Automating Network Application Dependency Discovery:
Experiences, Limitations, and New Solutions

Xu Chen® Ming Zhang' Z. Morley Mao® Paramvir Bahl'
 Microsoft Research University of Michigan

Abstract —Large enterprise networks consist of thou- by a user can involve calls to multiple services mentioned
sands of services and applications. The performancabove. Problems at any of these services may lead to
and reliability of any particular application may depend failure of the request, leaving the user frustrated and IT
on multiple services, spanning many hosts and networknanagers perplexed.

components. While the knowledge of such dependencies We say one servicgepend®n the other if the former
is invaluable for ensuring the stability and efficiency of requires the latter to operate properly. Knowledge of ser-
these applications, thus far the only proven way to disvice dependencies provides a basis for serving critical
cover these complex dependencies is by exploiting hunetwork management tasks, including fault localization,
man expert knowledge, which does not scale with thereconfiguration planning, and anomaly detection. For in-
number of applications in large enterprises. stance, Sherlock encapsulates the services and network
Recently, researchers have proposed automated disomponents that applications depend on irirdarence
covery of dependencies from network traffic [8, 18]. In graph[8]. This graph is combined with end-user obser-
this paper, we present a comprehensive study of the petations of application performance to localize faults in
formance and limitations of this class of dependency disan enterprise network. When IT managers need to up-
covery techniques (including our own prior work), by grade, reorganize, or consolidate their existing applica-
comparing with the ground truth of five dominant Mi- tions, they can leverage the knowledge of dependencies
crosoft applications. We introduce a new syst@ron,  of their applications to identify the services and hosts tha
that discovers dependencies using packet headers amghy potentially be affected, and to prevent unexpected
timing information in network traffic based on a novel consequences [9]. When continually discovered and up-
insight of delay spike based analysi®ion improvesthe  dated, dependencies can help draw attention to unantici-
state of the art significantly, but some shortcomings stillpated changes that warrant investigation.
remain. To take the next step forwagtjon incorporates While there are network management systems that

external tests t_o reducg errors to_amanag(_eable level. OWerform topology and service discovery [21, 12], IT
results showOrion provides a solid foundation for com-  managers currently do not have proven tools that help
bining automatec_i discovery with sw_nple testing to obtain;y yiscover the web of dependencies among different
accurate and validated dependencies. services and applications. They commonly rely on the
knowledge from application designers and owners to
specify these dependencies. These specifications can be
Modern enterprise IT infrastructures comprise of largewritten in languages provided by commercial products,
numbers of network services and user applications. Typsuch as Mercury MAM [4] and Microsoft MOM [5].
ical applications, such as web, email, instant messagwhile straightforward, this approach requires significant
ing, file sharing, and audio/video conferencing, operatehuman effort to keep up with the evolution of the ap-
on a distributed set of clients and servers. They alsglications and their deployment environment. This be-
rely on many supporting services, such as Active Direccomes a massive problem for large enterprises with thou-
tory (AD), Domain Name System (DNS), Kerberos, andsands of applications. For example, a survey conducted
Windows Internet Name Service (WINS). The complex-by the Wall Street Journal in 2008 found that HP and
ity quickly adds up as different applications and servicesCitigroup each operate over 6,000 and 10,000 line-of-
must interact with each other in order to function prop-business (LOB) applications [6]. Microsoft runs over
erly. For instance, a simple webpage fetch request issue8, 100 LOB applications in its corporate network, most

1 Introduction



of which have no documentations describing their depen-  thoughOrion cannot avoid all the false positives, we
dencies. More recently, there have been a few attempts can obtain accurate dependencies using simple ex-
to automate dependency discovery by observing network  ternal tests.

traffic patte_rns [8, 9, 18]. However, there is very little |, the rest of the paper, we elaborate on our tech-
understanding aboutow well these approaches work, piqes, implementation, and evaluation of automated de-

where and how they fall short, and whether their limi- honqency discovery. Additionally, we provide concrete

tations can be overcome without human intervention. oy amples about how to use extracted dependencies for
_There are a few challenges in designing a system that, ¢ diagnosis and reconfiguration planning.
discovers dependencies in a complex enterprise network:

First, it should require minimal human effort; Second, 2  Related Work
it should be applicable to a diverse set of applications;

Third, it should be non-intrusive to applications and beMany sophisticated commercial products, such as EMC
easily deployable; and Fourth, it should scale with thesMARTS [1], HP OpenView [2], IBM Tivoli [3], Mi-
number of services, applications, and hosts in the netcrosoft MOM [5], and Mercury MAM [4], are used for
work. These challenges are hard to address, especialijanaging enterprise networks. Some of them provide
given that expert knowledge of application internals Can-support for app”cation designers to Specify the depen_
not be assumed for thousands of new and legacy appldency models. However, these approaches require too
cations. Incorporating such knowledge in a system is anuch manual effort and are often restricted to a particu-
formidable task. lar set of applications from the same vendor.

We have built a system calledtion that overcomes all There is a |arge body of prior work on tracing execu-
these challenges. Specifically, it discovers dependenciggn paths among different components in distributed ap-
by passively observing application traffic. It uses read-pjications. For example, Pinpoint instruments the J2EE
|Iy available information contained in IP, TCP, and UDP middleware on every host to track requests as they flow
headers without parsing higher-level application-specifi through the system [15]. It focuses on mining the collec-
protocols. Most of the computationis done locally by in- tions of these paths to locate faults and understand sys-
dividual hosts, and the amount of information exchangedem changes. X-Trace is a cross-layer, cross-application
between hosts is small. framework for tracing the network operations resulting

In this paper, we describe our experiences in designfrom a particular task [16]. The data generated by X-
ing, implementing, and deployin@rion in Microsoft's  Trace can also be used for fault detection and diagnosis.
corporate network. We make the following contribu- Both Pinpoint and X-Trace require all the distributed ap-
tions: plications to run on a common instrumented platform.

e We introduce a new dependency discovery tech-This is unlikely to happen in large enterprise networks

nique based on traffic delay distributions. For thewith a plethora of applications and operating systems
applications we studied, we can narrow down thefrom different vendors.
set of potential dependencies by a factor of 50 to Magpie is a toolchain that correlates events generated
40,000 with negligible false negatives. by operating system, middleware, and application to ex-
e We are the first to extract the dependencies fortract individual requests and their resource usage [10].
five dominant enterprise applications by deployingHowever, it heavily relies on expert knowledge about the
Orion in a portion of Microsoft’s corporate network systems and applications to construct schemas for event
that covers more than 2,000 hosts. These extractegorrelation.
dependencies can be used as input to create more Project5 [7] and WAP5 [22] apply two different cor-
realistic scenarios for the evaluation of various faultrelation algorithms to message traces recorded at each
localization and impact analysis schemes host to identify the causality paths in distributed systems
e We comprehensively study the performance andThey both focus on debugging and profiling individual
limitations of a class of dependency discovery tech-applications by determining the causality between mes-
niques that are based on traffic patterns (includingsages. The message correlation in Project5 is done by
Orion). The results reveal insights into the short- computing the cross correlation between two message
comings of such techniques when they are appliecstreams. WAP5 developed a different message correla-
to real-world applications. tion algorithm based on the assumption that causal delays

e We conduct extensive experiments to comparefollow an exponential distribution for wide-area network

Orion with the state of the art (Sherlock [8] and applications. In contrasrion focuses on discovering
eXpose [18]). While their false negatives are sim-the service dependencies of network applications.

