
Chapter M

Monotone convergence
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Introduction to monotone convergence theory

Many optimization problems involve finding the minimizer ofsomecost function Ψ(x). In such problems, many optimization
algorithms monotonically decrease the cost functionΨ(x), meaning thatΨ(xn+1) ≤ Ψ(xn) each iteration.

It is of considerable practical importance to determine when this monotonicity property is sufficient for ensuring convergence to a
maximizer ofΨ, or at least to characterize what additional properties ofΨ are needed to ensure such convergence. Convergence
theorems of Ostrowski [7, p. 173] and Meyer [8] are fundamental results in this regard, and are our focus in this section.

Fig. M.1 illustrates why monotonicity alone is not enough toensure convergence. But these examples are in some sense pathologi-
cal. Under “reasonable conditions” onΨ and on an iterative algorithm that monotonically decreasesΨ, one can ensure convergence
of {xn} to a minimizer.
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Figure M.1: Monotonicityaloneneed not ensure convergence to a minimizer (top), nor even convergence ofxn (bottom).

Continuum sets

Definition. A closed setconsisting of at least two distinct elementsin a normed space is called acontinuum iff the set cannot be
decomposed into the union of twononemptydisjoint closed sets.

(The items in italics are absent from Ostrowski’s definition.)

Example. S = [0, 1] is a continuum inR.

Example. S = [0, 1] ∪ [2, 3] is not a continuum inR.

Connected sets

Definition. A closed set in a normed space is calledconnectediff it cannot be decomposed into the union of two nonempty
disjoint closed sets.

Similarly, an open set in a normed space is calledconnectediff it cannot be decomposed into the union of two nonempty disjoint
open sets [9, p. 65]. (There is a more general definition [9, p.59], but the above is all we need.)
• Fact. Any (closed) set that is a continuum is connected.
• A set that is empty or that consists of a single element is connected but is not a continuum.
• A set that is connected but consists of a finite number of points in fact must consist of a single point.
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The set of subsequence limits

Definition. Theset of subsequence limitsof a sequence{xn} in a normed space is the set of limits of convergent subsequences:

xn , {x ∈ X : ∃ {ni} ∈ N (increasing) s.t.xni
→ x} .

Example. If xn = (1 + e−n)(−1)n, then xn = {−1, 1}.

Hereafter, define

SN ,

∞⋃

n=N

{xn} .

Then by the definition ofxn :

xn ⊆ SN , ∀N ∈ N, (M-1)

x ∈ xn =⇒ d(x, SN ) = 0, ∀N ∈ N. (M-2)

As preparation for proving an alternate form of Ostrowski’sconvergence theorem, we need to show thatxn is a closed set.
First we need two lemmas.

This next lemma comes close to being a converse of (M-1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

Lemma 13.7 If {xn} is a sequence in a normed space, thend(y, SN − {y}) = 0 =⇒ y ∈ xn for anyN ∈ N.

Proof.First note that ifM ≥ N then0 = d(y, SN − {y}) = min {‖y − xN‖ , . . . , ‖y − xM‖ , d(y, SM − {y})} .
Thusd(y, SM − {y}) = 0 for M ≥ N since‖y − xn‖ > 0 for y 6= xn.
So we recursively generate{ni} as follows. Pickn1 ≥ N such that‖y − xn1

‖ < 1.
Having chosenni, sinced(y, Sni+1) = 0, pick ni+1 > ni such that

∥∥y − xni+1

∥∥ < 1/(i + 1).
This{ni} is increasing andxni

→ y asi → ∞, soy ∈ xn . 2

Proposition. In a normed space, any set of subsequence limitsxn is closed.

Proof.We show x̃n is open by picking anyy /∈ xn and showing thaty is an interior point of x̃n .

Claim. If y = xm for somem ∈ N, theny = xn for only a finite set ofn’s.
Pf. If xni

= y for an infinite set ofni’s, thenxni
→ y, contradictingy /∈ xn .

Let My = 1 + max {n ∈ N : xn = y}. (TakeMy = 1 if y /∈ S1.)
By the contrapositive of Lemma 13.7,y /∈ xn =⇒ d

(
y, SMy

− {y}
)

> 0 =⇒ d
(
y, SMy

)
> 0 sincey /∈ SMy

.

