Chapter M

Monotone convergence
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Introduction to monotone convergence theory

Many optimization problems involve finding the minimizer sfmecost function ¥(x). In such problems, many optimization
algorithms monotonically decrease the cost functiqee), meaning that (x,,+1) < ¥(x,,) each iteration.

It is of considerable practical importance to determine mitigs monotonicity property is sufficient for ensuring cergence to a
maximizer of U, or at least to characterize what additional propertie¥ @ire needed to ensure such convergence. Convergence
theorems of Ostrowski [7, p. 173] and Meyer [8] are fundaralergtsults in this regard, and are our focus in this section.

Fig. M.1 illustrates why monotonicity alone is not enougletsure convergence. But these examples are in some sehgkogat
cal. Under “reasonable conditions” dnand on an iterative algorithm that monotonically decredseme can ensure convergence
of {x,,} to a minimizer.
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Figure M.1: Monotonicityaloneneed not ensure convergence to a minimizer (top), nor everecgence ofc,, (bottom).

Continuum sets

Definition. A closed setonsisting of at least two distinct elemeirtsa normed space is calleccantinuum iff the set cannot be
decomposed into the union of timmnemptydisjoint closed sets.

(The items in italics are absent from Ostrowski's definifjon
Example S = [0, 1] is a continuum irR.

Example S = [0, 1] U [2, 3] is not a continuum ifR.

Connected sets

Definition. A closed set in a normed space is caltmhnectediff it cannot be decomposed into the union of two nonempty
disjoint closed sets.

Similarly, an open set in a normed space is catlednectediff it cannot be decomposed into the union of two nonemptyoifis
open sets [9, p. 65]. (There is a more general definition [89h.but the above is all we need.)

e Fact. Any (closed) set that is a continuum is connected.

e A set that is empty or that consists of a single element is ected but is not a continuum.

e A set that is connected but consists of a finite number of pamfact must consist of a single point.
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The set of subsequence limits

Definition. Theset of subsequence limitof a sequencéx,, } in a normed space is the set of limits of convergent subsegsen

£ {x € X! 3{n;} € N (increasing) s.tz,, — z}.

Example If z,, = (1 +e7")(—1)", then[z,, | = {1, 1}.
Hereafter, define
Sy & | {zn}-
n=N

Then by the definition :

C Sn, VYN e N, (M-1)
€ = d(x, Sy) =0, VN € N. (M-2)

As preparation for proving an alternate form of Ostrowskosivergence theorem, we need to show|tleat| is a closed set.
First we need two lemmas.

This next lemma comes close to being a converse of (M-1).

Lemma 13.7 If {x,,} is a sequence in a normed space, thég, Sy — {y}) =0=y € for anyN € N.

Proof. First note that ifA/ > N then0 = d(y, Sy — {y}) = min{||ly — zn||,---, ly — zaml . d(y, Sm — {y})}.

Thusd(y, Sy — {y}) = 0 for M > N since|ly — x,|| > 0fory # z,.

So we recursively generafe; } as follows. Picks; > N such that|y — x,,, || < 1.

Having chosem;, sinced(y, Sn,+1) = 0, pickn;1 > n; such thal|ly — @, || < 1/(i +1).

This {n;} is increasing ang,,, — y asi — oo, SOy € . O

Proposition. In a normed space, any set of subsequence I is closed.

Proof. We sho is open by picking any ¢ and showing thaty is an interior point o.

Claim. If y = x,,, for somem € N, theny = «,, for only a finite set ofu’s.
Pf. If z,,, = y for an infinite set of;’s, thenz,,, — y, contradictingy ¢ .

LetM, =1+max{neN: x, =y} (TakeM, =1if y ¢ S;.)
By the contrapositive of Lemma 13.%,¢ = d(y,Sm, — {y}) > 0= d(y,Sum,) > 0sincey ¢ Sy, .
Thus, by Lemma 2.3{(y, Sy, ) > 0.