ilar, the false positives obrion are 10-95% fewer Brownet al. propose to use active perturbation to infer
than Sherlock and 94-99% fewer than eXpose. Everdependencies between system components in distributed



applications [14]. While this methodology requires little for well-known services, such as Web (80, TCP), DNS
knowledge about the implementation details of the ap{53, TCP/UDP), Kerberos (88, TCP/UDP), WINS (137,
plications, it has to use priori information to learn the TCP/UDP), and LDAP (389, TCP/UDP). Another type
list of candidate services to perturb, which is inherentlyof service is RPC-based and does not use well-known
difficult to obtain in large enterprise networks. ports. Instead, these services register an RPC port be-
The closest prior work t@rion is Sherlock [8, 9] and tween 1025 and 65535 when a host boots up. Clients
eXpose [18]. The former focues on localizing faults who intend to use these services will learn the RPC ser-
using dependency graphs while the latter focuses owice port through a well-known port of RPC endpoint
extracting and clustering significantly dependent flowmapper (135).
groups. They both use traffic co-occurrence to identify While it is a common practice to associate a ser-
dependencies. To determine whether one service desdce with an(ip, port, proto) tuple, we may define ser-
pends on the other, they compute either the conditionalice at either coarser or finer granularities. On the one
probability [8] or the JIMeasure [18] of the two services hand, many enterprises include fail-over or load bal-
within a fixed time window. A key issue with both ap- ancing clusters of hosts for particular services, which
proaches is the choice of the time window size. In fact,can be denoted agpCluster, port, proto). Other ser-
it is fundamentally difficult to pick an appropriate win- vices, such as audio and video streaming, could use any
dow size that attains a good balance between false pogort within a particular range, which can be denoted as
itives and false negatives. While they seem to extrac{ip, port Range, proto). On the other hand, multiple ser-
certainmeaningful dependencies, neither of them quanvices may share the same port on a host in which case we
tified the accuracy of their results in terms of how manymust use additional service-specific information to iden-
true dependencies they missed or how many false depetify each of them.
dencies they mistakenly inferred. In contrast, our tech- We define servicel to depend on servicB, denoted
nique does not rely on any co-occurrence window sizeas A — B, if A requiresB to satisfycertain requests
Through field deployment, we show th@tion extracts  from its clients. For instance, a web service depends on
dependencies much more accurately than Sherlock [8DNS service because web clients need to lookup the IP
and eXpose [18] for a variety of real-world enterprise ap-address of the web server to access a webpage. Simi-
plications. We also validated our results with the ownerdarly, a web service may also depend on database ser-

of all these applications. vices to retrieve contents requested by its clients. Note
that A — B does not meaml must depend o3 to an-
3 Goal & Approach swerall the client requests. In the example above, clients

Given an enterprise network application, our goal is toMaY bypass the DNS service if they have cached the web

discover the set of services on which it depends in ordef€"ver IP address. The web server may also bypass the
to perform its regular functions. Before describing thedatabase service if it already has the contents requested

technical details, we first introduce a few concepts and the clients. _ _
terms that will be used in the paper. We then motivate3.2 Discovering dependencies from traffic
our design decisions, outline our approach, and discus#/e consider three options in designi@gon to discover
our challenges. dependencies of enterprise applications: i) instrument-
3.1 Services and dependencies ing applications or middlewares; ii) mining application
Enterprise networks consist of numerous services andonfiguration files; and iii) analyzing application traffic.
user applications. Applications, such as web, email, andVe bypass the first option because we warion to be
file sharing, are directly accessed by users. Most applieasily deployable. Requiring changes to existing appli-
cations depend on various network services to functiorcations or middlewares will deter adoption.
properly. Typical network services include Active Di-  Configuration files on hosts are useful sources for dis-
rectory (AD), Domain Name System (DNS), and Ker- covering dependencies. For instance, DNS configura-
beros. These services provide basic functions, such ason files reveal information about the IP addresses of
name lookup, authentication, and security isolation. Anthe DNS servers, and proxy configuration files may con-
application or a service can run on one or more hosts. tain the IP addresses and port numbers of HTTP and
In this paper, we do not make a formal distinction be-FTP proxies. However, the configuration files of dif-
tween services and applications, and we use both termferent applications may be stored in different locations
interchangeably. We use a three-tuplg, port, proto) and have different formats. We need application-specific
to denote either an application or a service. In an enterknowledge to parse and extract dependencies from them.
prise network, arip normally maps to a unique host and Moreover, they are less useful in identifying dependen-
theport andproto often identify a particular service run- cies that are dynamically constructed. A notable example
ning on that host. Many ports under 1024 are reserveds that web browsers often use automatic proxy discovery



protocols to determine their proxy settings. different services. For instance, it infers the dependency

In Orion, we take the third approach of discovering of a web service on a DNS service by observing DNS
dependencies by using packet headers.(IP, UDP, and messages precede web messages. While time correlation
TCP) and timing information in network traffic. Such may not always indicate a true dependency, we rely on
information is both easy to obtain and common to mosta large number of statistical samples to reduce the likeli-
enterprise applications. Note that it is natural to develophood of false positives.
application-specific parsers to understand the applicatio In reality, we are only able to observe individual pack-
traffic, e.g.,when a message starts or ends and what thets in the network instead of individual messages. Mul-
purpose of the message is. Such detailed knowledge igple packets may belong to the same message and the
helpful in determining the dependency relationships betime correlation among themselves do not explicitly con-
tween the traffic of different services, eliminating am- vey any dependency information. If we consider the time
biguities, and hence improving the accuracy of depencorrelation between every possible pair of packets, we
dency inference. Nonetheless, developing parsers for excould introduce: i) too much redundancy because we
ery application requires extensive human effort and docount the correlation between two dependent messages
main knowledge. For this reason, we refrain from us-multiple times; and ii) significant computation overhead
ing any packet content information besides IP, UDP, andecause the number of packets is much larger than the
TCP headers. number of messages.

Orion discovers dependencies based on the observa- While it is desirable to aggregate packets into mes-
tion thatthe traffic delay distribution between dependentsages for dependency inference, this is nontrivial be-
services often exhibits “typical” spikes that reflect the cause we do not parse the application payload in packets.
underlying delay for using or providing these services.Given that most services use UDP and TCP for commu-
While conceptually simple, we must overcome three keynications, we aim to both reduce computation overhead
challenges. First, it is inherently difficult to infer de- and keep sufficient correlation information by aggregat-
pendencies from application traffic without understand-ing packets intdlowsbased on IP, TCP, and UDP headers
ing application-specific semantics. Packet headers andnd timing information:
timing information are often insufficient to resolve am- TCP packets  with the same five tuple (loclIP, locPt,
biguity. This may cause us to mistakenly discover cerreml|P, remPt, proto) are aggregated into a flow whose
tain service correlationgfalse positives) even though boundary is determined by either a timeout threshold,
there are no real dependencies between the services. Seg-TCP SYN/FIN/RST, or KEEPALIVE. Any two con-
ond, packet headers and timing information can be dissecutive packets in a flow must not be interleaved by
torted by various sources of noise. Timing informationan interval longer than the timeout threshold. TCP
is known to be susceptible to variations in server loadSYN/FIN/RST flags are explicit indications of the start
or network congestion. Third, large enterprise networksor the end of flows. Certain services with frequent
often consist of tens of thousands of hosts and servicegommunications may establish persistent connections to
This imposes stringent demand on the performance angvoid the cost of repetitive TCP handshakes. They may
scalability ofOrion. We introduce new techniques to ad- use KEEPALIVE messages to maintain their connections
dress each of the three challenges. during idle periods. We also use such messages to iden-