Thus, by Lemma 2.3,d
(
y, SMy

)
> 0.

So sincexn ⊆ SMy
, as noted in (M-1) above,d

(
y, xn

)
> 0, and hencey is an interior point of x̃n . 2

Example. The following sequence in[0, 1] ⊂ R satisfies the condition‖xn+1 − xn‖ → 0.
{1/3, 2/3, 3/4, 2/4, 1/4, 1/5, 2/5, 3/5, 4/5, 5/6, 4/6, . . .}.

What is the set of subsequence limits xn for this sequence? ??

(Clearly this is not the type of behavior that we would like iterative optimization algorithms to exhibit!)
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Ostrowski’s convergence theorem: an alternate version

Theorem. (Ostrowski, more or less)
Let{xn} be a sequence in a compact subsetK of a normed space(X , ‖·‖).
If ‖xn+1 − xn‖ → 0, then the set of subsequence limitsxn of {xn} is connected (and nonempty).

Proof.Let SN = {xn : n ∈ N, n ≥ N}. Recall thatx ∈ xn =⇒ d(x, SN ) = 0, ∀N ∈ N.
xn is nonempty by the compactness ofK.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 0. xn is compact.

Pf. By construction,S1 ⊂ K. By Lemma 2.5,S1 ⊂ K. By Lemma 2.4,S1 is compact.
By (M-1), xn ⊂ S1. Since xn is closed by a previous proposition,xn is compact by Lemma 2.4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Supposexn = U ∪ V whereU andV are disjoint nonempty closed sets. We proceed to exhibit a contradiction.(Picture)
Note thatU andV are compact since they are closed subsets ofxn and hence closed subsets ofK, using Lemma 2.4.

By Lemma 2.6,d(U, V ) = δ > 0. On the other hand, since‖xn+1 − xn‖ → 0, ∃N0 ∈ N s.t.n > N0 =⇒ ‖xn+1 − xn‖ < δ/3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 1. For anyN ∈ N, d(V, SN ) = 0.
Pf. By (M-2),d(v, SN ) = 0, ∀v ∈ V sod(V, SN ) = 0, ∀N ∈ N.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 2.∀N ∈ N, ∃n > N s.t. d(xn, V ) > 2δ/3.
Pf. Suppose∃N ∈ N s.t.n > N =⇒ d(xn, V ) ≤ 2δ/3. Pick anyu ∈ U (which is possible sinceU is nonempty).
Sinced(U, V ) = δ, we haved(u, V ) ≥ δ for u ∈ U .
Since|d(u, V )− d(xn, V )| ≤ ‖u − xn‖, we have‖u − xn‖ ≥ d(u, V )− d(xn, V ) ≥ δ − 2δ/3 = δ/3 for all n > N .
Thusd(u, SN+1) ≥ δ/3 > 0, contradicting (M-2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Starting withn0 = N0, we recursively generate an increasing sequence{ni}, as follows, fori = 1, 2, . . ..

By Claim 2, there is somem > ni−1 such thatd(xm, V ) > 2

3
δ.

On the other hand, by Claim 1,∃n > m s.t. d(xn, V ) < 2

3
δ. Let ni denote thesmallestsuchn sod(xni

, V ) < 2

3
δ.

Clearlyni > m, sod(xni−1, V ) ≥ 2

3
δ.

Furthermore, sinceni ≥ N0 in this construction,d(xni
, V ) ≥ d(xni−1, V )−‖xni

− xni−1‖ > 2

3
δ − 1

3
δ = 1

3
δ.

Combining, we have1
3
δ < d(xni

, V ) < 2

3
δ, for an increasing sequence{ni}.

Since{xni
} lies in the compact setK, it has a convergent subsequence that converges to some limit x ∈ K. Of coursex ∈ xn .

By the continuity ofd(·, V ), we have1

3
δ ≤ d(x, V ) ≤ 2

3
δ. Thusx /∈ V .

