basic distinction between detailed and reduced base model construction methods.
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B Detailed Base Model Construction

Detailed base models are constructed directly from SAN and composed model repre-
sentations, without regard to specified performance variables. Construction of base models
from stochastic extensions to Petri nets is typically done this way, where most often, e.g.,
[9, 22], the state of the base model is taken to be the stable (also known as “tangible”)
markings of the network. More detailed notions of state, that keep track of the most re-
cently completed timed activity, as well as the stable marking that is reached when that
activity completes, can also be used [20]. Both of these notions of state are “detailed,” in
the sense that they preserve the exact marking of the specified SAN in the constructed base
model. In the case of analytical methods, this marking becomes part of the state of the
generated stochastic process, and in simulation methods, it is the notion of state that is
employed on the generated trajectory when the simulator executes. Both of these detailed
model construction methods are discussed in the following.

Construction for Analytic Solution When a SAN is well specified, and the possi-
ble stable markings are taken to be states, the resulting process is known as the “mark-
ing behavior” of the SAN. The marking behavior is, more formally, a stochastic process
(R,T,L) ={R,,T,, L} where T,, is the time of the nth timed activity completion, R, is the
stable marking reached after the nth timed activity completion, and L is the total number
of transitions of the process including the one made at Tp, given that Ry = () and Ty = 0.
Note that since we maintain a separate random variable for markings entered and the time
of entry, the number of activity completions during an interval can be counted. Similarly,
activity completions which do not change the marking of the network can be detected, since
successive times of activity completions are recorded by T,.

When this level of detail is not needed, the “minimal marking behavior” can serve as a
detailed base model. More formally, the minimal marking behavior of a SAN with marking
behavior (R, T, L) is the stochastic process Z = {Z; | t € IR"} where Z; is the stable
marking at time ¢. This behavior is minimal, relative to the marking behavior, in the sense
that it is the behavior with the minimum number of state transitions that corresponds to
the marking behavior. Hence, activity completions that do not result in a change of marking
cannot be detected. The minimal marking behavior is the behavior that is typically derived
from a stochastic Petri net, e.g., [13, 14, 22].

The resulting marking and minimal marking behaviors are Markov when all the activities
in the model are exponential, and activities are reactivated often enough that their rate (if
marking dependent) depends only on the current state. It is important to note, however,
that there are SANs with all exponentially distributed activities that are not Markov. This
possibly surprising fact follows from the execution rules for SANs. In particular, recall that
activity times are determined at activation time and may be marking dependent. Therefore,
depending on the nature of the specific model, it may be the case that an exponentially
distributed activity time depends on a past marking for its rate, and is, hence, not Markov.
Other stochastic Petri nets definitions do not allow this behavior, and implicitly assume
that rates adjust to follow the current marking of the net. While this is one reasonable
behavior (which can be specified using reactivation functions) that will result in Markov
behavior, there are others, as well. Furthermore, if all activities are not exponential, it is
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not reasonable to assume that rates “adjust” as markings change, since the delay behavior
of these activities is not memoryless. For more information, and a precise definition of the
class of SANs that exhibit Markov behavior, see [17].

Given the behavior of a SAN is Markov, we can generate the marking behavior, repre-
sented as a state-transition-rate diagram, as follows. First, each activity that may complete
in the initial state is completed, generating a potential new state corresponding to each pos-
sible next stable marking that may be reached from the initial marking. If a potential next
state already exists, a non-zero rate from the original state to the reached state is added to
the list of rates associated with the originating state. If the reached state is new, then it is
added to the list of states which need to be expanded. A rate from the original state to the
new state is then added to the list of rates for the original state. Generation of the marking
behavior then proceeds by selecting states from the list of unexpanded states and repeating
the above operations. The procedure terminates when there are no more unexpanded states
(signifying that the state space is finite and has been generated), or when the capacity of
the machine to store additional states is exhausted. In this case, the state space is infinite
or too large to be computed. For a more precise description of this algorithm, see [20].

Marking Behavior of Faulty Multiprocessor Model To illustrate the marking be-
havior of a composed SAN-based reward model, consider again the faulty processor model.
Suppose we are interested in the simple case where there is a single buffer, and two PEs.
In this case, the marking behavior of the process has 18 states, and has the state transition
rate diagram given in Figure 5. In the figure, circles represent possible marking states,
and the numbers within the circles refer to the markings of places in that state. The two
numbers on the first line refer to the marking of the first processor, the two on the second
line the marking of the second processor, and the one on the third the marking of the buffer.
The marking of place size, in the buffer submodel, is not shown, since it is constant and
equal to the number of buffers in the system, for all states. The marking for each SAN is
such that the places are in alphabetical order. Rates are not shown on the arcs to reduce
the complexity of the figure, but are generated via the marking behavior generation pro-
cess just described. As can be seen from the figure, the marking behavior of even a small
configuration of the example system is quite complex. Furthermore, as shown in Table 6, it
grows in size rapidly as the number of buffers and processors considered increases. Dashes
in the table represent state spaces that were too large to generate.