Orion has three components. THew generatoicon-  tify flow boundaries.
verts raw network traffic traces into flows. The purposeUDP packets  with the same five tuple (loclIP, locPt,
is to infer the boundaries of application messages base@mlIP, remPt, proto) are aggregated into a flow solely
only on packet headers and timing information. Thebased on timing information, since UDP is a connection-
delay distribution calculatordentifies the potential ser- |ess protocol. Any two consecutive packets in a flow
vices from the flows and computes delay distributionsmust not be interleaved by an interval longer than the
between flows of different services. Finally, thepen-  timeout threshold.
dency extractofilters noise and discovers dependencies We will evaluate the impact of flow generation on our
based on the delay distributions. We describe each ghference results in Section 7.2.3.
them in detail in the subsequent sections.

i ' ncy Di r
4  Flow Generation 5 Service Dependency Discovery

. . . . In this section, we first present an overview of our ap-
n cllent-_server _appllcat|0ns, SEIVICES and their cheryts roach to discovering service dependencies. We then
communlcqte with each other using requestg and replle%escribe the details of our approach, including how to
For convenience, we usenaessagéo denote either a re- calculate delay distributions between different services

quest or a reply.Orion discove_rs service dependencies based on flow information and how to extract dependen-
by looking for the time correlation of messages betweerhies from delay distributions.



5.1 Overview (IPjoe, Portioe, proto) and(I Pyey,, Port,em, proto) to
Orion discovers service dependencies by observing theepresent the local and remote services with respect
time correlation of messages between different servicego that host. We are interested in two types of de-
Our key assumption is if servicel depends on ser- pendency: i) Remote-Remote (RR) dependency indi-
vice B, the delay distribution between their messagescates the host depends on one remote service to use an-
should not be random. In fact, it should reflect the un-other remote service. This type of dependency is com-
derlying processing and network delays that are determonly seen on clients.g.,a client depends on a DNS
mined by factors like computation complexity, execution service(DN Sy.em, 53,em, UDP) to use a web service
speed, amount of communication information, and net{Web, e, 80,em, TCP); i) Local-Remote (LR) depen-
work available bandwidth and latency. For instance, adency indicates the host depends on a remote service to
web client may need to go through DNS lookup and au-rovide a local service. This type of dependency is com-
thentication before accessing a web service. fi@s- monly seen on servers,g.,the web service on a server
sage delaypetween the DNS and web services is the sum(W eboc, 800, TC P) depends on an SQL database ser-
of: 1) the time it takes for the client to send an authenticavice (SQLycm, 1433,¢m, TCP) to satisfy the web re-
tion request after the DNS reply is received; 2) the transquests from its clients.
mission time of the authentication request to the authen- Orion calculates the delay distribution based on the
tication service; 3) the processing time of the authentiflow information generated in the previous stage (Sec-
cation request by the authentication service; 4) the transion 4). Since a host may observe many flows over a
mission time of the authentication reply to the client; andlong time, Orion uses two heuristics to reduce the CPU
5) the time it takes for the client to send a web requestind memory usage. First, it calculates the delays only be-
after the authentication reply is received. Assuming thetween flows that are interleaved by less than a predefined
host and network load are relatively stable and relativelytime window. Ideally, the time window should be larger
uniform service processing overhead, this message dehan the end-to-end response time of any ser§ioethe
lay should be close to a “typical” value that exhibits as anetwork (from the time a client sends the first request to a
“typical” spike in its delay distribution. service thatS depends on till the time the client receives
There could be multiple typical values for the messagethe first reply fromS) to capture all the possible depen-
delay between two dependent services, each of whickencies ofS. In single-site enterprise networks, a time
corresponds to a distinct execution path in the serviceswindow of a few seconds should be large enough to cap-
In the above example, the client may bypass the autherture most of the dependencies that we look for, given the
tication if it has a valid authentication ticket cached. Asend-to-end response time of services in such networks is
a result, the message delay between the DNS and welgpically small. In multi-site enterprise networks which
services will simply be the time it takes for the client to are interconnected via wide-area networks, we may need
send a web request after the DNS reply is received. This time window of a few tens of seconds. We currently
will lead to two typical spikes in the delay distribution. use a three-second time window for our deployment in-
While there could be thousands of hosts in the netside Microsoft's corporate network.
work, Orion focuses on discovering service dependen- The second heuristic to reduce overhead is based on
cies from an individual host’s perspective. Given a hostthe observation that a host may communicate over a
it aims to identify dependencies only between servicegarge number of services, many of which may not be
that are either used or provided by that host. This im-persistent enough to attract our interest. For instance,
plies the dependency discovery algorithm can run indeclients often use many ephemeral ports to communicate
pendently on each host. This is critical forion to scale  with servers and the “services” corresponding to these
with the network size. By combining the dependenciesephemeral ports are never used by other servioesn
extracted from multiple hostgrion can constructthe de-  keeps track of the number of flows of each service in the
pendency graphs of multi-tier applications. The depentecent past and uses a flow count threshold to distinguish
dency graphs of a few three-tier applications are illus-between ephemeral and persistent services. It calculates
trated in Section 7.1. and maintains delay distributions only for persistent ser-
In the remainder of the section, we will describe a fewvices pairs. The flow count threshold is determined by
important technigques in realizingrion. This includes the minimum number of statistical samples that are re-
how to scale with the number of services, reduce the imquired to reliably extract dependencies. We use a default
pact of noise, and deal with insufficient number of delaythreshold of 50 in the current system. Note that the win-
samples. dow size and the flow count threshold only affect the the
5.2 Delay distribution calculation computation and storage overhead but not the accuracy
Orion uses the delay distribution of service pairs to deter-0f Orion.
mine their dependency relationship. Given a host, we use SinceOrion does not parse packet payload to under-



stand the actual relationship between flows, it simply 70

calculates the delay between every pair of floeg., £ o1 PR e

(LocI Py, LocPt1, RemI Py, RemPty, protoy) and g ol

(LocI Py, LocPto, RemlI Po, RemPta, protos), that g 20 Y

are interleaved by less than the time window. We treat = i ‘ . ‘ K ‘

each delay sample as a possible indication of both a RR %0 300 380 Bint‘;?ght 450 500 550

dependency, e.q., (RemlPs, RemPty,protos) — _ ) ) ) _ S
(RemIPy,, RemPti,proto;), and an LR de- Figure 1:Bin-heights fit well with normal distribution
pendency, e.g., (LocIPy,LocPtq,protoy) — & x10° Dependent Distrbution — Before Independent Distribution - Before
(RemlI P>, RemPty, protos), and add it to the de- L o0 |
lay distributions of both service pairs. This implies that s | 4000 MM | MUKW | m
there could be “irrelevant” samples in the delay distri- 1 3500 TP AVARAVRARE ARV
bution that do not reflect a true dependency betweel o, Mo 20 300

0 100 200 300
x 10" Dependent Distribution - After Independent Distribution - After