On the other hand, by Lemma 2.2,d(x, U) ≥ d(U, V )− d(x, V ) > δ − 2

3
δ = 1

3
δ, so x /∈ U . Thusx /∈ xn , which is a

contradiction.
Thus, the nonempty closed setxn cannot be decomposed into the disjoint union of two closed sets, so xn is connected. 2

Example. To see the importance of Ostrowski’s conditions, considerthe following bizarre sequence inR, for which xn = N,
which is bothnot connected and nonempty (but what if we relax compactness but require‖xn+1 − xn‖ → 0?):

(0, 1, 0 + 1
2
, 2, 0 + 3

4
, 1 + 1

2
, 3, 0 + 7

8
, 1 + 3

4
, 2 + 1

2
, 4, 0 + 15

16
, 1 + 7

8
, 2 + 3

4
, 3 + 1

2
, . . .) .
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Accumulation points, isolated points, and derived sets

These concepts are particularly useful for analyzing the convergence of iterative optimization methods.

Definition. Let S be a subset of a normed space(X , ‖·‖). A point x ∈ X is called anaccumulation point1 of S iff

∀ε > 0, ∃y ∈ S s.t. ‖x − y‖ < ε andy 6= x, i.e., d(x, S − {x}) = 0.

Definition. The set of all accumulation points of a setS is called thederived setand is denotedS′.

S′ = {x ∈ X : d(x, S − {x}) = 0} .

For comparison, theclosureof a set is:S = {x ∈ X : d(x, S) = 0} . So eachaccumulation point of S is acluster point.

Definition. A point x ∈ S is isolated if d(x, S − {x}) > 0. The collection of isolated points of a setS is:

Ṡ = {x ∈ S : d(x, S − {x}) > 0} = S̃′ ∩ S.

Example. S = (0, 1) ∪ {2} ∪ [3, 4)
S′ = [0, 1] ∪ [3, 4]
Ṡ = {2}
S = [0, 1] ∪ {2} ∪ [3, 4]

Example. S = {1, 1/2, 1/3, . . .}
S′ = {0}
Ṡ = S
S = {0, 1, 1/2, 1/3, . . .}

Simple facts about derived sets.
• S′ ⊆ S
• S̃ ∩ S ⊆ S′, sincex /∈ S =⇒ d(x, S − {x}) = d(x, S)
• S = S ∪ S′

• S is closed iffS′ ⊆ S
• x /∈ S′ =⇒ d(x, S − {x}) > 0.

Lemma. S′ = ˜̇S ∩ S, i.e., the derived set is “all of the non-isolated closure points.”
Proof.

˜̇S ∩ S =
(
S′ ∪ S̃

)
∩ S De Morgan Law

=
(
S′ ∩ S

)
∪

(
S̃ ∩ S

)
Distributive Law

= S′ ∪
(
S̃ ∩ S

)
sinceS′ ⊆ S

= S′ sinceS̃ ∩ S ⊆ S′. 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Diagram:

Ṡ = isolated points inS non-isolated points inS closure points not inS

S is the the first two,S′ is the last two, andS is all three.
SoS′ = S iff there are no isolated points inS.

1To ensure confusion, a few books call this alimit point . We will not use that term interchangeably with accumulation points in this course.
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Relation between derived set and subsequence limits

For a sequence{xn}, defineSN = ∪∞
n=N {xn}. Then by Lemma 13.7S′

N ⊆ xn , ∀N ∈ N.

Example. Consider the sequencexn = (−1)n in R, soSN = {−1, 1}.
ThenS′

N = ∅ but xn = {−1, 1}.

S′
N and xn will be the same if the sequence never passes through any of its subsequence limits.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Lemma. If S is bounded, thenS′ is bounded.
Proof.SinceS is bounded,∃M < ∞ s.t. ‖x‖ < M for all x ∈ S. For anyy ∈ S′, d(y, S − {y}) = 0, sod(y, S) = 0.
Thus∃x ∈ S s.t. ‖y − x‖ < 1, so‖y‖ ≤ ‖y − x‖ + ‖x‖ < 1 + M < ∞. ThusS′ is bounded. 2

The following proposition is stated to be “obvious” by Ostrowski [7, p. 173].

