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Abstract— This paper introduces a novel gait parameteri-
zation method that models gait kinematics as a continuous
function of gait cycle phase, walking speed, and ground slope.
Kinematic data was recorded from seven able-bodied subjects
walking on a treadmill at twenty-seven combinations of walking
speed and ground slope. Convex optimization was used to
determine the parameters of a function of three variables
that fits this experimental data. This function may be able to
provide desired trajectories to a virtual constraint controller
over a continuum of gait phases and ambulation modes. This
could allow for a single, non-switching controller to control
a prosthetic leg for a variety of tasks, avoiding many of the
problems associated with the ubiquitous use of finite state
machines in prosthesis control.

I. INTRODUCTION

Biped locomotion is an incredibly complicated hybrid
dynamic activity, requiring the synchronization of links while
providing propulsion, shock absorption, stance stability, and
energy conservation across continuously varying ambulation
modes or environments. Due to this complexity, analysis of
the continuous human gait cycle is traditionally split into
different ambulation modes, herein referred to as tasks, and
the gait cycles within tasks are further split into distinct
periods called phases [1].

Task and gait cycle discretization is also a common
practice in the design of controllers for powered prosthetic
legs. Most control algorithms will first define a finite number
of tasks (e.g., level ground walking, ramp ascent on a specific
slope, ramp descent on a specific slope, walking at specific
slow, normal, or fast speeds, etc.) and use a finite state
machine (FSM) to switch between these tasks using intent
recognition [2]–[4]. Each task is further subdivided into
periods analogous to those in conventional gait analysis,
resulting in a large number of independent tuning parameters
[5]–[7]. There are techniques to mitigate the time needed
to tune this number of personalized parameters [8], but the
FSM method is fundamentally constrained to a discrete set
of tasks and gait cycle periods, not the full continuum of
possible human locomotion.
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Virtual constraints are an effective technique for the elim-
ination of finite state machines in the field of bipedal robots.
A virtual constraint is any constraint on the state space of
a system that is enforced through feedback control alone
[9]. Virtual constraints help to synchronize the movement of
each link of a robot to a phase variable. A phase variable
is a mechanical signal that grows monotonically with time
in the absence of perturbation. By using virtual constraints,
biped robots can successfully ambulate in the presence of
terrain variation and velocity perturbations, all with one, non-
switching controller [10].

Gregg et al. [11] have experimentally demonstrated that
using virtual constraints to unify the stance period of gait
allows transfemoral amputees to walk at a variety of cadences
with just one controller for stance. Recent work has shown
that it is possible to robustly parameterize an entire gait
cycle with a single phase variable [12], which has been used
in the virtual constraint controller of a powered knee-ankle
prosthetic leg to achieve steady-state stable gaits in simu-
lation and experiments [13], [14]. However, this controller
is designed for one desired joint trajectory at a time and
would require the use of a FSM to switch between tasks.
For an ankle prosthesis using a lead screw actuator, [15]
demonstrates a mapping from percent gait and stride length
to desired lead screw position. As stride length is related to
forward speed, this mapping could be said to unify the gait
cycle across speeds alone. Leroux et al. [16] analyzed human
gait kinematics at five inclines and two speeds but did not
suggest a continuous parameterization for use in control.

The objective of this research is to unify the gait cycle
across a range of tasks, specifically walking speeds and
inclines. To do so, we will propose a method for the
continuous parameterization of human joint kinematics as a
function of a phase variable and a task variable. In the context
of this paper, a task variable is defined as a multidimensional
numeric description of ambulation mode. We will then show
an example that suggests that given a sufficient set of
kinematic data over a range of tasks we are able to construct
a set of gait basis functions. Linear combinations of these
gait basis functions accurately describe the training data and
can be used to predict kinematics for untrained tasks. This
kinematic function could then be implemented into a virtual
constraint controller, allowing for robust ambulation across
a continuum of gait phases and tasks.

Section II-A and II-B outline the procedure for acquir-
ing and post-processing the kinematic data. Section II-C
describes the process of fitting experimental data with gait
parameterization functions. Section II-D outlines a procedure
to determine the goodness-of-fit of this function to both



the data it was trained on and data withheld from the
training process. Section II-E gives a similar algorithm for
evaluating an ideal FSM, which will be used as a measure of
comparison. Section III fits a gait parameterization function
to our experimental data and compares the effectiveness of
this function to predict gait kinematics to that of a FSM.
Section IV-A and IV-B discuss some interpretations of this
method of gait parameterization and how the process can be
built upon with convex optimization. Finally, Section IV-C
concludes the paper and outlines future work.

