
Achieving Service Portability using Self-adapative
Data Paths

Zhuoqing Morley Mao, Randy Katz
{zmao, randy}@eecs.berkeley.edu

CS Division, EECS Department, University of California at Berkeley

Abstract— There is a growing demand for service access
through heterogeneous devices attached to diverse networks.
For ease of deployment, it is crucial to provide application-
level support for transparent roaming and ubiquitous ser-
vice access. In this paper we discuss how to develop such
a service infrastructure integrating a variety of telephony
and data services spanning diverse access networks reach-
ing heterogeneous end devices. We describe our techniques
for achieving goals of transparent network- and device-
independent service access, as well as scalable and fault-
tolerant access to composed service entities across the wide
area using self-adaptive data paths. We evaluate our im-
plementation through applications that require adaptation
to end devices and resource variations. The applications
include Universal In-box, Interactive Voice Room Control,
MP3-Jukebox access using a cell-phone, and real-time video
delivery to wireless clients.

I. SERVICE CUSTOMIZATION USING PATHS

We define Service portability to be the ability to ac-
cess services using any devices, anywhere, continuously
with mobility support and dynamic adaptation to resource
variations. We first describe our motivating scenario that
drives the design of our system. Alice wakes up in the
morning and is reminded by her Personal Digital Assistant
(PDA) that today is her mother’s birthday. She fires up a
video conference session to wish her Mom happy birth-
day. She sits down in front her desktop machine with an
attached Web camera and picks up her home PSTN phone
which rings as soon as her Mom answers. The video
stream is automatically directed to the large desktop PC
monitor. During the conferencing call, she is reminded
again by her PDA that she is running late for an appoint-
ment, thus she pushes the button on her home phone to
transfer the call session to her cell-phone. She also trans-
fers the video streams to her PDA with 802.11 network
connectivity. Since 802.11 may have a much lower band-
width, the image size and quality is automatically reduced.
The video input is received by the camera attached to the
PDA. After completely transferring the video conference
session, Alice walks into her garage and gets into her car
equipped with a car cell-phone and a CDPD network in-

terface. She puts on the headphone set and docks her cell-
phone to transfer the call session to the car cell-phone. The
video stream is then automatically redirected to the dash-
board display screen.

The key enabling component of such service customiza-
tion in our service architecture is the middleware service
– Automatic Path Creation (APC) service [1]. The
APC provides data transformation for handling format
mismatches and also provide adaptation to resource vari-
ations. The APC automatically adapts the service output
data to the end user’s device and current network condi-
tions by establishing the proper data flow, which we call
a data path. It consists of a directed graph of Opera-
tors, which are Internet service instances and computation
units responsible for data adaptation through format trans-
formation. Examples are forward error correction (FEC)
operators to adapt data to wireless clients and PCM-to-
GSM converters for GSM cell-phone users. We achieve
automatic composition of operators by mandating services
to be strongly-typed. Type checking can overcome the se-
mantic information complexity and enable graph search al-
gorithms to easily discover semantically correct and high
performance service compositions.

A. Any device to any service

The APC allows services to be accessed transparently
from any device and any network using data format trans-
formation operators. Given a data format mismatch, the
APC locates the necessary format transformation opera-
tors and intelligently inserts them in the data stream. For
instance, a real-time streaming MP3 Jukebox service can
easily reach GSM cell-phone users using a data path con-
sisting of MP3-to-PCM and PCM-to-GSM transcoding
operators created by the APC service. Another example
of seamless service access is retrieving map information
from Yahoo! map service using a GSM phone. The data
path established converts the HTML format to the GSM
format by going through content extraction, speech syn-
thesizer and GSM encoding operators (shown in Figure 1).
This technique generalizes to any legacy Web services.

The APC service is completely transparent to end-users



and application service providers (e.g., Yahoo). It only
interacts with the Network Service Provider. For exam-
ple, when a GSM cell-phone user requests a Yahoo Map
service, his GSM Service Provider will detect the format
mismatch and request the APC to build a data path.