Proposition. In a normed space, any derived setS′ is closed.

Proof.We show that̃S′ is open.

Pick anyx ∈ S̃′ . Thenδ = d(x, S − {x}) > 0.
Now pick ay ∈ S − {x} such thatδ < ‖x − y‖ < 2δ. (This is possible by definition of the infimum that definesd.)
Let z = 3

4
x + 1

4
y, soz − x = 1

4
(x − y), henceδ/4 < ‖x − z‖ < δ/2.

Claim. B(z, δ/8) ⊂ S̃′ . (Here we useB to denote an open ball to avoid confusion.)

We need to show thatd(t, S − {t}) > 0 for anyt ∈ B(z, δ/8).

If t ∈ B(z, δ/8) then‖z − t‖ < δ/8. Furthermore,‖t − x‖ ≤ ‖t − z‖ + ‖z − x‖ ≤ δ/8 + δ/2 = 5

8
δ, and‖t − x‖ ≥

‖z − x‖ − ‖t − z‖ ≥ δ/4 − δ/8 = δ/8. Combining:δ/8 ≤ ‖t − x‖ ≤ 5

8
δ.

d(t, S − {x}) ≥ d(x, S − {x})−‖t − x‖ ≥ δ − 5

8
δ = 3

8
δ. Combining withd(t,x) ≥ δ/8, we haved(t, S) ≥ min{δ/8, 3

8
δ} =

δ/8, sot /∈ S. Thus,S = S − {t} sod(t, S − {t}) ≥ δ/8, hencet ∈ S̃′ . Sincet within the open ball was arbitrary, we conclude
that there is an open ball aroundz contained inS̃′ , so S̃′ is open and thusS′ is closed. 2

(Picture) [x = 0 1/4 1/2 1 2]δ with y ∈ [1, 2], z ∈ [1/4, 1/2] andt ∈ [1/8, 5/8].

Can you find a simpler proof?

Lemma. In a normed space, ifS ⊆ K whereK is compact, then the following hold.
• S′ ⊆ S ⊆ K
• S andS′ are also compact.

Proof. If x ∈ S, then there exists a convergent sequence{xn} ∈ S such thatxn → x.
Since{xn} ∈ K, there is a convergent subsequence{xni

} such thatxni
→ y for somey ∈ K.

But since{xn} is convergent, its subsequences converge to the same limit,sox = y ∈ K. Sincex was arbitrary,S ⊆ K.
A previous lemma showedS′ ⊆ S, soS′ ⊆ S ⊆ K.

Since bothS andS′ are closed sets that are subsets of the compact setK, they are each compact by Lemma 2.4. 2

Example. The following sequence in[0, 1] ⊂ R satisfies the condition of Ostrowski’s theorem below:

{1/3, 2/3, 3/4, 2/4, 1/4, 1/5, 2/5, 3/5, 4/5, 5/6, 4/6, . . .}. What is the derived set for this sequence? ??

(Clearly this is not the type of behavior that we would like iterative optimization algorithms to exhibit!)
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Ostrowski’s convergence theorem

Often with iterative algorithms we see that as the iterations proceed, the iteratesxn change less and less. Does this mean that{xn}
converges? The following convergence theorem of Ostrowskipartially addresses this question.

(Originally stated in Euclidean space. We generalize here to arbitrary normed spaces.)

Theorem. (Ostrowski)
Let{xn} be a sequence that lies within a compact subsetK of a normed space(X , ‖·‖) and letS = {xn : n ∈ N}.
If ‖xn+1 − xn‖ → 0, then either
• {xn} converges in the usual sense (to some limitx? ∈ K), or
• the derived setS′ of S is a continuum.

Proof.Since‖xn+1 − xn‖ → 0, if S is finite then it is clear that{xn} must converge in the usual sense.
So we focus on the case thatS is infinite hereafter.

S′ is closed and compact as shown in a previous proposition and lemma.

Now we supposeS′ = U ∪ V whereU andV are disjoint nonempty closed sets, and we proceed to form a contradiction.
Note thatU andV are compact since they are subsets ofS′ and hence subsets ofK, using a previous lemma.