Bin height

the service pair. This could be problematic if a delay — z*° 4000
distribution is dominated by such irrelevant samples. 2 , , 3800 it o ol o .
. . i c AN AP A A AT AR A
Nonetheless, in our current deployment, we identified = . _ . s
1 1 i 1 : 0 100 200 300 0 100 200 300
only one false negative that is possibly caused by this Bin (widtho10ms) Bin twidth=10ms)

problem (Section 7.2).
Suppose a host uses remote services and provides

n I(_)cal servicesOrion needs t_o ma|r_1ta|n delay distri- 5nqd apply a low-pass filter to mitigate the impact of ran-
butions for (m x m) RR service pairs andm x n)  gom noise [13]. The choice of low-pass filter reflects
LR service pairs for that host in the worse case. Beyne trade-off between tolerance to noise and sensitivity
causeOrion discovers dependencies for each host indeyq typical spikes. We have tried a few commonly-used
pendently,» andn are determined by the services 0b- fjjiers and find that Kaiser windows( < 3 < 200) [17]
served at that host rather than all the services in the netycnieves a reasonable balance between the two goals.
work. This allowsOrion to scale in large enterprises with The effect of filtering is not particularly sensitive to the
many services. We evaluate the scalabilityGsfon in choice of/3 within the above range and we u§e= 100
Section 7.4.1. , in the current system.
5.3 SerV'Ce_ depend_ency eXt_raCt'on For each delay distribution, we plot the corresponding
We now describe three important issues related t0 expin_neight distribution. Each point in the bin-height dis-
tracting dependencies from delay distributions: mitigat-jhtion represents the number of bins with a particular
ing the impact of random noise, detecting typical spikesyin_height. Interestingly, we find these bin-height distri
and dealing with insufficient samples. butions closely follow normal distribution, as illustrete
5.3.1 Noise filtering & spike detection by an example in Figure 1. Based on this observation, we
The delay distribution of service pairs calculated fromdetect typical spikes whose bin-heights are among the
flow information is stored as a histogram with a defaulttop 2% in the bin-height distribution. The parameter
bin width of 10ms. There are 300 bins if we use a three-determines the degree of tolerance to noise and sensitiv-
second time window. We denolgn-heightas the num- ity to typical spikes. In practice, we findbetween 0.1%
ber of delay samples that fall into each bin. and 1% works pretty well. We use a bin-height threshold
Raw delay distributions may contain much randomof (mean + k x stdev) to detect typical spikes, where
noise due to host and network load variations. The noisencan andstdev are the the mean and standard deviation
will introduce numerous random spikes in the delay dis-of the bin-heights. Withk = 3, we will detect typical
tribution, which could potentially interfere with the de- spikes whose bin-heights are among the top 0.3% in the
tection of typical spikes. Realizing this problem, we treatbin-height distribution.
each delay distribution as a signal and use signal pro- Figure 2 shows two examples of noise filtering and
cessing techniques to reduce random noise. Intuitivelyspike detection. The two horizontal lines in each graph
the number of typical spikes corresponds to the numberepresent therean and the(mean + k x stdev) of the
of commonly-executed paths in the services, which is abin-heights. The two graphs on the left are the delay
most a few for all the services we study. In contrast, randistributions of a true dependency before and after fil-
dom noise tends to introduce numerous random spikes itering. Clearly, filtering does not eliminate the typical
the signal, which is more evident in the high frequencyspike. The two graphs on the right are the delay distribu-
spectrum. tions of a non-dependency. In this case, filtering signif-
This prompts us to use Fast Fourier Transform (FFT)icantly reduces the random spikes that could have led to
to decompose the signal across the frequency spectrufalse positives. Note that noise filtering is effective only

Figure 2:Delay distributions before and after filtering



against random spikes in delay distributions. It has littlethe dependencies that we aim to discover are usually sta-
effect on other non-typical spikes introduced by certainble over several weeks or even months. As we will see
unexpected service pair interaction. in Section 7.3, this is critical becauSgion may need a

5.3.2 Client & service aggregation few days of statistical samples to reliably infer depen-

Orion requires a reasonably large number of samples ifi€ncies. Recently, peer-to-peer (p2p) applications have

a delay distribution to reliably detect typical spikes. To 9ain€d popularity in enterprise networks. In contrast to

avoid inaccuracy due to a lack of samples, it ignores delraditional client-server applications, they are destyne

lay distributions in which the number of samples is fewert© P€ highly resilient by dynamically changing the set of
than the number of bins in the histogram. This coulghosts with which a client communicates. The dependen-
be problematic for individual clients who use many re- cieg of thesg applications could change even.durin.g short
mote services infrequently. Fortunately, clients in an en_penods of time. As future work, we plan to investigate

terprise network often have similar host, software, andOW {0 discover the dependencies of p2p applications.
network configurations. They also have a similar set ©Orion discovers service dependencies by looking for

of dependencies when using a particular remote servicdYPical spikes in the delay distributions of service pairs.
Orion aggregates the delay distributions of the same ser?/Nile conceptually simple, false positives and false neg-
vice pairs from multiple clients to improve the accuracy &tVes may arise due to various types of nosg(di-

of dependency extraction. Note that the service deperi€'€nt hardware, software, configuration, and workload
dencies of clients may have slight differeneg..dueto ~ ©n the hosts and load variation in the network) or un-
different software versions. By doing client aggregation,eXpeCtEd service pair mteractloe.g.,although service
Orion will discover the aggregated dependencies of alld — B, the messages of and 5 could be triggered by

the clients, which could be a superset of the dependerther services). While the impact of random noise can
cies of each individual client. be mitigated by taking a large number of statistical sam-

To facilitate client aggregation, we may have to per_pIes, unexpected service pair interaction is more prob-

form service aggregation as well. Many enterprise net—'elmat'c' In Secur?n 7.2, W;" will |cljlustrate examples ﬁf
works use a failover or load balancing cluster of serverd@Se Positives where non-dependent service pairs show

to provide a particular service. Clients may communi-Sirong time correlations. _
cate with any of the servers in the cluster. By treating _ V¢ eémphasize that the issues above are not just spe-

such a cluster of servers as a whole and representingfic 1 Orion but to the class of dependency discovery
the service with &ipCluster, port, proto), it provides techniques based on traffic patterns. We will comprehen-

us much more opportunities in performing client aggre_sively evaluate and compare their performance using five

gation. Similarly, a server may provide the same serfeal-world enterprise applications in Section 7. In spite

vice (e.g.,audio and video streaming) on any port in g Of these issueLrion is surprisingly effective in discov-

particular range. We may represent such a service witl§ring S(_aryice dependencies. In fact,_ it not only discovers
(ip, port Range, proto) to help client aggregation. the majority of the true dependencies but also success-

While client and service aggregations help to improvef“"y eliminates most of the false positives. While some

accuracy, they require extra information beyond that emalS€ Positives are unavoidable, their numbers are suffi-
bedded in the packet headers. In Microsoft's corporat&i€ntly small to be removed with some simple testing.

network, most servers are named based on a well-defined Orion requires a large number of statistical samples to
conventiong.g. xxx-prxy-xx is a proxy cluster and xxx- reliably extract service dependencies. This makes it less

dns-xx is a DNS cluster. We develop a simple set ofdPplicable to services which are newly deplgyed orinfre-
naming rules to identify the clusters. We also examingduently used. It may also miss dependencies that rarely

the configuration files to obtain the port range for a fewCcur, such as DHCP. One possible solution is to proac-
services that do not use a fixed port. In enterprises wherlVelY inject workloads to these services to help accumu-
such naming convention does not exist, we may have td@t€ sufficient number of samples.

re_ly on IT managers to popula_te the hos_t-to-clus_ter mapg Implementation

ping information. Normally, this type of information al-
ready exists in large enterprises to facilitate host manWe now describe the implementation®©fion as shown
agement. We can also leverage existing work on servicén Figure 3. Orion has three major components that run
discovery to obtain this information [11]. on a distributed set of hosts in an enterprise network.
5.4 Discussion The flow generatorsonvert raw traffic traces into flow
We focus on discovering the service dependencies forecords in real time. Thdelay distribution calculators
client-server applications, which are dominant in manyrun on the same set of hosts as the flow generators. They
enterprise networks. Their dependencies change onlgontinually update the delay distributions for all the ser-
when they are reconfigured or upgraded. As a resultyice pairs relevant to the services that administrators are