So sinc C Su,,, as noted in (M-1) abovd(y,) > 0, and hencey is an interior point o. O

Example The following sequence ifd, 1] C R satisfies the conditiofjx,+1 — x| — 0.
{1/3,2/3,3/4,2/4,1/4,1/5,2/5,3/5,4/5,5/6,4/6,...}.
What is the set of subsequence limits for this sequence?

(Clearly this is not the type of behavior that we would likerétive optimization algorithms to exhibit!)
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Ostrowski’'s convergence theorem: an alternate version

Theorem. (Ostrowski, more or less)
Let{x,} be a sequence in a compact subEeof a normed spaceX, ||-||).
If |2n+1 — 2| — 0, then the set of subsequence linits, | of {z,, } is connected (and nonempty).

Proof.Let Sy = {x, : n € N, n > N}. Recall thate € = d(x,Sy) =0, VN € N.
is nonempty by the compactnessrf

Claim 0. is compact.
Pf. By constructionsS; C K. By Lemma 2.55; C K. ByLemma 2.4, is compact.
By (M-1), c 5. Sinc is closed by a previous propositi is compact by Lemma 2.4.

Suppos = U UV whereU andV are disjoint nonempty closed sets. We proceed to exhibihgr&diction. (Picture)
Note that andV are compact since they are closed subs and hence closed subsetsiof using Lemma 2.4.

By Lemma 2.64(U,V) = § > 0. On the other hand, sindec,,+1 — .|| — 0, 3Ny € Ns.t.n > Ng = ||z11 — @, < /3.

Claim 1. ForanyN € N, d(V, Sy) = 0.

Pf. By (M-2),d(v,Sn) =0, Yv € V sod(V,Sn) =0, VN € N.

Claim 2.¥N € N, 3n > N s.t. d(z,, V) > 2§/3.

Pf. SupposélN € Ns.t.n > N = d(x,, V) < 26/3. Pick anyu € U (which is possible sinc& is nonempty).
Sinced(U, V) = §, we haved(u, V) > §foru € U.

Sinceld(u, V) — d(x,, V)| < ||lu — @, ||, we have||lu — x,|| > d(u, V) —d(x,, V) > 6 —20/3 =0/3foralln > N.
Thusd(u, Sy+1) > §/3 > 0, contradicting (M-2).

Starting withny = Ny, we recursively generate an increasing sequéngg, as follows, fori = 1,2, .. ..

By Claim 2, there is somex > n;_; such thatd(z,,, V) > %6.

On the other hand, by Claim 3p > m s.t. d(x,,, V) < 24. Letn; denote thesmallestsuchn sod(x,,,, V) < 24.
Clearlyn; > m, sod(x,,—1,V) > 24.

Furthermore, since; > Ny in this constructiond(z,,,, V) > d(zn,~1,V) — |@n, — Tn,—1]| > 36 — 3
Combining, we havé § < d(z,,,V) < 24, for an increasing sequen¢e; }.

0= z0.

1
3
Since{x,, } lies in the compact s&X, it has a convergent subsequence that converges to some:limk. Of coursex € .
By the continuity ofd(-, V), we havelé < d(x,V) < 26. Thusz ¢ V.

On the other hand, by Lemma 22(z,U) > d(U,V)—d(z,V) > § — 36 = 36, s0x ¢ U. Thusz ¢ [z, whichis a
contradiction.

Thus, the nonempty closed cannot be decomposed into the disjoint union of two closés] s isconnected. O

Example To see the importance of Ostrowski's conditions, consillerfollowing bizarre sequence R, for which =N,
which is bothnot connected and nonempthut what if we relax compactness but requirel|,+1 — x| — 0?):

(0, 1,044, 2,0+3, 141, 3 04+2, 142, 2+21, 4,0+, 142,24+3, 341, ...).
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Accumulation points, isolated points, and derived sets
These concepts are particularly useful for analyzing tihweence of iterative optimization methods.

Definition. Let S be a subset of a normed spdég, ||-||). A pointx € X is called anaccumulation point! of S iff

Ve >0,y Sst |z —y|| <candy #x, ie, d(z S—{z})=0.