Request TranscoderRTP Connection: 
TCP Connection: 

Map Service

GSM Encoder Content Extractor

HTML

TextSun audio

Translator

GSM 

GSM 
HTML

Text−to−speech

Fig. 1. Example path use scenario: Illustration of two paths
created for getting map directions using a cell-phone from a
map service. Each circle denotes an operator which can be
either a long-lived service instance (e.g., Map Service) or a
dynamically created one (e.g., GSM Encoder).

Mismatches between an end-user and service occur be-
cause the user lacks the necessary software or hardware, or
may have resources that are too limited like memory and
power. For example, a user with only immediate access
to a Real Player can now access a MPEG video stream-
ing service given the data path constructed by the APC.
Similarly, thin PDA clients with limited display, computa-
tional, memory, or power capabilities can conveniently use
any existing legacy services without specialized services.
A direct consequence of on-demand content adaptation is
faster service deployment and ubiquitous service access.

B. Enabling personal mobility

In addition to format conversion, the APC also provides
personal mobility support needed by mobile clients. A
roaming client switching between wired and wireless ac-
cess may change its IP address. The APC enables it to
continue the ongoing service session with minimal inter-
ruption. The data path provides a service session redirec-
tion proxy to dynamically detect user’s mobility pattern
change and redirect the service data to the mobile clients.
Such a redirection proxy also caches application-specific
data during temporary network disconnectivity for retrans-
mission to provide the illusion of a continuous session.

Furthermore, the APC enables users to handoff across
different devices during a service session. In our motivat-
ing scenario, Alice chooses to handoff the video stream
from her desktop to her PDA. The APC dynamically cre-
ates a new data path to transparently redirect the data
stream from the service to the PDA.

C. Dynamic adaptation to resource variations

Frequently end users may experience degraded perfor-
mance of service due to dynamic changes in network con-
ditions, e.g., sudden bandwidth drop due to network con-
gestion. There is a need for applications to adapt to dy-
namic changes in available resources to optimize user-
perceived quality of service. We define three ways to adapt
to changes in resources.

• Application-intelligent adaptation: The application is
powerful enough to do its own adaptation to resource
changes. For instance, RealAudio combines multiple
streams encoded for different bit rates into a single clip.
RealVideo uses a single codec to encode data for several
bandwidths. During runtime, the audio and video streams
dynamically adapt to changes in bandwidths [2]. In this
case, the APC directly takes advantage of the application
adaptation mechanisms in the composed path.
• Application-specific adaptation: The application pro-
vides mechanisms for dynamic adjustment, but does not do
so automatically. For instance, for bandwidth adaptation,
there are instances of the same codec for different bit rates.
A codec may be error-resilient, but needs to be notified of
the current error rate through a control channel. In this
case, the APC is responsible for monitoring the resource
changes and providing feedback to the applications to en-
able dynamic adaptation. the APC continuously monitors
resource changes and the quality of output data to detect
the need for dynamic path optimization.
• Application-independent adaptation: If there is a lack
of knowledge of the underlying application implementa-
tion, the APC treats it as a black box and does application-
independent adaptation. For instance, to adapt to high
packet loss rate, forward error correction (FEC) and com-
pression operators are inserted for better data throughput.
FEC can also vary the amount of redundancy based on the
packet loss rate.

Combinations of the above approaches are used. Given
the path requestor’s optimization criteria, the APC strives
to create service compositions that best utilize network
and computational resources to achieve the optimal de-
sired QoS. Optimized resource utilization and differenti-
ated QoS are enabled by our iterative data path construc-
tion process with continuous feedback (see Section II) and
clear specification of optimization metrics.

D. Enabling wide-area service scalability and availability

Services need to scale well given increasing load and
degrade gracefully under overload. High availability is an
important requirement of today’s network services given
increasing dependence on immediate information access.



Traditionally, services are constructed using a thread-
based programming style. We take advantage of event-
driven programming model and asynchronous, nonblock-
ing I/O library to achieve greatly improved scalability
through reduced thread overhead in memory usage, con-
text switching, and unnecessary blocking due to I/O. The
Automatic Path Creation Service itself is constructed us-
ing this programming paradigm to increase path creation
throughput.

Moreover, event-driven style exposes the task queue to
the application writers to allow application-specific pri-
ority request scheduling. Another advantage of this pro-
gramming style is the elimination of coupling and blocking
effects within the service composition chain and thereby
greatly increasing the performance of the composed ser-
vice entity, making services usable under heavy load.
When one service composes with another one, the inter-
face of asynchronous task requests and completion replies
instead of blocking RMI calls free up requesting service’s
threads to work on other computations.