II. METHODS

A. Experimental Protocol

The experimental protocol was approved by the Institu-
tional Review Board at the University of Texas at Dallas.
All subjects provided written informed consent and self-
reported the ability to walk over uneven ground and avoid
obstacles with ease. Our subject pool consisted of 7 able-
bodied subjects (4 female) with a mean age of 22 years
(σ = 2.7 years), mean height of 167 cm (σ = 6.7 cm),
and mean weight of 61 kg (σ = 7.7 kg).

Subjects walked for several trials of one minute intervals
on an instrumented Bertec treadmill while a 10-camera Vicon
motion capture system recorded their lower body kinematics
at 100 Hz. During each trial, the subject walked at a constant
speed of either 0.8 m/s, 1.0 m/s, or 1.2 m/s (respectively slow,
normal, and fast) and a constant ground slope ranging from
-10 degrees to +10 degrees at 2.5 degree increments. These
inclines were selected to exceed the range of inclines of [16].
The order of all trials was randomized and breaks were taken
as needed to prevent fatigue. Each subject walked at every
combination of these three speeds and nine inclines, giving
a total of 27 trials. For the purpose of this paper, each trial
is defined as a separate task and given a unique identifier, θj
with j = 1, 2, ..., 27.

B. Data Processing

To synchronize between strides, the time axis of each
stride’s kinematic trajectory is normalized from 0 to 1 (i.e.,
0%-100% gait) and interpolated to contain L = 1001 data
points. The normalized time axis can then be interpreted as
a discrete phase variable 0 ≤ φi < 1 where i = 1, 2, ..., L,
and φi+1 − φi = 1

L−1 .
Human gait has natural variability, so joint angle data

is treated as a random variable. The expected value of a
measured joint angle for a specific subject at discrete phase
variable value φi and task variable value θj is defined as
xφi,θj ∈ R. The across subject mean at a particular φi and
θj value will be referred to as x̄φi,θj ∈ R. The standard error
between subject means is referred to as SE(xφi,θj ) ∈ R.

C. Gait Parameterization

We will now outline how to parameterize a continuous
function q(φ, θ), where q is the angular position of a joint
as a function of phase variable φ and task variable θ. The
phase variable φ is cyclic and bounded (0 ≤ φ < 1), where
φ = 0 represents the start of a gait cycle, and φ = 1 denotes

the end of that gait cycle and the start of the next. The
task variable θ is a vector where each element is a numeric
description of ambulation mode. Dimensions of the vector θ
could include walking speed, ground slope, stair grade, etc.,
but in this paper we only consider the first two categories.
Our experiments covered 27 combinations of three speeds
and nine inclines, resulting in 27 vector values of θj .

We begin by modeling q(φ, θ) as a scalar, separable
function of φ and θ:

q(φ, θ) =

N∑
k=1

bk(φ)ck(θ). (1)

The index k runs from 1, 2, ..., N and denotes the number
of bk(φ) ∈ R and ck(θ) ∈ R functions used. The gait basis
functions, bk(φ), map from φ to joint kinematics, and will
be determined with convex optimization. The task coefficient
functions, ck(θ), determine the coefficients of the linear
combination of gait basis functions for a given task. We ex-
plicitly define these coefficient functions before determining
the basis functions to ensure intuitive relationships with task.
Every ck(θ) must be continuous on θ in order to make q(φ, θ)
continuous on θ. They also must be linearly independent on
the discretized domain of θj with j = 1, 2, ...,M , the tasks
used to fit (1) to experimental data. Selecting a large value
of N usually decreases the fitting error in this step, but runs
the risk of overfitting the data. The author’s experience has
shown that N ≈ 7 works well for both the knee and ankle
joint, and that polynomials of order ≤ 3 work well for ck(θ).

The next objective is to select functions bk(φ) such that
(1) will approximately fit the experimental data. To do so,
we will optimize across bk(φi) such that

x̄φi,θj ≈
N∑
k=1

bk(φi)ck(θj) (2)

∀ i = 1, 2, ..., L, j = 1, 2, ...,M.

To incorporate the natural variability of human gait, we
will scale the error in degrees, x̄φi,θj − bk(φi)ck(θj), by
dividing it by the standard error, SE(xφi,θj ). This will cause
our optimization process to fit bk(φi)ck(θj) more closely to
x̄φi,θj for values of φi and θj where the standard error is
small. Finding the optimal values of bk(φi) for this objective
is easily solved with a linear optimization program (LP). First
define the matrices:

X̄ =


x̄φ1,θ1 x̄φ1,θ2 ... x̄φ1,θM
x̄φ2,θ1 x̄φ2,θ2 ... x̄φ2,θM

...
...