Definition. The set of all accumulation points of a sets called thederived setand is denoted’.
S'={xeX: d=zS—{x})=0}.

For comparison, thelosureof a setis:S = {x € X' ! d(=x,S) = 0} . So eachaccumulation point of S is acluster point.

Definition. A pointz € S isisolatedif d(z,S — {x}) > 0. The collection of isolated points of a s&is:

S={xeS:dxzS—{z})>0}=29nS.

Example S = (0,1) U {2} U[3,4)
S"=10,1] U [3,4]

S = {2}

S=100,1uU{2}U[3,4]

Example S = {1,1/2,1/3,...}
5" ={0}

S=5

S =10,1,1/2,1/3,...}

Simple facts about derived sets.

5 CS

e SNSC S, sincex ¢ S = d(x,S — {x}) = d(x, 5)
e S=8SuUys

e SisclosediffsS’ C S

ex ¢S = dxz,S—{x})>0.

Lemma. S’ = S NS, i.e, the derived set is “all of the non-isolated closure padints.

Proof.
$nS = (S’ u §> NS  De Morgan Law
= (§'nS)u (§ n ?) Distributive Law
= S'u (§ N §> sinceS’ C S
= § sinceSNScsS. O
e

S = isolated points irf | non-isolated points i$ | closure points not iry

S'is the t_he first twoS’ is the last two, and is all three.
So S’ = S'iff there are no isolated points ifi.

1To ensure confusion, a few books call thikinait point . We will not use that term interchangeably with accumulation pointsigdburse.
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Relation between derived set and subsequence limits
For a sequencéz,, }, defineSy = U {z,}. Then by Lemma 13.%}, C , VN € N.

Example Consider the sequenag, = (—1)" in R, soSy = {-1,1}.
ThenSy = 0 but[z, | = {-1,1}.

SN and will be the same if the sequence never passes through aryafisequence limits.

Lemma. If Sis bounded, the’ is bounded.
Proof. SinceS is boundediM < co s.t. ||| < M forallz € S. Foranyy € S, d(y, S — {y}) =0, sod(y, S) =
Thusdxz € Ss.t. |y — x| < 1,s0[ly|| < |y — | + [lz]| <1+ M < co. ThusS’ is bounded. O

The following proposition is stated to be “obvious” by Ostski [7, p. 173].

Proposition. In a normed space, any derived $éis closed. ‘

Proof. We show thatS’ is open.

Pick anyx € 5'. Thend = d(z, S — {x}) > 0.

Now pick ay € S — {x} such that < ||z — y|| < 24. (This is possible by definition of the infimum that defink}
Letz =32z + Jy,50z —x = ;(x — y), hence¥/4 < ||z — z|| < §/2.

Claim. B(z,4/8) C 9. (Here we useB to denote an open ball to avoid confusion.)

We need to show thal(t, S — {t}) > 0 for anyt € B(z,4/8).

If t € B(z,6/8) then|z—t| < §/8. Furthermore||t — x| < ||t —z| + |z — x| < §/8 + /2 = 56, and ||t — x| >
|z — || — ||t — || > 6/4 —§/8 = &/8. Combining:6/8 < ||t — z|| < 4.

d(t,S — {x}) > d(z, S — {x}) — ||t — z|| = 6 — 26 = 25. Combining withd(t, z) > §/8, we haved(t, S) > min{6/8, 35} =
6/8,s0t ¢ S. Thus,5 = S — {t} sod(t,S — {t}) = /8, hencet € S’ . Sincet within the open ball was arbitrary, we conclude
that there is an open ball arousctontained inS’ , so S’ is open and thus’ is closed. O

(Picture) [z = 01/41/2 1 2)6 withy € [1,2], z € [1/4,1/2] andt € [1/8,5/8].

Can you find a simpler proof?

Lemma. Inanormed space, # C K whereK is compact, then the following hold.

e S'CSCK

e S andsS’ are also compact.

Proof.If = € S, then there exists a convergent sequefieg} < S such thate,, — x.
Since{x,} € K, there is a convergent subsequefieg, } such thate,,, — y for somey € K.