In spite of this fairly rapid growth in size, the marking behavior is not always sufficient
to support a variable that depends on knowing which activity completed in a particular
marking. This is true, since there may be more than one activity which may complete in a
marking that results in the same next stable marking. These multiple activities induce the
same state transition in the marking process, and hence cannot be distinguished.

If this can happen, one must keep track of the most recently completed timed activity,
as well as stable marking, as part of the state description. The resulting process is known as
the “activity-marking behavior” of a SAN [17]. Formally, the activity-marking behavior is
a stochastic process (R, T, L) = {Ry,, Ty, L} where Tj, is the time of the nth timed activity
completion, R, is the am-state reached after the nth timed activity completion, and L is
the total number of transitions of the process including the one made at Ty, given that
Ry = (V,po) and Ty = 0. An “am-state” is a possible stable marking of the network
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Table 6: State Space Sizes for Detailed Base Model Construction Methods

# Marking Behavior Activity-Marking Behavior
Proc. Number of Buffers Number of Buffers

1] 5| 10 | 20 1] 5] 10 | 20
1 6 18 33 63 12 44 84 164
2 18 54 99 189 58 214 409 799
5 486 | 1,458 | 2,673 | 5,103 3,483 | 12,555 | 23,895 | 46,575
7 4,374 | 13,122 | 24,056 | 45,972 || 43,012 | 292,330 - -
10 || 118,098 - - - - - - -

together with a timed activity that may result in that marking when it completes. 1/ is a
fictitious activity that is assumed to complete, bringing the network into its initial marking.

It can be shown [20] that the activity-marking behavior of a network is Markov when-
ever the marking behavior is Markov, and that the activity-marking behavior supports all
performance variables that can be defined using the reward variable specification method
described in Section II. However, this construction method results in base models that
become extremely large as the size of a system grows. For example, Table 6 shows that
the size of the resulting activity-marking space of the faulty multiprocessor model grows
extremely rapidly as the number of processors and buffer stages is increased. Even if one
considers only the marking behavior, the state space grows quickly, and becomes unman-
ageable for most realistic applications. This motivates the development of reduced base
model construction methods, which will be discussed in the next section. Before doing so,
however, we outline a method for simulating SAN-based reward models, using the notions
of state just discussed.

Construction for Solution by Simulation A simple approach to discrete-event sim-
ulation, in which each activity is an event type and every activity completion is an event
(e.g., [17, 23, 24]), must be employed if one wished to preserve the complete marking or
am-state during execution. Simulation of stochastic extensions to Petri nets is typically
done in this manner, although simulation of a generated stochastic process representation
has also been proposed [25]. Use has also been made of the structural relationship between
activities (transitions in GSPNs) [23] to minimize the number of event types that need to
be checked for a change in status while retaining the detailed notion of state.

In such a procedure (for example, as implemented in [19]), detailed state trajectories
are generated by completing the earliest activity scheduled to complete, iteratively, and
updating a single future event list, which keeps track of activities scheduled to complete.
At every activity completion, a new stable marking for the model is chosen probabilistically
from the set of next stable markings generated, using a procedure similar to that discussed
in subsection A of this section. It is then necessary to check all scheduled events to see if
they are still enabled in the new marking. The events that remain enabled must be kept on
the future events list, unless the current marking is a reactivation marking for the activity.
If it is, the activity is first removed from the list, and then added back to the list, with the
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new scheduled completion time. Finally, all activities that are not currently on the future
event list must be checked to see if they are now enabled, and hence should be added to
the list.

While this procedure is simple, it does have some drawbacks. These stem primarily from
the fact that as the number of activities (or transitions, in stochastic Petri net terminology)
grows, the work that must be done to update the future event list, upon each state change,
also increases. This work relates primarily to the fact that after a change in marking, a
large number of activities need to be checked to see if their status (enabled or disabled) has
changed. Making use of structural information to minimize the number of activities that
may have changed their status [23] together with reduced base model construction solves
this problem, and will be discussed in the next subsection.