. . .
...

x̄φL,θ1 x̄φL,θ2 ... x̄φL,θM

 (3)

B =

 b1(φ1) b2(φ1) ... bN (φ1)
b1(φ2) b2(φ2) ... bN (φ2)

...
...

. . .
...

b1(φL) b2(φL) ... bN (φL)


C =

 c1(θ1) c1(θ2) ... c1(θM )
c2(θ1) c2(θ2) ... c2(θM )

...
...

. . .
...

cN (θ1) cN (θ2) ... cN (θM )


S =


SE(xφ1,θ1 ) SE(xφ1,θ2 ) ... SE(xφ1,θM )

SE(xφ2,θ1 ) SE(xφ2,θ2 ) ... SE(xφ2,θM )

...
...

. . .
...

SE(xφL,θ1 ) SE(xφL,θ2 ) ... SE(xφL,θM )





which will be used in the LP. Note that the matrix C needs
to be full rank, which creates the previously mentioned con-
straint that the functions ck(θ) must be linearly independent
functions on the domain of θj with j = 1, 2, ...,M . To find
an optimal solution for (2), solve the LP:

minimize ρ (4)
subject to −ρS 4 X̄−BC 4 ρS.

The solution of (4) gives optimal ρ = ρ∗ and B = B∗. To
calculate discrete values of the joint angular position, as in
(2), we define b∗k(φi) as the element in the kth column and
ith row of B∗ and define the discrete form of (1):

q(φi, θj) =

N∑
k=1

b∗k(φi)ck(θj) ∈ R. (5)

The final step in defining (1) is to fit a continuous function
through each vector of discrete values b∗k(φi) for i =
1, 2, ..., L to form the continuous functions bk(φ). As each
bk(φ) is periodic and real valued, Fourier Interpolation as in
[13] should fit the data closely with few coefficients.

D. Evaluating the Parameterization

To evaluate how well (5) can predict untrained tasks,
we define the training tasks (or training data) as θj with
j = 1, 2, ...,M , and the validation tasks (or validation data)
as θj with j = M + 1,M + 2, ..., P . For this paper, ten
tasks were selected for training (M = 10) and seventeen
for validation (P = 27). The tasks were selected such that
one validation tasks lies between each training task, as can be
seen in Table I. The validation tasks will be used exclusively
to measure how closely (5) can predict untrained tasks and
were not used in the fitting process (4). The error between
the predicted kinematic value, q(φi, θj), and the real value
found via experiments, x̄φi,θj , for task θj is defined as:

gj = maxi

{
x̄φi,θj − q(φi, θj)

SE(xφi,θj )

}
(6)

∀ i = 1, 2, ..., L and j = 1, 2, ..., P

where q(φi, θj) is calculated as in (5). Taking the maximum
over i gives the value of the largest error encountered in
a gait cycle. This evaluation is repeated for all θj , giving
an error value gj for each task. For j = 1, 2, ...M , gj is a
measure of how well the training data is fit by (5), and will
not exceed ρ∗ by definition. For j = M + 1,M + 2, ..., P ,
gj is a measure of how well we can predict untrained tasks.

TABLE I
TASKS SELECTED FOR TRAINING (DENOTED BY ‘X’)

Incline (deg) -10 -7.5 -5 -2.5 0 2.5 5 7.5 10

0.8 X X X X X
Speed (m/s) 1

1.2 X X X X X

E. Comparison to Ideal Finite State Machine

The benefit of the proposed parameterization is demon-
strated by comparing each gj from (6) to the performance
of a comparable ideal FSM for untrained tasks. We will

define such a FSM as one that has been defined with states
corresponding to the same set of training data as the gait
parameterization method. When provided with an input task,
θj , the ideal FSM returns a kinematic trajectory of training
data (xφi,θ′j with i = 1, 2, ..., L) that would most closely
match the untrained trajectory for θj . The amount of error
this method would yield for untrained task θj with j =
M + 1, ..., P is:

gj = minj′
{

maxi

{
x̄φi,θj − x̄φi,θj′

SE(xφi,θj )

}}
(7)

∀ i =1, 2, ..., L, j = M + 1, ..., P, j′ = 1, 2, ...,M

where gj is the error, which will be compared directly to
the values of gj of the parameterization method. Taking the
maximum over i gives the largest error encountered over
a gait cycle, while taking the minimum over j′ returns the
training data trajectory that best fits the untrained task θj .
Although it may not be possible to achieve this FSM in real
time, it is a useful standard of comparison, as it represents
the minimum possible error with the FSM approach.