But since{x,, } is convergent, its subsequences converge to the samedomit= y € K. Sincex was arbitraryS C K.
A previous lemma showefl’ C S,s0S’ C S C K.

Since bothS andS’ are closed sets that are subsets of the compadf sttey are each compact by Lemma 2.4. O

Example The following sequence if), 1] C R satisfies the condition of Ostrowski’s theorem below:
(1/3,2/3,3/4,2/4,1/4,1/5,2/5,3/5,4/5,5/6,4/6, ... }. What is the derived set for this sequence?

(Clearly this is not the type of behavior that we would likerétive optimization algorithms to exhibit!)



© J. Fessler, October 8, 2004, 17:14 (student version) M.7

Ostrowski’'s convergence theorem

Often with iterative algorithms we see that as the iteratjoroceed, the iteratas, change less and less. Does this mean{izat
converges? The following convergence theorem of Ostropakially addresses this question.

(Originally stated in Euclidean space. We generalize heeeltitrary normed spaces.)

Theorem. (Ostrowski)

Let{x,} be a sequence that lies within a compact subsetf a normed spacét, ||-||) and letS = {z,, : n € N}.
If |&nt1 — xn|| — 0, then either

e {x,} converges in the usual sense (to some limite K), or

e the derived sef’ of S is a continuum.

Proof. Since||z,,+1 — x,|| — 0, if S'is finite then it is clear thafx,, } must converge in the usual sense.
So we focus on the case th&is infinite hereafter.

S’ is closed and compact as shown in a previous propositioneanthb.

Now we supposé’ = U UV whereU andV are disjoint nonempty closed sets, and we proceed to fornmimazbction.
Note thatl/ andV are compact since they are subsets’ofind hence subsets &f, using a previous lemma.

By Lemma 2.64(U,V) =6 > 0.
On the other hand, sindec,,+1 — .|| — 0,3INy € Ns.t.n > Ny = ||@n11 — || < /3.

Claim 1. For anyN € Nandvz € 5, d(z, Sy — {z}) = 0, whereSy £ (5~ {z,.}. (This union is valid sinceS| = cc.)
Pf. Supposel(x, Sy — {x}) = ¢ > 0for somex € S’. ThenvVn > N, z,, # ¢ = ||z, — z|| > ¢.

utthend(z,S — {x}) = min x, Sy —{z}), d|z,{zn}, _{ —{x > 0, which contradicts the assumption that S’.
But thend(z, S d(x, S d e hich dicts th ion that S’

Claim 2. ForanyN € N, d(Sy,V) = 0.
Pf. By Claim 1,d(v, Sy) =0, Yv € V sod(V,Sy) =0, YN € N.

Claim3.YN € N, In > N s.t. d(x,,V) > 2§/3.

Pf. SupposélN € Ns.t.n > N = d(x,, V) < 26/3. Pick anyx € U (which is possible sinc& is nonempty).
Sinced(U, V) = §, we haved(x, V) > s forz € U.

Sinceld(z, V) —d(xn, V)| < || — x, |, we have|z — z,|| > d(x, V) —d(x,, V) >0 —26/3=4/3foralln > N.
Thusd(x, Sy+1) > ¢ > 0, contradicting Claim 1.

Starting withny = Ny, we recursively generate an increasing sequéngg, as follows, fori = 1,2, .. ..

By Claim 3, there is some: > n,_; such that(x,,, V) > 26 and hencédly — x| > 24.

On the other hand, by Claim 2p > m s.t. d(x,,, V) < 24. Letn; denote thesmallestsuchn sod(z,,,, V) < 24.
Clearlyn; > m, sod(x,,—1,V) > 24.

Furthermore, since; > Ny in this constructiond(z,,, V) > d(zn,—1,V) — |@n, — @p, 1| > 26 —
Combining, we havé s < d(z,,,V) < 26, for an increasing sequen¢e;}.

=1
Since{z,, } lies in the compact s, it has a convergent subsequence that converges to sorbe limb.