I Data Center

Monitor | Exchange
PRa:/t Flow Flow Distribution I.:)el.ay
acke Generator [ Data Calculator P|Distribu-
Trace tions

Server
Dependency Extractor Figure 4:Deployment in Microsoft corporate network
Aggregated Cluster
—— Delay [&}-==-=-=-4 Informa- Lo . )
Distribu- tion of the existing ones, and insert the delay samples into
tons the delay distributions of the corresponding service pairs
Each delay distribution is maintained as a histogram with

300 bins and 10ms bin width. We implement this com-

| Sharepoint
Server

Depen-
dency
Informa-
tion

Noise Filtering
Spike Detection

Figure 3:System architecture

interested in. A centralizedependency extractarol- ~ ponent using Perl with roughly 500 lines of code.
lects and analyzes the delay distributions from multiple6.3 Dependency extractor
hosts to extract dependencies. The centralized dependency extractor waits for depen-

In a fully distributed deployment, each host runs a flowdency extraction requests for a particular service from
generator and a delay distribution calculator to build itsadministrators. When a request arrives, it will retrieve
own delay distributions (host-based deployment). Suchhe delay distributions of relevant service pairs from the
organization scales well given the localized nature ofservers where the service is hosted and the clients. De-
computation. Traffic traces can be captured by WinPcapending on whether there are enough samples to reliably
or TDI drivers (a Windows API). The latter allows us extract dependencies, the dependency extractor may per-
to get the port and protocol information even when traf-form client and service aggregation when clustering in-
fic is encrypted by IPSec. When such a fully distributedformation is available. Aggregationis done by adding the
deployment is not possibl@rion can operate on packet bin-heights of the same bins in the delay distributions of
sniffers connected to span ports on switches and routetthe same service pair. After retrieving and possibly ag-
that are close to hosts (network-based deployment). Igregating the delay distributions, we ignore those delay
will build the delay distributions for each host on the distributions with fewer samples than the number of bins.
same subnet. For each remaining delay distribution, we use Matlab to
6.1 Flow generator perform Fast Fourier Transform, filter noise with Kaiser
A flow generator reads thép, port, proto) and tim-  window, and then detect typical spikes whose bin-heights
ing information from the raw traffic traces and outputs exceed'mean + k x stdev). If any typical spike exists,
flow records. It maintains a hash table in memory,we consider the corresponding service pair a dependency
which keeps track of all the active flow records usingand output the list of all the dependencies in the end. We
the five-tuple(locl P,locPt,remI P, remPt, proto) as  use a combination of Perl and Matlab codes for aggrega-
keys.locI P corresponds to a monitored host. Each flowtion, noise filtering, spike detection, and report genera-
record contains a small amount of informatieng.,the  tion, with a total of 1K lines of code.
timestamps of the first and the last packets, the direc-
tion and TCP flag of the last packet, and the current TCP/  Experimental Results
state of the flow. Based on this information, we can de- . . . ,

. . ... We deployedOrion in a portion of Microsoft’'s corpo-
termine whether to merge a new packet into an eX|st|ngrate network illustrated in Fiqure 4. Because we can-
flow record, flush an existing flow record, or create a new 9 ‘

one. To keep the hash table from growing excessively,nOtd'reCtly access the clients and the production servers,

we expire old flow records periodically. The current ver- :)v:cig?cs)z?ffzrsntiwsvsg:\-t;)%sr?sdc?neftlj?;gzmvt\)/g ?er:ifg:;n dg
fé%gﬁ;gﬁlﬁrliné?gégec using the libpcap library with the traffic of 2,048 clients in 9 LANs at routd?, and

L . the traffic of 2 servers in the data center at routgs
6.2 Delay (.jISt.nbuuon calculator andR,. The client traffic must traversi, to reach the
The delay distribution calculator keeps a buffer that holdsdata center. where most of the services are hosted. Erom
the recent flow records of each monitored host. The f|0V\{he traffic at’RO we extract the? R dependencies forfive

r_ecords in th(_e buffer are sorted based on their St"?‘rtm?epresentative applications from the client’s perspectiv
time and ending time. When a new flow record arrlves,By examining the traffic aR; and Ry, we extract the
1 2

we USZ ';[S star'qng tlmte and _endllr:jg tlme(;nlrju?r;[hebthf;ee-LR dependencies for two of the five applications from
ls:econ hlme W.'tn o;vho eixplre CT recqrts.m et uf Zr'the server’s perspective. The results in this section were

or each monitored nost, we aiso maintain a set ot 0€z,,i;nq g during a two-week period in January 2008. We
lay distributions for the service pairs related to that host

We go through all the existing flow records in the buffer, thoroughly evaluatérion in its accuracy of dependency

xtraction, its convergence properties, and its scatgbili
compute the delay between the new flow record and eacﬁnd performance.



Type Sharepoint| DFS | OC | SD | Exchg
# of Instances 1693 1125 | 3 34 34
# of Clients 786 746 | 228 | 196 349

Exchg Client MailBox:135 J
'S A
[AD:BB] [ AD:1025 } AD:389 }

Figure 6:Exchange client dependencies

Hub1:3544
Hub5:1750

Figure 7:Exchange server dependencies
7.1 Dependencies of five applications [ AD:BB]( [ sharepoint Ciient || Proxy:1745]

Microsoft’'s corporate network has thousands of applica- —
tions. We select five distinct applications based on their [DNs:sg mms:lgﬂ] [ pmxym AD:389 ]
popularity. These five applications include Office Com-
munications (integrated instant messaging, VoIP, and au- Figure 8:Sharepoint client dependencies
dio and video conferencing), Exchange (email), Share- [DNSR][ Query1:139 ][ Query2:139 ][ Query3:139 ]
point (web), Distributed File System (file serving), and
Source Depot (version control system).

For each application, Table 1 lists the number of
clients and the number of application instances of the
same type based on the trafficia§. Clearly, each ap- Figure 9:Sharepoint server dependencies

plication attracts a reasonably large fraction of the mon-

itored clients. There are also many application instance¥iCeS t0 exploit the full functionality of OC: 1) DNS:53

of the same types in the network. Since the same type dP' Server name lookup during login; 2) Director:5061
r load-balancing login requests; 3) AD:88 for user au-

applications have similar dependencies, our results majp ool ; - :
be easily extended to many other application instancedrization; 4) AD:389 for querying relevant domain ob-

For each application, we obtain its true dependencieCts; _5) AD:1_025 (an RPC port) for looking up user
from the deployment documents written by the applica-pro_f'le’ 6) AD113_5 for Iearnlr.lg the port number of the
tion owners. This is one key distinction from previous AD:1025 service; 7) EdgeAV:3478 for AV conferencing

work which does not have access to such ground truth¥/ith external users via UDP; 8) EdgeA.\V:443 forA\/ con-
to perform comprehensive validations. Note that due td€€ncing with external users via TCP; 9) AVConf:49152

the large amount of time and effort involved, application O AV conferenci.ng with internal users, 10) VoIP:49152
owners can only create these documents for a small sutfor voice-over-IP; 11) WebComp:443 for retrieving web

set of important applications. contents via HTTPS.