Another strategy we deploy for increased service scal-
ability is the use of cluster computing platform for con-
structing our services. We leverage several nice properties
of such a platform: incremental scalability, fault-tolerance,
high availability through redundancy, and high network
bandwidth.

E. Achieving fault-tolerance for composed services

The APC protects users from the failure of individual
path components or communication links between them.
It strives to provide the illusion that the user is accessing a
single robust service entity providing the composed func-
tionality.

Despite inherent redundancy and low probability for
network partition within a cluster, failures can still occur at
both the process and machine level due to hardware prob-
lems or software bugs. It is critical for a path to grace-
fully and quickly recover from faults. The APC service
is a wide-area, cluster-based service. Thus, it is highly
available and fault-tolerant due to redundancy in the clus-
ter. New APC service instances are created in response to
failures or high load. On each cluster, multiple APC ser-
vice instances exist and provide local area fault-tolerance.
Across the wide area, the APC service instances on differ-
ent clusters coordinate to build a wide area path shown in
Figure 2.

The APC provides two redundant sets of control paths
for detecting and handling path component failures as il-
lustrated in Figure 3 as part of the run-time environment of
the data path.
• APC monitoring

End Client End ServiceCluster A

Cluster B

Cluster C

OpA
OpB

OpC

OpD

OpE

OpF

Fig. 2. An example wide area path: Each circle denotes an op-
erator. Each connecting line between the operators indicates
a connector. The path is requested by the end service.

SRC DST

APC Service InstanceControl Path:
Data Flow: 
Operator:

Fig. 3. Redundant control paths: To ensure a fast and robust
fault-recovery model, multiple control paths are built into
the system to guarantee their robustness.

The APC periodically sends heartbeat messages to each
operator within the path to ensure they are available. Upon
timeout, the APC assumes either process or node failure
and attempts to restart the operator. First it tries to reuse
the existing node if it is not overloaded. If that fails, the
APC locates a new node through the cluster. If that is still
unsuccessful, reconstruction of logical paths is attempted.
• Peer monitoring
Each operator is network I/O intensive and constantly re-
ceives from and sends data to neighboring operators. Upon
catching any I/O exception when reading or writing data,
an operator immediately notifies the APC so that failure
recovery can be quickly initiated.

F. Enabling service personalization

Not only does our service architecture provide service
mobility support to allow mobile users access services
across network and device changes, it also stresses the
concept of having the person instead of the device as the
communication endpoint. This level of personal mobility
is possible by creating a single identity for an individual
providing a level of indirection to the desired endpoint for
communication. A service thus can be transparently ac-
cessed by the user regardless of his endpoint communi-
cation device. Furthermore, services are customized us-
ing the client’s preference specification depending on the
user’s current activities. The Personal Activity Coordina-
tor (PAC) service [3] keeps detailed account of the cur-



rent ongoing activity of the user to make services properly
customized according to user’s location and activity. The
APC service queries the database of user’s preference and
constructs the appropriate data path.

G. Localization of services

Depending on end-user’s current location, services can
be localized by incorporating useful local information. For
instance, a user sitting in a traffic jam moving slowly will
automatically receive updates on alternative routes to his
destinations as part of the service data. A student going
into a Computer Science building automatically gets infor-
mation about ongoing seminars. This is possible because
the APC is constantly keeping track of user’s current loca-
tion and getting updates through PAC about user’s current
activity and customizes the service output accordingly.
Thus, services can become more context- and location-
aware.

II. IMPLEMENTATIONS

In this section we describe the overall automated pro-
cess of constructing a data path of operators – service in-
stances. APC can be either a stand-alone infrastructure ser-
vice or a part of the Network Service Provider’s functional-
ity. The major difference between a self-adaptive data path
and a simple concatenation of a series gateways is that the
data path constructed by APC is customized for the appli-
cation and dynamically adapts to changing resources. This
adaptation is achieved seamlessly by APC using passive
monitoring.