By Lemma 2.6,d(U, V ) = δ > 0.
On the other hand, since‖xn+1 − xn‖ → 0, ∃N0 ∈ N s.t.n > N0 =⇒ ‖xn+1 − xn‖ < δ/3.

Claim 1. For anyN ∈ N and∀x ∈ S′, d(x, SN − {x}) = 0, whereSN ,
⋃∞

n=N {xn}. (This union is valid since|S| = ∞.)
Pf. Supposed(x, SN − {x}) = ε > 0 for somex ∈ S′. Then∀n ≥ N, xn 6= x =⇒ ‖xn − x‖ ≥ ε.

But thend(x, S − {x}) = min
{

d(x, SN − {x}), d
(
x, {xn}

N−1

n=1
− {x}

)}
> 0, which contradicts the assumption thatx ∈ S′.

Claim 2. For anyN ∈ N, d(SN , V ) = 0.
Pf. By Claim 1,d(v, SN ) = 0, ∀v ∈ V sod(V, SN ) = 0, ∀N ∈ N.

Claim 3.∀N ∈ N, ∃n > N s.t. d(xn, V ) > 2δ/3.
Pf. Suppose∃N ∈ N s.t.n > N =⇒ d(xn, V ) ≤ 2δ/3. Pick anyx ∈ U (which is possible sinceU is nonempty).
Sinced(U, V ) = δ, we haved(x, V ) ≥ δ for x ∈ U .
Since|d(x, V )− d(xn, V )| ≤ ‖x − xn‖, we have‖x − xn‖ ≥ d(x, V )− d(xn, V ) ≥ δ − 2δ/3 = δ/3 for all n > N .
Thusd(x, SN+1) ≥ δ > 0, contradicting Claim 1.

Starting withn0 = N0, we recursively generate an increasing sequence{ni}, as follows, fori = 1, 2, . . ..

By Claim 3, there is somem > ni−1 such thatd(xm, V ) > 2

3
δ and hence‖y − xm‖ > 2

3
δ.

On the other hand, by Claim 2,∃n > m s.t. d(xn, V ) < 2

3
δ. Let ni denote thesmallestsuchn sod(xni

, V ) < 2

3
δ.

Clearlyni > m, sod(xni−1, V ) ≥ 2

3
δ.

Furthermore, sinceni ≥ N0 in this construction,d(xni
, V ) ≥ d(xni−1, V )−‖xni

− xni−1‖ ≥ 2

3
δ − 1

3
δ = 1

3
δ.

Combining, we have1
3
δ ≤ d(xni

, V ) < 2

3
δ, for an increasing sequence{ni}.

Since{xni
} lies in the compact setS, it has a convergent subsequence that converges to some limit x ∈ S.

By the continuity ofd(·, V ), we have1

3
δ ≤ d(x, V ) < 2

3
δ. Thusx /∈ V .

On the other hand,d(x, U) ≥ d(U, V )− d(x, V ) ≥ δ − 2

3
δ = 1

3
δ, sox /∈ U . Thusx /∈ S′.

Now, xni
→ x /∈ S′, so take the subsequence{xni

} and removex from it if necessary to form a sub-subsequence, call it{xmi
},

for which xmi
→ x asi → ∞, butxmi

6= x, ∀i ∈ N. Thus0 = d(x, {xmi
}) = d(x, {xmi

} − {x}) ≥ d(x, S − {x}) ≥ 0, so
necessarilyx ∈ S′. This is a contradiction! Thus, either{xn} converges, orS′ must be a continuum. 2

(Picture) ?
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Meyer’s monotone convergence theorem

Consider the problem of finding a minimizer of acontinuouscost functionΨ : C → R, i.e.

arg min
x∈S

Ψ(x),

whereC is aclosedset in a normed space(X , ‖·‖), S is a compact set (so thatΨ achieves its minimum overS), andS ⊆ C.

A 1976 paper by Meyer [8] provides theorems that give quite general conditions under which an algorithm that monotonically
decreases the cost function will converge. Meyer’s result is quite general and considers point-to-set mappings. For simplicity, we
focus on the common case where the iterative algorithm is defined as follows:

xn+1 = T (xn), (M-3)

whereT : C → C is acontinuousoperator.