III. RESULTS

A. Parameterizing Experimental Data

In this section, we will parameterize hip, knee, and ankle
kinematics and evaluate the ability of the proposed parame-
terization to predict untrained task kinematics. Percent gait
acts as the phase variable of (1), and θ was selected to reflect
the two parameters tested in our experiments:

φ =
t

T
, φi =

ti
T
, θ = [v, α], θj = [vj , αj ] (8)

where t and ti are continuous and discrete time, respectively,
from the beginning of a gait cycle, and T is the total time of
a gait cycle. The term v is walking speed in m/s, while α is
the ground slope in degrees. Their discrete counterparts, vj
and αj , are the speed and ground slope of discrete task θj .

For each joint parameterization, polynomial functions of
θ are chosen for ck(θ) for simplicity and continuity. The
authors’ experience has shown that changes in gait due to
difference in ground slope are more complex than changes
due to difference in speed, so ck(θ) contains higher order
polynomials of α than v in the following definitions:
c1(θ) = v, c2(θ) = α, c3(θ) = vα, (9)

c4(θ) = v2, c5(θ) = α2, c6(θ) = vα2, c7(θ) = α3.

These are all scalar valued, continuous on θ, and linearly
independent functions on the training tasks θj with j =
1, 2, ..., 10, satisfying all conditions for ck(θ). Note that
while the same functions ck(θ) are used for the hip, knee,
and ankle joint in this example, this is not required. The
choice of N = 7 provides a good compromise of fitting
experimental data accurately without overfitting, and during
previous testing it was found that a matrix of rank 7 could
satisfactorily approximate the experimental data for all tasks.
To ensure a simple mapping from gait speed and ground
slope to desired trajectories, polynomial functions with rank
≤ 3 were selected for all ck(θ). This simplicity is an
important design criterion, as in practice the gait coefficient
functions will need to be reevaluated for every change in task.
Each ck(θ) contains only one term, so it is not necessary to



scale these functions with a constant. Solving (4) determines
the scale of the corresponding gait basis function for each
task coefficient function.

Equation (4) is solved to determine B∗ and ρ∗, yielding:
ρ∗hip = 0.258 ρ∗knee = 0.325 ρ∗ankle = 0.242. (10)

This means that given b∗k(φi) from B∗, (5) is always within
0.258, 0.325, or 0.242 standard errors of the training data X̄
for the hip, knee, and ankle kinematics, respectively. See the
trained tasks in Table II.

B. Evaluating the Parameterization of Experimental Data

Next, we compare the error in our prediction of all tasks,
trained and untrained, to the errors that would result from
the use of an ideal FSM. Table II shows the mean, max,
and standard deviation of the error value gj for both the
parameterization method (6) and the FSM (7). The FSM has
zero error on trained tasks (j=1,2,...,10) by definition, unlike
the parameterization method, which has some minor amount
of error after the fitting process because it is a low-rank
representation of the training data (see Section IV-A). The
power of the parameterization method arises in its ability
to predict untrained data (j=11,12,...,27). Table II shows
that the function q(φi, θj) has about half of the mean and
maximum error of the FSM method for the knee and ankle
for untrained tasks and around 60% less error for the hip.
A one-tailed t-test affirms that the parameterization method
has statistically lower error on untrained data for the hip,
knee, and ankle with p-levels of 3.54e-4, 0.0052 and 3.68e-6,
respectively. See Fig. 1 and Fig. 2 for a comparison between
the parameterization’s predictions of kinematics at 1.0 m/s
(plotted as a continuous surface across phase and ground
slope) and untrained kinematic data at 1.0 m/s (plotted as
red trajectories over phase at constant ground slopes). The
gait parameterization function is simultaneously predicting
accurate gait kinematics for an untrained speed, and four
untrained ground slopes (-7.5 deg, -2.5 deg, 2.5 deg, and 7.5
deg) in these figures, see Table I.