A. Path construction process

To construct a path, the Network Service Provider for
the service whose content is to be composed sends a re-
quest to the APC at a well-known IP address along with
the information pertaining to the endpoints of the required
path, any specific operators that must be included in the
path, the optimization metric, and an acceptable range
of costs for the path. Both the metric and the cost are
application-specific and can be one of the following: data
latency, data throughput, and output data characteristics
(e.g., audio/video quality, image resolution). This infor-
mation is needed to construct an optimal path.

The path construction process consists of four steps. As
shown in Figure 4, it is an iterative process of continuous
feedback and optimization.

Step 1: Logical path creation: A logical path consists
of a directed graph of operators. During the logical path
creation, APC searches through the XML descriptions of
the available operators to find valid sequences that could

Logical Path Creation

Physical Path Creation

Path Instantiation, Execution, Maintenance

Path Tear-down

Fig. 4. Path construction process is an iterative process of op-
timization. The APC service guarantees the availability and
fault-tolerance of a constructed path by rebuilding its physi-
cal or logical path when components fail.

perform the computation requested by the Application Ser-
vice Provider. The result is a list of possible operator se-
quences ordered by decreasing cost on the user’s input pa-
rameters for optimization (e.g., latency, data throughput,
voice quality). The search is performed using shortest path
search on the graph of operator space. Optimization cri-
teria are application specific. One goal of the APC is to
adapt to application requirements to optimize resource uti-
lization.

Note that since some operators may be commutative
(e.g., image format transcoders), the space of all possible
logical paths can be huge given a large number of services.
Hence, as a heuristic, only a small number of logical paths
are generated initially. As indicated in Figure 4, additional
logical paths can be produced as needed if the physical
paths for the first set of selections are not optimal (i.e.,
cannot satisfy user’s specified QoS metric or do not have
acceptable performance). Thus, the tradeoff for better re-
sponse time does not compromise the degree of optimiza-
tion for quality of service.

Step 2: Physical path creation: A physical path is
a logical path with a choice of actual nodes (i.e., physi-
cal machines) on which to run the operators. Nodes for
long-lived operators are chosen from the known service
instances’ locations that provide the desired functionality
based on application criteria such as response time, data
throughput, and image resolution. Nodes for dynamic op-
erators are selected according to the computational capa-
bilities, the cost of using that node in the path, and vari-
ous other criteria. Some of these operator placement de-
cisions include operator computational requirement, soft-
ware/hardware requirement, output/input properties (e.g.,
data location, data volume, delay-sensitivity, degradation
properties), network characteristics (e.g., bandwidth, de-
lay, packet loss rate, and jitter characteristics). APC con-



structs a physical path from a logical path by finding the
lowest cost nodes that meet the requestor’s requirements.

During physical path creation, optimization operators
such as FEC and compression operators are inserted for
performance enhancement. FEC operators are added be-
tween a wireless link to reduce packet loss rate. Com-
pression and decompression operators are added between
operators with large data throughput to avoid overloading
the network.

Step 3: Path instantiation, execution, maintenance:
Once the physical path has been determined, APC starts
any required dynamic operators and sets up appropriate
connectors between the various operators. After all the
nodes in the path are set up, the data flow is started. In ad-
dition, a control path (described in Section I-E) is estab-
lished between the operator nodes and APC. It is used for
both reporting of error conditions and performance statis-
tics.

During the lifetime of the path, APC actively monitors
the operator nodes to make sure that they are available.
Any operator can also report problems to APC about its
neighboring operators, so that the path can be repaired
when necessary. The control path also plays an impor-
tant role in enabling operator repair, deletion, and inser-
tion. It is used for exception handling, controlling param-
eters of path components, monitoring and analyzing path
performance. Therefore, it needs to be highly robust and
unaffected by the data path’s failures. A control path can
however overlap with the data path: each path operator
can have a handle to its two neighboring operators. APC
thus monitors the performance of the path and reroutes the
data path if new conditions make the original path subop-
timal by going back to the physical or logical path creation
stages.

Step 4: Path tear-down: When a path is no longer
needed, the user notifies APC, which stops the data flow,
removes connectors, shuts down any dynamic operators,
and frees other relevant resources. As a performance op-
timization, APC may cache the logical and physical infor-
mation of commonly used paths for reuse.