There are four infrastructural services that most ap-7.1.2 Exchange
plications depend on. Among them, active directoryExchange is an enterprise email application. It is being
(AD) and proxy services are provided by load bal- used by all the users in Microsoft. Figure 6 and 7 il-
ancing clusters and DNS and WINS services are prolustrate its client and mailbox server dependencies. Ex-
vided by failover clusters. We aggregate all the servershange clients depend on six services to use the email
in the same cluster and represent each service as aervice, five of which have been explained before. Be-
(ipCluster, port, proto). Since most services support cause clients use RPC to communicate with the email
both UDP and TCP, we omit the-oto field for simplic-  service, it also depends on the endpoint mapper service
ity in the remaining of this section. We next describe on the mailbox server (Mailbox:135) to learn the RPC
the service dependencies of the five applications studiegort of the email service. The email service on the mail-
based on the ground truths from deployment documentbox server depends on eight services to answer the re-
also confirmed by their application owners. guests from Exchange clients, each of which is an email
7.1.1 Office communications (OC) submission service rur_ming on a_hub transport server.
Office Communications (OC) is an enterprise application’\0t€ that we can obtain a three-tier dependency graph
that combines instant messaging, VoIP, and audio an8f Exchange by combining the client-side dependencies
video (AV) conferencing. It is one of the most popu- With the server-side dependencies.
lar applications and is being used by 50K+ users in Mi-7.1.3  Sharepoint
crosoft’s corporate network. Figure 5 illustrates the de-Sharepoint is a web-based enterprise collaboration ap-
pendencies of OC clients. They depend on eleven semplication. We studied one of the most popular internal

[AD:lSS

Table 1: Popularity of five enterprise applications

[ EdgeAV:443 ] [ AVConf:49152 ][ AD:88] [AD:SSQ ] [ VOIP:49152 ]

[ Hub2:3779 ] [ Hub3:1772 ]

Hub4:2253

OC Client

Exchg Server

Ib

Hub8:2069

[ Director:5061 ] [ WebComp:443 ][ EdgeAV:3478 ] AD:1025]

[ Hub6:3964 ] [ Hub7:2448 ]

Figure 5:0C client dependencies

Web1:80

Sharepoint Server

[ SQL1:1433 ][ SQL2:2939 ][ SQL3:3679 ][ SQL4:2943 ][ SQL5:1433 ]




For each application, we first createcandidate set
of services that the application could possibly depend on
if we do not make any inference. For a client-side or a
server-side application, it is simply the full set of the re-
mote services that the client or the server ever communi-
cates with. We classify the services in the candidate set
into true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) by comparing the
inferred dependencies with the true dependencies pre-
Figure 11:SD client dependencies sented in the previous section.

, , ) ) ) ) The rows starting witlOrion in Table 2 and 3 present
Sharepoint websites. Figures 8 and 9 |IIustrate_|ts CI,'en{he breakdown of the client-side (with aggregation) and
and front-end server dependencies. Sharepoint clienis, e\ sige dependencies respectively. The number of
depend on six services to use the web service, three Cgervices in the candidate sets varies from several hun-
Wh'C_h have been explained _before._ The remaining thre(aredsto hundreds of thousands for different applications,

DFS Client

WINS:137

Figure 10:DFS client dependencies

SD Client

WINS:137

up via WINS; 2) Proxy:80 is for notifying clients with  4o0n4encieg(P + F P) to fewer than a hundred, mak-
Proxy settlngs that S_ha_lrepo_mt IS an internal webs!te; 3)ng it much easier to identify the true dependencies with
Proxy:1745is for notifying clients without proxy settings some additional testing. This represents a factor of 50 to

that Sharepoint is an internal website. The w_eb SEVICG 4K reduction from the original candidate sets. Further-

store most of the web contents;
stores the remaining web contents; and 3) three queryq 2).
services that handle search requests. We can obtain aror the server-side Sharepoint web service, we miss
three-tier dependency graph of Sharepoint by combinin%n '

. ) ) ; . e dependency on a database service. Further investi-
the client-side dependencies with the server-side depen-_. """ . . . L
dencies. gation indicates that there is no typical spike in the de-

lay distribution between the two services, likely due to
7.1.4 Distributed file system (DFS) the noise induced by the background indexing traffic be-

DFS is an enterprise service that can organize many SMveen the two services which are unrelated to the web
file servers into a single distributed file system. We studyservice. For the server-side Exchange email service, we
one of the DFS services where internal users can downmiss the dependency on one of the eight email submis-
load most of the installation packages of Microsoft soft-sion services. While visual inspection does reveal a typi-
wares. Figure 10 illustrates the dependencies of DFSal spike in the corresponding delay distribution, it is not
clients. They depend on eight services to access thgignificant enough to be caught by our spike detection.
files in DFS, four of which are unique to DFS. AD:445 The number of FP’s varies from 3 for the client-side
and AD:139 help clients find the DFS namespace serverSharepoint service to 77 for the client-side OC service.
(NS). NS:445 and NS:139 redirect clients to the appro-They fall into two categories depending on whether they
priate file servers. contain any significant, non-typical spikes in their delay
distributions. The FP’s in the first category are unlikely
7.1.5  Source d_ep0t (SD) ) to be caused by random noise. Manual inspection indi-
Source depot (SD) is a CVS-like version control system cates most of these non-typical spikes can be explained
We study one of the SD services that is frequently useghy the existence of certairorrelation between the ser-
by ourmonl_tored chentg. Figure 11 illustrates the servicejce pairs. As one example, the OC client has false
depe_ndenmes of _SD clients. There are only four deper‘dependency on the exchange email service, apparently
dencies, all of which have been explained before. due to many clients running both applications simulta-
7.2 Accuracy of dependency discovery neously. In another example, the Exchange client has
We first examine the accuracy of the dependencies disfalse dependency on the proxy service. This can happen
covered byOrion for each of the five applications de- when Exchange clients open emails with embedded ex-
picted above. We then further remove false positives withernal web contents, causing these clients to access exter-
additional testing, compare our results with prior work nal websites via proxy. The FP’s in the second category
based on co-occurrence probability, and study the effectare apparently due to the limitation of our spike detection
of noise filtering and flow generation. algorithm to fully distinguish noise from spikes.



Exchange client DFS client Sharepoint client OC client SD client
tp fp fn tn tp| fp | fn tn tp | fp | fn tn tp fp fn tn tp| fp | fn tn
Oron | 6 | 26 | 0 [ 14K | 8| 13 | 0 [ 1497 6 | 3 | 0 | 703[11| 77 |0 [ 25K | 4| 4 | 0 | 369
Sheip | 6 | 178 | 0 | 14K | 8 [ 102 | 0 | 1408 | 6 | 65 | O | 641 | 9 | 125 | 2 [ 25K | 4 | 52 | 0 | 321
Shefigo | 6 | 57/ | O | 14K | 8 | 93 | 0 | 1417| 6 | 168| 0 | 538 [ 10| 85 | 1 | 25K | 4 | 29 | 0 | 344
eXpose | 5 | 443 | 1 [ 14K | 8 | 570 O | 940 | 6 | 565 | 0 | 141 | 10 | 1416 | 1 | 24K | 4 | 323 0 | 50
noFilter | 6 | 49 | 0 | 14K | 8 | 25 | 0 | 1485| 6 | 6 | O | 700 | 11| 159 | O | 25K | 3 | 19 | 1 | 354
noFlow | 6 | 2488 | O | 12K | 8 | 988 | O | 522 | 6 | 534 | 0 | 172 | 11 | 3594 | 0 | 21K | 4 | 198 | 0 | 175
Table 2: Client side dependencies after aggregation
- EﬁChangfe Ser‘t*f - Sh;f“ePOifnt Seerr neither of them quantified the accuracy of their results in
o] P n n ] P n n . e
Sion 7T 32 T 1T T30k o & 1 660Kk terms.of false negaﬂve; or false positives. .
Shei, | 8 | 68 | 0 | 230K | 8 | 7 | 2 | 660K While con(_:eptually s_|mple, a key problem with both
Shefigop | 7 | 61 | 1 | 230K | 9 | 19 | 1 | 660K approaches is the choice @f. As we explained ear-
expose | 7 | 557 | 1 | 230K | 7 | 396 | 3 | 660K lier in Section 7.2.3, the delay between two dependent
noFilter | 4 | 44 | 4 [ 230K | 6 | 3 | 4 | 660K services reflects the underlying processing and network
Table 3: Server side dependencies delay. This delay could vary from a few milliseconds to
. .. hundreds of milliseconds. W is small (as in Sherlock),
7.2.1 Removing false positives we may miss the dependencies between the service pairs