C Reduced Base Model Construction

Detailed base model construction methods can lead to base models that are extremely
large, if analytic solution methods are employed, and where a large number of events need be
considered during each state change, if simulation is used. To avoid these problems, we make
use of the SAN and composed model structure to develop a less-refined notion of state, which
does not distinguish between replicate submodels. This notion of state is adaptive, and
depends on the structure of the composed model tree and choice of performance variables.
By exploiting symmetries present in the composed model (identified via the replicate node),
the procedures generate base models that often consist of many fewer states for analytic
solutions. They also result in fewer events that must be processed upon each state change
if simulation is used. This subsection will first describe the notion of state employed (and
represented graphically as a “state tree”). It will then describe how state trees are used in
analytical and simulation-based construction methods.

State Trees State trees [18, 26] are closely related to the graphical representation of
composed SAN-based reward models, described in Section II. Recall that a composed
SBRM is a result of operations on SBRMs that themselves may be composed models. This
composition is represented graphically by a tree. A notion of “state” can then be determined
at each level of the tree structure. At a join operation, we keep a vector of “states” for
each joined submodel. At a replicate operation, the number of replicas in each existing
submodel “state” is kept. Finally, at the lowest level, the “state” of a SAN model is its
normal marking. The complete state is then the impulse reward due to the last activity
completion and the composed state formed as above. The notion of state thus preserves
the identity of all submodels at a join node, but only keeps track of numbers of submodels
in particular states at replicate nodes.

State trees are a graphical representation of the marking portion of a reduced base
model state. They consist of three types of nodes: join nodes, replicate nodes, and SAN
nodes. All leaves of a state tree are of type SAN. Nodes that are not leaves are of type
join or replicate. A node of type SAN has a sub-type which relates the node to a particular
SAN model. Each node in the state tree has a corresponding node in the composed model
diagram. A node on a particular level on a state tree corresponds in type and level with
a node on the composed model diagram. On both the state tree and the composed model
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processor (num_jobs = 0)

Figure 6: Initial Reduced Base Model State

diagram, nodes related to SANs are at the leaves of the tree.

Furthermore, each state tree node has an associated subset of the distinguished places
of the corresponding node in the composed model diagram. These are the places that are
distinguished at the node, but not at its parent node. For convenience, we use the expression
“a place at node 7” to characterize this relationship between nodes in the state trees and
places in the composed SAN-based reward model. Given this assignment of places to nodes
in the state tree, we define pu; as the restriction of the global marking to the places at node
1. The marking p; appears next to a node ¢ and is ordered according to the alphabetical
order of the places at that node.

Nodes in a state tree are connected by directed arcs. An arc that connects a parent
node 4 to a node j has an associated integer n; ;, where n; ; is the number of occurrences
of the marking of the SBRM represented by node j at node 7. By definition, each outgoing
arc j from a join node ¢ has n;; equal to one, since there is one copy of each constituent
SBRM used in the join operation. Outgoing arcs from replicate nodes can have cardinality
ranging from one to the degree of replication defined in the corresponding composed model
node, and represent the number of replicas in a particular sub-state.

State Trees for the Faulty Multiprocessor Model To illustrate the use of state trees,
consider again the N-processor faulty processor model introduced in Section II. The state
tree for the initial reduced base model state of this model, when the number of buffer stages
is 1, is given in Figure 6. Note the common place queue is at the top level join node (denoted
by “J” in the figure), since it is common to all processor replicas and the buffer. No places
are at the replicate node (denoted with a “R”), since the only place common at that level
(queue) is also common at the next higher level. The “N” on the outgoing arc from the
replicate node denotes that all N replicas of the processor are in a single marking, where
the number of jobs at the processor is zero.

Only one activity, arrival in submodel buffer, is enabled in the initial marking. It will
therefore eventually complete, resulting in the state tree shown in Figure 7. Note that the
structure of the tree has not changed, only the marking of place queue, at the join node.
In this marking, the queue is full, so activity arrival is no longer enabled. Activity access
is now enabled in all processor submodels, which are “competing” for the job. Eventually,
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Figure 7: Second Reduced Base Model State

J (queue=0)
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processor
(num_jobs=0)

processor
(num_jobs=1)

Figure 8: Third Reduced Base Model State

one of these activities will complete, resulting in the state tree shown in Figure 8.

Note that the structure of the tree has now changed, with the processor submodels split
into two groups, N —1 models which remain in the idle state, and one model, which now has
a token in place num_jobs, indicating that it is processing a single job. It is important to note
that the particular processor submodel in which activity access completed is not recorded,
only the fact that activity access completed in some processor submodel. This observation
gives insight into the cause of the reduction in number of states in a reduced base model.
For a replicate node with IV competitively enabled timed activities, this abstraction results
in an N-fold reduction of possible next stable markings. If the composed model consists of
multiple replica nodes, arranged in a hierarchical fashion, the reduction can be even greater.