B. Operator functional classification

To automate the logical path construction process, APC
needs to be aware of all supported operators. It is thus
useful to have a meaningful categorization of operators
in their functionality. The functional classification is in-
cluded in the operator XML description. We classify oper-
ators into four categories: data format translation operators
(e.g., GIF to JPEG converter), protocol conversion opera-
tors (e.g., security protocol conversion), content transfor-
mation operators (e.g., English to Chinese translator), and

optimization operators (e.g., FEC operators). A wide-area
service discovery service keeps track of available opera-
tors for APC to create data paths.

III. SUPPORTED APPLICATIONS

We have implemented these applications using APC: ac-
cessing a music MP3 jukebox service using a cell-phone,
accessing email through Vat (an audio tool) [4], communi-
cation between a PSTN phone and a GSM cell-phone, and
voice-enabled interactive room control [5]. We have also
explored mobility issues for supporting video streaming to
wireless mobile clients. The functionality of path allows
seamless integration of any new device into our service in-
frastructure. It only requires the addition of operators that
convert between supported formats to the data format of
the new device. Below we describe some of these applica-
tions in detail.

Our experience shows that service composition is
greatly simplified by APC and the QoS of the resulting
composed entity is significantly improved through the path
search process. Moreover, we find the classification of op-
erators based on the properties in Section II-B quite helpful
during operator and path creation.

A. Listening to jukebox MP3 songs using cell-phone

The music jukebox [6] is a distributed, collaborative
music repository that delivers digital music in MP3 format
to Internet clients in real-time. A GSM cell-phone user in-
terested in using the service can take advantage of APC’s
data transformation functionality to convert the music into
the right data format. Furthermore, the data path estab-
lished also hides the network jitter and bandwidth fluctua-
tions by buffering and downsampling the data.

This data path is built from existing Unix utility tools –
mpg123 and sox programs, and a GSM lossy speech com-
pression codec [7]. This demonstrates that APC can easily
integrate legacy code as operators to construct data paths.

B. Universal inbox

Universal Inbox [8] is an infrastructure service provid-
ing customizable redirection of incoming communication
based on user preference profiles as well as user’s end de-
vices. The inbox is universal because it accepts all types of
communication, e.g., voice mail, paging message, email,
news feeds from the Web. Depending on user’s current
end device, the incoming message is automatically trans-
formed to the proper format before delivery. For example,
an HTML-email message goes through a speech synthe-
sizer and a PCM encoder before reaching a user on a PSTN
phone. For the Universal Inbox, APC is its key to extensi-
bility and service portability.



C. Interactive voice room control

In this era of ubiquitous computing, it becomes impor-
tant to control various appliances in smart spaces using
various modes, e.g., speech, text, gesture, etc. There is
such a smart space in our lab consists of various audio
and visual appliances to be controlled over the network.
Using APC, one can control A/V equipment (e.g., move
cameras, turn on lights, program VCR) using a variety of
input devices. Paths are automatically constructed from in-
put source to the room control application and vice versa.
For instance, speech input is first converted to PCM audio,
then speech-to-text conversion is performed on the output,
which goes through natural language processing to the text
format. The text subsequently is changed into commands
accepted by the room application. Responses from the ap-
plication go through the inverse transformation: first to
text, then PCM speech, and finally GSM audio if the end
user is using a cell-phone.

D. Real-time streaming video for wireless mobile clients

To demonstrate mobility support we have developed
a video streaming service for mobile wireless clients
through real-time transcoding and dynamic data stream
redirection. Depending on the access network bandwidth
and client’s end device capability, APC automatically gen-
erates the proper sequence of transformation operators and
content adaptors to generate desired data format at the
proper data rate and quality. Furthermore, the constructed
data path is intelligent enough to redirect data when user
roams and changes access network.

IV. EVALUATION

To demonstrate the scalability of the APC service, here
we present some end-to-end performance measurements
for one path application (accessing a MP3 streaming Juke-
box service using a cellphone). The measurements are per-
formed on a local area cluster of 400MHz Pentium-II ma-
chines each with 256MB of main memory and 512KB of
processor cache with gigabit ethernet connection.