In_ the process of extracting dependencies from the canihose typical delays excedt. If W is large (as in eX-
didate set, we have to trade off between FP’s and FN Spose), we are likely to capture many co-occurrences of

Our primary goal is to avoid FN's even at the expense, jenendent service pairs. In contraston identifies

of increasing FP's. Th'(sj IS be((j:ause we have almost nenendencies by looking for typical spikes in the delay
way to recover a true dependency once it is removedyisuin tions. It does not make any assumption about the
from the candidate set. In cases where dependencies alStation of the typical spikes in the distribution.

used for fault localization or reconfiguration planning, We implemented both Sherlock and eXpose (without
missing dependencies may lead to unanticipated CONSey ster pruning) for comparison. We UB& — 10ms and

guences that are expensive to diagnose and repair. (S%OmS for Sherlock and thél” — 1s for eXpose. (In

Section 8 for details). :
. their papers, Sherlock uséld = 10ms and eXpose uses
To further reduce the FP’s in Table 2, we perform con-yy, _ 15.) We tune their threshol so that their FN's

trolled experiments on the client side. For each of the fiveroughly match ours, and then compare the FP’s. The re-

applications, we use a firewall to block the services in thesults are in the rows starting with Sher Shei oo, and

FP and T_P sets one-by-Qne. Blocking the s_ervices in_th%Xpose in Tables 2 and 3. Clearlyrion has far fewer
FP set will not have any impact on the application while FP's than Sherlock or eXpose in all the cases. For the

?Iockingt_lrle sle_rv_ices in thﬁ.TP Sf?t will disrupt its SerVi.Cﬁclient side of Exchange, DFS, Sharepoint, and SD, the
unction. To eliminate caching effect, we must start with -p.¢ - torred byOrion are only 5% - 50% of those in-

a clean state for each test. Because this is a manual prgs o g by Sherlock or eXpose. Assuming that the test-
cess, ittook us roughly one Workl_ng day to SUCCeSSfu"ying time to remove FP’s grows linearly with the number
identify all the 35 true dependencies from the 158 poten- potential dependenciesion will save approximately

tial ones. We did not conduct such experiments on th(?Wo to twenty days of human testing time compared with
server side because we have no control over the serverg

- : . . herlock and eXpose.
Administrators can do such testing during maintenance ) o
hours to minimize the disruption to users. Note that de-7.2.3  Effect of noise filtering & flow gener-

veloping test cases requires human knowledge of only ation

how to drive applications but not of application internals. orion relies on noise filtering to mitigate the impact of
The former is relatively widely available while the latter random noise on dependency discovery. It is important
is usually arduous to extract. to understand to what extent noise filtering helps to re-
7122 Comparison with Sherlock & eXpose duce FP’s and FN's. In Table 2 and 3, the results in the
Sherlock [8] and eXpose[18] attempt to extract depen+tows starting with “noFilter” are computed by applying
dencies from network traffic. They are both based on thespike detection directly to the delay distributions with-
idea that the traffic of dependent services are likely to co-out filtering noise. Judging from th@rion results, noise
occur in time. They use a fixed time windd¥ to com-  filtering is effective in reducing FP’s and/or FN's in all
pute co-occurrences and then use a threshaither on  but one case. Even in the Sharepoint server case where
the conditional probability (in Sherlock) or on the JMea- Orion has 3 more FP’s, we consider it worthwhile given
sure (in eXpose) to identify dependencies. While theythe decrease of 3 FN’s.

both seem to extract certain meaningful dependencies, Orion aggregates packets into flows to reduce redun-



40 T T 12

g B I;T:;i‘éli‘i.“vii N d g 10 8:|PNt J’Eﬂm\!{wﬁs"%ﬂa
o O--False Negati 9 ti
= 30 yﬁ_a/aq s e se Nega |ves}z(u
g 25 &
B 20 oA 5 6 ; sex
3 15 B, 1% LN
o >R | ek "o oo
20000 40000 60000 0 50 100 150 200 250 300 350 400
Number of Flows Time (hour)
Figure 12:Impact of flows on Exchange server depen-Figure 13:Impact of time on Exchange client dependen-
dencies cies
dant correlation and computation overhead. Without = | X [wefosives );
. . Q N
flow generation, big flows are treated more favorably § | © FelseNegatives /
. . . U
than small flows since they will contribute more samples ¢
in the delay distributions. Such systematic bias may Ieadgg 4
to undesirable spikes in the delay distribution. In Table 2, 2 ,
the row starting with “noFlow” contains the results with- 0

1‘0 20 30 40 50 60 70 80 90 100
Number of Clients

out flow generation. Compared with ti@ion results,
FN’s stay the same but FP’s are much larger, most likely ) ]
due to the over-counting of delay samples related to big 19Ure 14:Impact of aggregation on DFS client depen-
flows. In terms of performance, calculating delay distri- dencies
bution directly from packets is roughly ten times slower asOrion uses longer duration of traces. After 200 hours,
than from flows. This is because there are significantlyit has discovered all the TP’s and the inferred depen-
more packet pairs than flow pairs. dencies fluctuate only slightly thereafter. This confirms
7.3 Convergence of dependency discovery that we can stop the inference when the inferred de-
We now study the convergence propertie®©abn along  pendencies converge. For all the applications, the con-
three dimensions: time, flows, and clients. This is im-vergence time varies from two to nine days. We con-
portant because the dependencies of an application mayider this acceptable since the dependencies of produc-
change from time to time due to reconfiguration. Wetion client-server applications are usually stable for at
evaluate whethebrion can produce stable results before least several weeks to several months in enterprise net-
the next change happens. Furthermanéon discovers works. Nonetheless, this convergence time could be a bit
dependencies based on the delay samples computed frdoang for newly deployed applications. We may expedite
flows. Understanding its requirement on the number ofthe discovery process by applying dependency templates
flows is essential for us to judge the reliability of the re- derived from other networks or provided by application
sults. Finally,Orion sometimes needs client aggregationdesigners to pre-filter the set of possible dependencies.
to overcome the problem of a lack of sufficient samples. Figure 14 illustrates how the inferred dependencies of
Measuring the impact of clients helps to avoid unnecesDFS client vary as we aggregate more clients. It is ev-
sary overhead due to excessive client aggregation. ident that client aggregation is important for improving
Figure 12 illustrates how the inferred dependencies othe inference accuracy, especially when no individual
Exchange server change as more flows to the Exchangsiients have a sufficient number of delay samples. The
server are used for dependency discovery. The X-axis i&N’s drop from 5 to 0 as the aggregated clients increase
the number of flows. The number of samples in all thefrom 10 to 90. After that, the inferred dependencies be-
delay distributions related to the Exchange service growgome stable even when more clients are aggregated. This
with the number of flows. Clearlyorion can discover suggests excessive client aggregation will only lead to
more TP’s when more flows are used. When the numbemore overhead instead of benefit. For the remaining ap-
of flows reaches 65KQrion discovers all the TP’s and plications, we need to aggregate 7 (SD) to 230 (Share-
the number of FP’s also stabilizes. This suggests that thpoint) clients to identify all the TP’s.
variation of inferred dependenci€BP + FP)isagood 7.4 Performance & Scalability
indication of whetheOrion needs more flows. The con- | thjs section, we focus on the performance and scalabil-
vergence behavior of other applications exhibits similarity of orion. We are interested in answering the following
trend. Depending on the applicatidrjon needs 10K 10 gyestions: i) does it scale with the number of services in
300K flows to obtain stable results. the network? ii) what is the CPU and memory usage in
Figure 13 shows how the inferred dependencies of Ex network-based or a host-based deployment? iii) how