TABLE II
COMPARISON OF TECHNIQUES

Trained Untrained
ḡ max(g) σ(g) ḡ max(g) σ(g)

Hip q(φi, θj) 0.237 0.258 0.054 0.333 0.696 0.182
FSM 0 0 0 0.568 0.906 0.184

Knee q(φi, θj) 0.306 0.325 0.045 0.485 1.286 0.338
FSM 0 0 0 1.077 3.961 0.830

Ankle q(φi, θj) 0.223 0.242 0.040 0.358 0.676 0.132
FSM 0 0 0 0.765 1.335 0.285

IV. DISCUSSION AND CONCLUSION

A. Significance

Virtual constraints are a powerful technique for creating
robust position based prosthesis controllers, but they require
that desired trajectories are known for all tasks the prosthesis
will perform. The parameterization technique detailed in this
paper could allow a virtual constraint controller to calculate

a desired kinematic trajectory on a continuum of tasks. For
example, (1) could act as the tracking reference in a PD or
feedback linearization control framework as in [9, (6.3)]. A
portion of this task continuum can be viewed in Fig. 1 and
Fig. 2. The results of Table II indicate that only a small subset
of tasks need to be used for training the parameterization, and
tasks in between can be interpolated with higher accuracy
than using fixed states in a FSM.

Fig. 1. A surface plot of (5) that has been fit to knee kinematics. In both
figures, the speed dimension has been suppressed to a constant, 1.0 m/s and
the trajectories shown in red are untrained.

Fig. 2. A surface plot of (5) that has been fit to ankle kinematics.

The continuous gait parameterization method also facili-
tates an intuitive approach for analyzing how gait kinematics
change in response to task changes. The contribution of
bk(φ) to the kinematic output q(φ, θ) is proportional to ck(θ).
Observations of the functions bk(φ) can highlight trends in
gait kinematics. Take for example the plot of b1(φ) for the
ankle in Fig. 3. This gait basis function scales with task coef-
ficient function c1(θ) = v, and shows that as speed increases,
ankle kinematics exhibit additional dorsiflexion and plantar
flexion directly before and after toe-off, respectively (around
60% gait [17]). Gait basis function b2(φ), shown in Fig. 3,
scales with c2(θ) = α and adds additional dorsiflexion at
heel strike and additional plantar flexion during toe-off in
proportion to ground slope. Confirmation of this trend for
a discrete set of tasks is shown in [16, Fig. 2]. The relative
complexity of bk(φ) in comparison to ck(θ) helps to motivate
the decision that ck(θ) is specified by the researcher and
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Fig. 3. For the ankle joint, b1(φ) is shown as a solid line with scale on the
left, and b2(φ) is shown as a dashed line with the scale on the right. Note
that the magnitude of b2(φ) is much smaller than b1(φ), but it is multiplied
by c2(θ), which generally had a larger magnitude than c1(θ).

bk(φ) is solved for, instead of vice versa.
Another interesting interpretation comes from the selection

of the functions ck(θ). In (4) it can be seen that if N < L,M
(as it was in this paper), then BC is a low rank approximation
of the matrix X̄. When the functions ck(θ) are selected to
be linearly independent on θj with j = 1, 2, ...,M , these
functions form a set of basis vectors, the rows of C, for
the data-set. The optimal solution of (4), B∗, gives the
coordinates of the data in the basis C that best fit the higher
rank matrix X̄. This rank reduction captures a majority of
the information in the data-set while simplifying it.

B. Additional Constraints

Adding additional convex constraints to (4) can enforce
many properties on the final formula (1) which may be
desirable in certain applications. Separate bounds can be
placed on each element of the term X̄ − BC, which may
be useful if some locations are particularly sensitive to error.
Due to the use of polynomial expressions for ck(φ), it is
possible to bound the gradient and higher derivatives of
(1) [18]. Moreover, a convex optimization technique called
basis pursuit could replace the need for the researcher to
explicitly select the functions ck(θ). From a predefined
dictionary of functions (sometimes called an over-complete
basis), basis pursuit utilizes `1-norm regularization to pick a
sparse representation.

C. Conclusion

This work introduced a novel gait parameterization method
that models gait kinematics as a continuous function of phase
and task variable. This parameterization was accurately fit
to experimental data with convex optimization. Moreover, it
has shown promising results in its ability to accurately pre-
dict kinematics for untrained tasks. This flexible framework
could enforce additional constraints such as lower error in
important regions or a bounded derivative.

The next step for this research is to embed the func-
tion (1) as the desired joint angular trajectory in a virtual
constraint controller. A prosthesis with this controller could
continuously update its kinematic trajectory based upon

measurements of its phase and task. Real-time algorithms
may be needed to estimate the variables φ and θ, but the pa-
rameterization method can easily be retrained for new input
variables that correspond to sensor measurements. Our hope
is that this parameterization method will allow researchers
to create task-invariant virtual constraint controllers for a
variety of powered prosthetic devices.
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