Table IV shows good performance of a single APC ser-
vice instance for a path consisting of 4 operators on 2
nodes with 200 paths continuously being created and torn
down in the background. The performance shown is ac-
ceptable because the response time for a path creation is
less than 500ms. Users typically do not care about how
long it takes for the service session to terminate. In this
case, it takes less than 300ms. Recovery takes slightly
longer (i.e. 400ms); however, if buffering is used, the user
can hardly notice any gap in the output audio. The scala-
bility of path is also reasonable – 16 paths per machine, 15

creations per second.
In the context of two-way telephone calls, statistics [9]

show that during busy hours, the average call arrival rate
R = 2.8 calls/hour/user ×N (N is the number of users
in the system), with the call duration t = 2.6 minutes.
From our measurements, we know that the rate of path cre-
ation is 15 paths/sec with 32 paths running in the back-
ground. The call arrival rate a two-node APC can handle
is therefore given by 32/(2.8 ∗ 60) = .19 call/sec. Thus,
the system can handle N = .19/(2.8 calls/hour) = 244.
Therefore, a two-node APC service can easily handle over
200 users for this type of transcoding operators: sound
conversion operations and GSM to PCM codecs.

TABLE I
PERFORMANCE OF A SINGLE APC SERVICE INSTANCE FOR

OPERATING ON 4-OPERATOR-PATHS ON 2 NODES. THERE

ARE 200 PATHS CONTINUOUSLY BEING CREATED AND

DESTROYED IN THE BACKGROUND ON OTHER NODES.

Logical and physical path creation time: 264ms
Path instantiation time: 215ms
Path teardown time: 289ms
Path recovery from one failed operator: 402ms
Data throughput: 64kbps
Path construction latency: 479ms
Path scalability: 16 concurrent paths
Single-Node APC throughput 15 creations/sec

V. RELATED WORK

We now examine related efforts focusing on seamlessly
interconnecting Internet services and resource-constrained
devices. The main distinction is that our architecture pro-
vides fault-tolerant, wide-area, and scalable composition
automation of both legacy and novel services with dy-
namic optimization of resource utilization. The resources
we consider include computational, memory, and network
resources. The optimization criteria (e.g., latency, jitter,
data throughput) are either defined by the service authors
or deduced from the type of the service. Our emphasis
is on reusing existing services and enabling a quick and
easy way to obtain new service functionality from existing
ones rather than building a very complex and difficult-to-
evolve service accommodating a fixed set of protocols and
devices. Existing work addresses only specific aspects of
the problem space. Additionally, one of our contributions
is to provide a well-defined framework for Internet service
composition and a taxonomy of computation paradigms to
provide differentiated quality of service.

Our work is influenced by flexible middleware sys-
tems supporting distributed computing across heteroge-



neous resources. For example, Corba [10] provides
platform-independent, object-based network communica-
tion. DCOM [11] is an equivalent of Corba for the Win-
dows platform. However, neither system directly supports
optimal placement of computations. Jini [12] is a Java-
centric view exploiting bytecode mobility to deliver stub
code implementing a private communication protocol be-
tween client and service. Nevertheless, it is mainly de-
signed for use on a much smaller scale than wide area,
e.g., workgroup.

Our work is heavily influenced by projects (e.g., [13])
that transcode to adapt service content to better suit im-
poverished small devices. However, these approaches are
vertically integrated. They do not use composition as a
way to easily extend system functionality. The success of
our work, however, does not depend on the adoption of a
single standard. We provide bridging of multiple standards
by providing translational elements across them by design-
ing an extensible architecture to adapt to future standards.

The idea of path or composition, similar to UNIX
pipeline-like chaining of different commands, existed in
many previous works. For example, Scout [14] uses the
path as an explicit communication-oriented abstraction in
operating system design. In Scout, path facilitates OS spe-
cialization by enabling configurability and exposing global
context that optimization techniques can exploit. Path also
assists resource allocation and management by being a sin-
gle unit of scheduling entity. Here, we extend this idea of
composition to wide-area, independent Internet services.
The extension includes automatic path formulation as well
as runtime path maintenance.