To state Meyer’s result, we first make a few definitions.

Definition. A point x? ∈ X is afixed point of T iff x? = T (x?) . Let T? , {x ∈ X : T (x) = x} denote the set of fixed points.

Definition. An operatorT is calledstrictly monotone (decreasing) onC with respect to a cost functionΨ(x) iff
• Ψ(T (x)) ≤ Ψ(x), ∀x ∈ C, and
• Ψ(T (x)) < Ψ(x) wheneverx is not a fixed point ofT , i.e., ∀x ∈ T̃? ∩ C.

Definition. An operatorT is calleduniformly compact onC iff there exists a compact setK such thatT (x) ∈ K for all x ∈ C.

Example. T (x) = sin x with K = [−1, 1] is uniformly compact.

The usual case of interest is whenC = {x ∈ X : Ψ(x) ≤ Ψ(x0)} is compact.
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Theorem. (Meyer [8])
SupposeT : C → C is a continuous operator over a closed setC in a normed space(X , ‖·‖) such that

T is uniformly compact onC, and (M-4)

T is strictly monotonic onC, with respect to a continuous functionΨ. (M-5)

If {xn} is any sequence generated by the algorithm (M-3) corresponding toT with x0 ∈ C, then

1. all subsequence limit points (of{xn}) will be fixed points (ofT ), i.e., xn ⊆ T? (M-6)

2. Ψ(xn) → Ψ(x?), where x? is a fixed point ofT , i.e., x? ∈ T? (M-7)

3. ‖xn+1 − xn‖ → 0, and (M-8)

4. xn , the set of subsequence limits of{xn}, is connected. (M-9)

Proof. Clearly{xn} ∈ C. SinceT is uniformly compact,∃K compact such that{xn} ∈ K. Thus there exists a subsequence
{xni

} that converges to some limit inC (sinceC is closed), call itx?. So the set of subsequence limits is nonempty.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 1.x? is a fixed point,i.e., x? = T (x?).
Sincexni

→ x?, by continuity ofT , T (xni
) → T (x?), i.e., xni+1 → x′ , T (x?).

By continuity ofΨ, Ψ(xni
) → Ψ(x?) andΨ(xni+1) → Ψ(x′).

Since{ni} is increasing,ni+1 ≥ ni + 1 > ni. SinceT is strictly monotonic,{Ψ(xn)} is monotonically nonincreasing.
ThusΨ

(
xni+1

)
≤ Ψ(xni+1) ≤ Ψ(xni

).
Taking the limit asi → ∞ shows thatlimi→∞ Ψ(xni+1) = limi→∞ Ψ(xni

), i.e., Ψ(x′) = Ψ(x?).

Now if x? were not a fixed point ofT , then by strict monotonicity, sincex′ = T (x?) we would haveΨ(x′) < Ψ(x?), contradicting
the equality just shown. Thusx? ∈ T?.

Sincex? was an arbitrary subsequence limit, we have shownxn ⊆ T?.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 2.Ψ(xn) → Ψ(x?).
This follows immediately from the factΨ(xni

) → Ψ(x?) and the fact that{Ψ(xn)} is monotone nonincreasing.
∀m ∈ N,∃i ∈ N s.t.ni > m, andΨ(xni

) ≤ Ψ(xm) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 3.‖xn+1 − xn‖ → 0, i.e., ∀ε > 0, ∃N s.t.n > N =⇒ ‖xn+1 − xn‖ < ε.
Suppose not,i.e., ∃ε > 0 s.t.∀N ∃n > N s.t. ‖xn+1 − xn‖ ≥ ε.
Then we could recursively construct a subsequence{ki} such that‖xki+1 − xki

‖ ≥ ε > 0.
Since the sequence{xki

} lies in the compact setK, it has a convergent subsequence, call it{xni
} for simplicity, that converges to

somex ∈ K.
By continuity ofT , T (xni

) → T (x), i.e. xni+1 → x′ , T (x).
By Claim 1,x is a fixed point, so in factx′ = T (x) = x, soxni+1 → x.