Construction for Analytical Solution A state tree, together with the impulse reward
of the timed activity that most recently completed, form a complete state in a reduced base
model. Note that the leaves of the state tree are submodels in a particular marking, and
the number of submodels in that marking can be determined by multiplying the weights
associated with the arcs on the path from the root of the tree to the submodel.

A reduced base model then can be generated, conceptually, by taking the reachable
complete states as the states in a stochastic process and computing transitions between
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these states. The process to generate a reduced base model is very similar to that used
to generate a detailed base model, except that the algorithm operates on complete states.
The rates from one complete state to another are determined, as described earlier in this
section, except that we consider completions of activities from sets of replica activities —
that is, sets of identical activities in different replica of a submodel in a particular marking.
The SAN will transition from a state when the first activity in some set of replica activities
completes, so the departure rate assigned to a set of replica activities in a leaf in the state
tree is equal to the rate assigned to that activity in the SAN, multiplied by the number of
submodels that are in the marking. Using these rates, and the generated state transition
probabilities, we can transition directly from one reduced base model state to another.
It can be shown (see [20]) that the resulting reduced base model:

1. is Markov whenever the corresponding detailed base model is, and
2. supports the specified performance variable.

The first fact is established by formally specifying a mapping from each am-state of the
model to its corresponding reduced base model state, and showing that this mapping defines
a strong lumping on the am-behavior of the model. Thus, reduced base models produce
exact results, and can be solved using Markov methods whenever detailed base models can.
It is important to note that, while the proof of the Markov nature of the reduced base
model relies on lumping arguments, the generation process described above does not rely
on lumping. Instead, it generates the reduced base model directly from the composed SAN
specification, without ever generating the activity-marking behavior of the model.

The second fact is established by noting that, according to the variable specification
method described in Section II, the impulse and rate rewards are specified in terms of a
SAN, and are thus identical for all replica SANs defined by the replicate operation. Since
all such SANs have identical rewards when in the same marking, the reward obtained
while executing a composed SAN model depends only on the number of replica SANs in a
particular marking, not the fact that a particular replica is in some marking.

Reduced Base Model for Faulty Multiprocessor Model To illustrate analytic re-
duced base model construction, consider once again the faulty multiprocessor introduced
in Section II. Figure 5 showed the marking behavior of this model when the number of
buffer stages is one and there are two PEs; Figure 9 shows the reduced base model for the
same model parameters, when all activities have identical impulse rewards. In the figure,
states are notated as follows. Replica submodels in identical markings are not distinguished
(as per the state tree concept), and hence, a state can be labeled by the distinct markings
of each SAN, and the number of SANs in each of these markings. As before, markings of
SANSs are shown as vectors of places in alphabetical order, and the marking of place size in
submodel buffer is not shown, since it is constant for all states. The number of submodels
in a particular marking is given by the number before the colon on a line, and the vector
after the colon represents the marking of that number of submodels. The numbers on the
arcs are rates between states, and were calculated as described earlier.

The top state in the diagram thus represents the case where both processors are idle,
and the queue is empty. The state below and to the left represents the situation where one
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Figure 9: Reduced Base Model for Faulty Processor with 1 Buffer and 2 PEs
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Table 7: Detailed vs. Reduced Base Model Construction Methods

# Marking Behavior Reduced Base Model
Proc. Number of Buffers Number of Buffers

1] 5 | 10] 20 1] 5 | 10 | 20
1 6 18 33 63 6 18 33 63
2 18 54 99 189 12 36 66 126
5 486 | 1,458 | 2,673 | 5,103 42 126 231 441
7 4,374 | 13,122 | 24,056 | 45,972 72 216 396 756
10 || 118,098 - - - 132 396 726 1,386
15 - - - - 272 816 1,496 2,856
20 - - - - 462 1,386 2,541 4,851
50 - - - - 2,652 7,956 | 14,586 | 27,846
100 - - - - 10,302 | 30,906 | 56,661 | 108,171
250 - - - - 63,252 | 189,756 | 347,886 -
500 - - - - || 251,502 - - -

of the processor submodels has a single token in place num_jobs, one processor submodel has
no tokens in place num_jobs, and there are zero tokens in place buffer. Normally (since we
require that reduced base models support variables that depend on activity completions),
the impulse reward of the activity that most recently completed would also be part of the
state label, but since this impulse is the same for all activities, the label is not needed. Note
that the reduced base model consists of 12 states, while the marking behavior consisted of
18 states. The savings comes from the fact that we do not distinguish between the two
processor submodels in the reduced base model.