By the continuity ofd(-, V'), we haveld < d(x,V) < 2. Thusz ¢ V.

On the other handj(z,U) > d(U,V) —d(x,V) > § — 26 = £4,sox ¢ U. Thusz ¢ S'.

Now, x,,, — x ¢ S’, so take the subsequenge,,, } and remover from it if necessary to form a sub-subsequence, cdltit,, },
for whichz,,,, — x asi — oo, butz,,, # x, Vi € N. Thus0 = d(z, {z.,;}) = d(z,{zm, } — {}) > d(z,5 — {x}) > 0, so
necessarilye € S’. This is a contradiction! Thus, eithét,,} converges, o6’ must be a continuum. O

(Picture) ?



M.8 © J. Fessler, October 8, 2004, 17:14 (student version)

Meyer’'s monotone convergence theorem

Consider the problem of finding a minimizer otantinuouscost function? : C' — R, i.e.

in ¥
arg min ¥'(z),

whereC'is aclosedset in a normed spacet’, ||-||), S is a compact set (so tha@t achieves its minimum oves), andS C C.

A 1976 paper by Meyer [8] provides theorems that give quiteegal conditions under which an algorithm that monototycal
decreases the cost function will converge. Meyer’s resufiite general and considers point-to-set mappings. Rlisity, we
focus on the common case where the iterative algorithm isel@fs follows:

Ln+1 = T(wn)a (M'S)

whereT : C' — C is acontinuousoperator.
To state Meyer’s result, we first make a few definitions.
Definition. A pointx, € X is afixed pointof T iff z, = T'(x,) . LetT, = {x € X . T(x) = x} denote the set of fixed points.

Definition. An operatorT is calledstrictly monotone (decreasing) o' with respect to a cost functio#i(x) iff
o U(T(x)) < V¥(x), Yz € C,and
e U(T(x)) < ¥(x)wheneverr is nota fixed point ofT’, i.e, Ve € T, N C.

Definition. An operatof? is calleduniformly compact on C'iff there exists a compact sét such that'(xz) € K forallx € C.
Example T'(z) = sinx with K = [—1, 1] is uniformly compact.

The usual case of interestis whéh= {zx € X' | U(x) < ¥(x)} is compact.
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Theorem. (Meyer [8])
Supposé’ : C' — C'is a continuous operator over a closed §&in a normed spacéX’, ||-||) such that

T is uniformly compact od’, and (M-4)
T is strictly monotonic or”, with respect to a continuous functidn (M-5)

If {x,,} is any sequence generated by the algorithm (M-3) correspgrtd 7" with =, € C, then

1 all subsequence limit points (¢f,, }) will be fixed points (of), i.e., cT, (M-6)
2 U(x,) — U(x,), where x, is a fixed point off", i.e., x, € T, (M-7)
3. |1 — xn] — 0, and (M-8)
4 , the set of subsequence limits{af,, }, is connected. (M-9)

Proof. Clearly {x,} € C. SinceT is uniformly compact3K compact such thafz,,} € K. Thus there exists a subsequence
{zx,, } that converges to some limit ifi (sinceC is closed), call itc,.. So the set of subsequence limits is nonempty.

Claim 1.z, is a fixed pointj.e., x, = T(x,).

Sincex,,, — ., by continuity of 7', T'(x,,,) — T(x,),i.€, Tp,11 — ' = T(x,).

By continuity of ¥, ¥(x,,,) — ¥(x,) and¥(x,, 1) — ¥(z').

Since{n;} is increasingn;;1 > n; + 1 > n,;. SinceT is strictly monotonic{¥(x,,)} is monotonically nonincreasing.
ThUS\II(wnHl) < U(xp,+1) < U(xy,).

Taking the limit as — oo shows thatim; .o U(,,+1) = lim;—o0 U(@y,), i€, (') = U(xy).

Now if z, were not a fixed point df’, then by strict monotonicity, sineg = T'(x, ) we would havel (') < ¥(x,), contradicting
the equality just shown. Thus, € T.

Sincex, was an arbitrary subsequence limit, we have sh CT,.