Sincexni
→ x andxni+1 → x, there exists somei ∈ N such that‖xni

− x‖ < ε/2 and‖xni+1 − x‖ < ε/2.
So by the triangle inequality, for thati: ‖xni+1 − xni

‖ ≤ ‖xni
− x‖ + ‖xni+1 − x‖ < ε, a contradiction.

Thus‖xn+1 − xn‖ → 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Claim 4. xn is connected.
This follows immediately fromOstrowki’s convergence theorem. 2

One tries to chooseT such that the fixed points ofT are the minimizers ofΨ.

Corollary . If C = {x ∈ X : Ψ(x) ≤ Ψ(x0)} is compact andT is continuous and strictly monotonic onC with respect to a
continuous functionΨ with a unique minimizerx?, and if T? = {x?}, then the algorithm (M-3) yields a sequence{xn} that
converges to the unique minimizer.

p. 111 of Meyer claims that if{xn} does not converge, then “there exists at least two accumulation points”

Extra credit (= 40 homework points) problem. Show that Meyer’s definition of u.s.c. is equivalent to our definition (or give a
counter-example).
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Example. overhead

Separable paraboloidal surrogate algorithm for ordinary least squares estimation [10–13].

Consider the problem of finding the minimizer ofΨ(x) = 1

2
‖y − Ax‖2

2
, wherey ∈ R

m, x ∈ R
p, andA ∈ R

m×p. Of course
there is a simple analytical solution for theunconstrainedminimizer ofΨ(x), but what if we wantminx≥0 Ψ(x)?

To derive an algorithm for the constrained case, note that

Ψ(x) =

m∑

i=1

hi([Ax]i), wherehi(l) =
1

2
(yi − l)2 and[Ax]i =

p∑

j=1

aijxj .

Now (this clever trick is due to De Pierro [14]) consider

[Ax]i =

p∑

j=1

aijxj =

p∑

j=1

πij

(
aij

πij

(xj − xn
j ) + [Axn]i

)
,

whereπij =
|aij |
ai

≥ 0 andai ,
∑

j |aij | > 0. (If ai = 0 then that row ofA is pointless and should be eliminated at the outset.)
Note that

∑p

j=1
πij = 1.

Since eachhi is aconvex function:

hi([Ax]i) = hi




p∑

j=1

πij

(
aij

πij

(xj − xn
j ) + [Axn]i

)
 ≤

p∑

j=1

πijhi

(
aij

πij

(xj − xn
j ) + [Axn]i

)
.

Thus

Ψ(x) ≤ g(x;xn) ,

m∑

i=1

p∑

j=1

πijhi

(
aij

πij

(xj − xn
j ) + [Axn]i

)
,

butΨ(xn) = g(xn;xn). (Picture of surrogate)

Consider the following iterative algorithm:

xn+1 = T (xn) = arg min
x≥0

g(x;xn).

This algorithm is monotonic sinceΨ(xn+1) ≤ g(xn+1;xn) ≤ g(xn;xn) = Ψ(xn) . Is it strictly monotone? Continuous?

∂

∂xj

g(x;xn) =
∑

i

aij ḣi

(
aij

πij

(xj − xn
j ) + [Axn]i

)
=

∑

i

aij

[
yi −

aij

πij

(xj − xn
j ) − [Axn]i

]
.

Thus, equating to zero yields the iteration

xn+1

j =

[
xn

j +

∑
i aij(yi − [Axn]i)∑

i |aij | ai

]

+

, xn+1 =

[
xn + diag

{
1∑

i |aij | ai

}
A′(y − Axn)

]

+

,

where[x]
+

denotesx if it is nonnegative and zero otherwise.

Continuity is obvious. With some algebra one can show thatT is strictly monotone too.

One can show thatx? is a fixed point ofT iff x? satisfies theKarush Kuhn Tucker conditions for the minimization ofΨ.

One can show that ifA has full column rank, then there is a unique minimizer that isthe only fixed point ofT and the above
algorithm converges to that minimizer [15,16].
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