The differences in state space size are dramatic for larger systems, as shown in Table
7. As with Table 6, dashes represent state spaces that were too large to generate. As can
be seen from the table, generating detailed base models become impractical after only ten
processors, but models for up to 500 processors can be generated when using reduced base
model construction methods.

Construction for Solution by Simulation Recall that when detailed base model con-
struction methods are used, activities in SANs are event types, and activity completions
are events in the discrete event simulation. For large models, this leads to situations where
there are a very large number (possibly 1000’s) of event types, and the number of activities
whose “status” (i.e., enabled or disabled) must be checked upon each activity completion is
correspondingly large. In simulation, reduced base model construction methods make use
of the state tree to more efficiently perform future events list management [26].

This efficiency is achieved by reducing the number of activities that are checked for a
change in their status during the transition from one reduced base model state to another.
The reduction can be achieved since all replicas of each activity which have their input
places in the same marking, will have the same status. By definition, this will be the
case for all replica activities at a particular leaf in the state tree, and hence we only need
check the status of one activity in a set of replica activities at a leaf in the state tree. More
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Figure 10: State Tree with Future Event Lists

formally, we define a representative activity as an activity that “represents” the set of replica
activities a; € Ay, ag € Ag, ..., a; € A, ..., ap € A,, where A; is the set of activities of
the i*" replica in a set of n replicas of a particular submodel in identical markings. Each
representative activity is an event type in the new simulation technique, whereas activity
completions are events.

During simulation, we operate on representative activities, instead of all activities, when
performing future event list management. Status checks on activities are then reduced to
a single check per set of replica activities for a set of submodels in identical markings.
The events for each of these replica activities can be grouped into a list related to the
representative activity. We call this list of sampled completion times a “compound event.”
More formally, we define a compound event e, for representative activity a as the list of
sampled completion times {t1,to,...,t,}, where n is the number of activities represented
by a. As argued in the previous section, n can be found by multiplying the numbers on the
arcs on the path from the root to the SAN under consideration. Using this information,
compound events can be built, each with n elements, from the list of future events for each
set of submodels represented by a leaf node.

Simulation of Faulty Multiprocessor Model The faulty multiprocessor model is use-
ful to illustrate the use of compound events in simulation using state trees and multiple
future event lists. Specifically, consider the state tree of Figure 10, which has each leaf
node augmented with a list of compound events. This state represents the situation where
5 PEs are processing a single task. In this state, there are three sets of compound events:
FE1, E2, and E3. E1 has no events scheduled, since there are no activities enabled in this
state in this submodel. E2 has one compound event scheduled, corresponding to activity
processing. Since there are five replicas of type processor in the same marking (the result
of multiplying the integers at each arc on the route from the node at the highest level to
the leaf), processing has five sampled completion times. E3 has one event scheduled, since
the queue is now empty, and hence, activity arrivals is enabled. There is only one time
scheduled for this event, since the submodel corresponding to this leaf is not replicated.
The algorithms to effect the transition from one state tree, augmented with future events
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lists, to another are quite complicated, since trees may have multiple replicate nodes, each
which may split or join in a given state change. A detailed description of the algorithms,
which also make use of structural information to detect activities which may have changed
their status, can be found in [26].

IV  Summary

As argued in the introduction, model specification and construction are important as-
pects of performability evaluation. With proper abstractions and tools, they make possible
the specification of complex behaviors, which would be extremely difficult to represent at
the state level. Early specification of performance measures is also very important, since
they can guide development of the specification of the environment and object system.
Furthermore, a carefully chosen specification formalism can greatly aid in the construction
process, by suggesting base models that are tailored to the measures in question or that
exploit symmetries that are made evident by the specification method. Use of such tech-
niques can result in base models that are smaller, and can be solved more efficiently than
if they were not used.

While the simple example presented herein illustrated some of these advantages, the
“proof” comes through application to realistic, practical examples. Such applications
can validate the utility of specification and construction techniques and (when limits are
reached) serve to motivate new work. Early (circa 1986) specification and construction
methods were implemented in METASAN, and all methods described in this paper have
been implemented in UltraSAN. Both tools have been used for a wide variety of performance,
dependability, and performability evaluations. In particular, with regard to performability
evaluation, they have been used to evaluate both computer (e.g., [27, 28]) and communi-
cation (e.g., [29, 30, 31, 32]) systems. The results show that stochastic activity networks
are indeed an appropriate method for specifying complex system behaviors, and that, for
many practical examples, reduced base model construction methods generate base models
that can be solved using readily available computing resources.
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