Our work can be considered as an extension to the
TACC programming model [15] with additional design
of wide area service placement, continuous resource op-
timization through feedback, and generalized load bal-
ancing. TACC model provides composition of stateless
data transformation and content aggregation with uniform
caching of data. The composition model is static and in-
flexible. We are exploring a completely automated compo-
sition model and programmable compilation of composi-
tion chain. Furthermore, services considered in our frame-
work are quite general, including continuous latency-
sensitive stream services such as live audio and video as
well as support for mobile wireless clients. These are not
addressed by TACC.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation, and
evaluation of an infrastructure service – the Automatic
Path Creation service, the key enabling component to
achieve service and personal mobility, as well as ser-

vice portability and customization for integrating hetero-
geneous networks and devices.

Such a service composition platform automates com-
positions of both legacy and new Internet services across
the wide area. Automation is enabled through a strong
type system and the encoding of service attributes through
flexible XML descriptions. By providing features of fault-
tolerance, scalability, and optimized adaptive resource uti-
lization, we allow service authors to focus on the spe-
cific content of their services rather than how the service
will be accessed by different devices and how it will in-
teroperate with other services. We achieve fault-tolerance
through redundant control paths responsible for fast fault-
recovery. Scalability is achieved by using a cluster com-
puting platform and event-driven programming style. Op-
timized resource utilization and differentiated QoS are ob-
tained through the iterative path construction process with
continuous feedback and a clear specification of the user’s
optimization criteria. In the future, we plan to explore sup-
port for more diverse clients (e.g., IPAQ) and integration of
more existing Web services. We would also like to deploy
our implementation in wide area to stress test scalability
and fault-tolerance features of our prototype.

VII. ACKNOWLEDGMENT

We thank Professor Eric Brewer and Professor David
Culler for their insightful comments and ideas. We also
thank members of the Ninja and ICEBERG project for
their input.

REFERENCES

[1] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer,
David Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, and B. Zhao, “ The
Ninja Architecture for Robust Internet-Scale Systems and Ser-
vices,” To appear in a Special Issue of Computer Networks on
Pervasive Computing, 2000.

[2] Real.com, http://service.real.com/help/
library/blueprints/8codecs/producer8codecs%
.html, Working with RealProducer 8 codecs, June 28, 2000.

[3] Xia Hong, “Personal acitivity coordinator: A coordination layer
for independent services,” M.S. thesis, U.C. Berkeley, December
1999.

[4] http://www-nrg.ee.lbl.gov/vat/, VAT Mbone Audio
Conferencing Software.

[5] A. D. Joseph, B. Hohlt, R. H. Katz, and E. Kiciman, “Sys-
tem support for multimodal information access and device con-
trol,” Workshop on Mobile Computing Systems and Applications
(WMCSA), 1999.

[6] Ian Goldberg, Steven D. Gribble, David Wagner, and Eric A.
Brewer, “The Ninja Jukebox,” in Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems, Boulder, CO.,
October 1999.

[7] Jutta Degener, “Gsm 06.10 lossy speech compression,” http:
//kbs.cs.tu-berlin.de/˜jutta/toast.html.



[8] Bhaskaran Raman, Randy H. Katz, and Anthony D. Joseph, “Uni-
versal Inbox: Providing Extensible Personal Mobility and Service
Mobility in an Integrated Communication Network,” WMCSA
2000.

[9] C. N. Lo, R. S. Wolff, and R. C. Bernhardt, “An Estimate of Net-
work Database Transaction Volume to Support Universal Personal
Communications Services,” in First International Conference on
Universal Personal Communications (ICUPC ’92), 92.

[10] The Common Object Request Broker Architecture, The Object
Management Group (OMG), http://www.corba.org.

[11] G. Eddon and H. Eddon, Inside Distribued COM, Microsoft
Press, Redmond, WA.

[12] Sun Microsystems, Jini Connection Technology, http://www.
sun.com/jini/.

[13] Charles Brooks ad Murray S. Mazer, Scott Meeks, and Jim Miller,
“Application-Specific Proxy Servers as HTTP Stream Transduc-
ers,” in Proceedings of the Fourth International World Wide Web
Conference, December 1995.

[14] D. Mosberger and L. Peterson, “Making Paths Explicit in the
Scout Operating System,” in Proceeds of OSDI’96, 1996.

[15] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A.
Brewer, “Extensible Cluster-Based Scalable Network Services,”
in Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles (SOSP-16), St. Malo, France, October 1997.,
1997.