Claim 2. ¥ (x,) — ¥(xy).

This follows immediately from the fack (x,,) — ¥(x,) and the fact thaf U (x,,)} is monotone nonincreasing.
Vm e N,3i € Ns.it.n;, > m, and¥(x,,) < ¥(x,,).

Claim 3.||zp41 — ]| — 0,ie, Ve > 0, INS.t.n > N = ||@hy1 — @] <e.

Suppose nof,e., 3e > 0s.t. VN In > N s.t. ||[xp41 — xn]| > &.

Then we could recursively construct a subsequdrge such that|xy, 1 — @, || > > 0.

Since the sequendery, } lies in the compact sdt, it has a convergent subsequence, cdlkif, } for simplicity, that converges to
somex € K.

By continuity of ', T'(x,,,) — T(x),i.e.T,, 1 — =’ = T(x).

By Claim 1,z is a fixed point, so in fact’ = T'(x) = «, SOz, 11 — «.

Sincex,,, — = andz,,, 1 — x, there exists someec N such thal|xz,,, — x| < /2 and||z,,+1 — z| < /2.

So by the triangle inequality, for thét ||z, 11 — @n,|| < ||Tn, — | + ||Zn,+1 — | < €, a contradiction.
Thus||z,+1 — x| — 0.

Claim 4. is connected.
This follows immediately fronDstrowki’'s convergence theorem O

One tries to choos# such that the fixed points @f are the minimizers oW.

Corollary. If C ={x e X ¥(x) < ¥(xg)} is compact and’ is continuous and strictly monotonic @nwith respect to
continuous function? with a unique minimizee,, and if T, = {x.}, then the algorithm (M-3) yields a sequenge, } that
converges to the unigue minimizer.

p. 111 of Meyer claims that if{x,,} does not converge, then “there exists at least two accumulah points”

Extra credit (= 40 homework points) problem. Show that M&ydefinition of u.s.c. is equivalent to our definition (or gia
counter-example).
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Example overhead
Separable paraboloidal surrogate algorithm for ordineagt squares estimation [10-13].

Consider the problem of finding the minimizer é{x) = 1 ||y — Aac||§ , Wherey € R™, x € RP, andA € R™*P. Of course
there is a simple analytical solution for thaconstrainedninimizer of U(x), but what if we wanining>o ¥(x)?

To derive an algorithm for the constrained case, note that
@ 1
V() = ;hi([A:c]i), where; (1) = 5 (yi - 1)? and[Ax]; Za”xj

Now (this clever trick is due to De Pierro [14]) consider

a; n n
[Az]; = E a;jr; = g Tij <71-] —x}) + [Az ]1) ;
ij

wherer;; = “;‘jl > 0 anda; £ Ej la;;| > 0. (If a; = 0 then that row of4 is pointless and should be eliminated at the outset.)
Note thatZé.’:1 mi; = 1.

Since eaclk; is aconvex function
p s p Qi
(el = s oy (2o o)+ 1407 ) | < 3 mha( 2o ) + L"),

Thus

but¥(x,) = g(x,;x,). (Picture of surrogate)

Consider the following iterative algorithm:

Tpi1 =T (x,) = arg;réing(a:; ).
Tz

This algorithm is monotonic sinc&(x,,+1) < g(@pt1;2n) < g(xn; x,) = ¥(x,) . Is it strictly monotone? Continuous?

aa (2 ) Za”'(ﬂ” j— ) + > Za” [y ‘Lﬂ ?)[Aw"}i].

Thus, equating to zero yields the iteration

i 1y +

} Ay - Awn)} ;

+

1
> laijlai

where[z], denotesr if it is nonnegative and zero otherwise.
Continuity is obvious. With some algebra one can showThat strictly monotone too.
One can show that, is a fixed point ofl iff x, satisfies th&Karush Kuhn Tucker conditions for the minimization o¥.

One can show that ifl has full column rank, then there is a unique minimizer thahés only fixed point ofl" and the above
algorithm converges to that minimizer [15, 16].
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