change client evolve over time. Not surprisingly, the ac-quickly can dependencies be extracted when administra-
curacy of the inferred dependencies gradually improvesg,s need such information?



1 p_— B (Sharepoint 1 [Sharepoint|2
2 0.8 "."I |
T 08L e ] SQL 1/Web Query DNS| SQL
é 04r - NoFiltering 1 Figure 16:Using dependency graph for fault localization
IS --- quw—count Filter
02 Orion delay distribution calculator normally use 1% of CPU
0= ‘5 = - and 11MB memory in total. Such overhead is reason-
10 10 10 10 . . . .o
Number of Service Pairs ably small for long-term monitoring on individual hosts.
Figure 15:Flow-count and time-window filters improve 7.4.3 Performance of dependency extrac-
scalability tor

7.4.1 Scalability of delay distribution cal- We now _evaluate the execution time for extracting de-
culator pendencies from the delay distributions. The results are

. ) . . . . measured on a Windows Server 2003 machine with 2G
As described in Section 5.2yrion uses a time Window ;41_core Opteron processor and 4GB memory. For all
of three seconds and a flow count threshold of 50 to f'lterthe applications, the dependency extraction was finished

unnecessary service pairs. To illustrate the effectiv@nesiihin two minutes. This is short enough for adminis-
of these two heuristics, Figure 15 plots the CDF of they4i0rs to run on-demand. We also measured the net-

number of service pairs without any filter, only with the |, o usage of client aggregation. Aggregation is re-

flow count filter2 and with both filters. _The X-axis is th_e quired for merging the delay distributions from multiple
number of service pairs and the Y-axis is the cumulativeg|iens when there are insufficient delay samples. During
fraction of hosts. The flow count filter reduces the ser-i, o wyo-week evaluation period, the total size of the de-
vice pairs by almost three orders of magnitude. After .y gistributions from all the 2,048 clients is under 1MB
applying the time-window filter, 99% of the hosts have after compression. This suggests it is feasible to use a

fewer thanl0” service pairs. As we show next, the actual centrajized dependency extractor since it is unlikely to
memory usage is reasonably small for both the networky o .ome the bottleneck

based and the host-based deployment.

7.4.2 Performance of flow generator & de- 8 Operational Use of Dependencies

lay distribution calculator We now provide examples of how dependencies can fa-
As shown in Figure 4, we currently use the network-cilitate fault localization and reconfiguration planning.
based deployment by runnigion on dedicated sniffing These examples are by no means exhaustive. Admin-
boxes attached to three routers in the network. In this deistrators may find dependencies useful for other network
ployment, each sniffing box may capture large volumesmanagement tasks,g.,impact analysis and anomaly de-
of traffic from multiple hosts in the same subnet. We tection.
want to understand whether the flow generator and de- The existence of complex dependencies between dif-
lay distribution calculator can keep up with such high ferent services makes it extremely challenging to local-
traffic rate. We use the traffic &, for our evaluation ize sources of performance faults in large enterprise net-
because it contains the aggregate traffic of all the clientsvorks. For instance, when a Sharepoint service fails, it
and is bigger than the traffic at the other two routers. Wecould be caused by problems at the DNS servers, SQL
run the flow generator and delay distribution calculatorservers, web servers, or query servers. Manually inves-
on a Windows Server 2003 machine with 2.4G four-coretigating all these relevant servers for each performance
Xeon processor and 3GB memory. We measured theifault is time-consuming and often infeasible.
performance during the peak hour (2 - 3 PM local time) A dependency graph summarizes all the components
on a Thursday. The aggregate traffic rate is 202 Mbpshat are involved in particular services. Combined with
during that period. The flow generator processed on@bservations from multiple services, it enables fast and
hour of traffic in only 5 minutes with an 8MB memory accurate fault localization. Figure 16 illustrates an ex-
footprint. The delay distribution calculator finished in 83 ample of a dependency graph with two Sharepoint ser-
seconds and used 6.7MB memory. vices. For simplicity, we ignore problems in the network

We also measure the performance of the host-baseand the port numbers in the graptsharepoint; and

deployment. Given thatrion has to share resources with Sharepoints use the same DNS, query, and web servers.
other services on the same host, we focus on its CPU anidowever, they use different SQL servers for storing con-
memory usage. We perform the evaluation on a regutents. Suppos&harepoint; is experiencing problems
lar client machine with 3GHz Pentium4 processor andwhile Sharepoints is not. From the dependency graph,
1GB memory. The packet sniffer, flow generator, andwe deduce that the source of the problem is unlikely at



the DNS, query, or web servers sinfgarepoints has
no problems using them. This leav8§ L, as the most
plausible candidate for the source of the problem.

the dependencies for five dominant applications. Our re-
sults from extensive experiments sh@sion improves
the state of the art significantlyOrion provides a solid

While the above example is fairly simple, a depen-foundation for combining automated discovery with sim-
dency graph of a large enterprise network will be sub-ple testing to obtain accurate dependencies.
stantially more complex. In fact, it is almost impossible References

to inspect manually. Fortunately, there have been known
techniques that automate the fault localization process byf1]
applying Bayesian inference algorithms to dependency
graphs [8, 20, 19]. We omit the details here since they 2l
are not the focus of this paper. S

Another use of dependencies is in reconfiguration 4]
planning. Large enterprises have many services and ap-
plications, which are continually being reorganized, con-
solidated, and upgraded. Such reconfigurations may lead®!
to unanticipated consequences which are difficult to di- 6]
agnose and repair. A classic example involves a machine[
configured as a backup database. Since there is no ex-
plicit documentation about this dependency, the machine[7]
is recycled by administrators. Later on, when the primary
database fails, applications that depend on the databas&
becomes completely unavailable.

To avoid such unanticipated consequences, adminis-
trators must identify the services and applications that
depend on a particular service before any changes car’]
be made to that service. This often is a slow and expen-
sive process. Given the dependencies extracted from all
the service pairs, we can easily search for all the servicego]
that directly or indirectly depend on a particular service.
This will significantly save the time administrators spend[11]
in assessing and planning for the changes. [12]

Besides our own research prototype, a production im-
plementation ofOrion based on the TDI driver is cur- [13]
rently being deployed in the Microsoft IT department
(MSIT). The administrators will initially use the depen- [14]
dencies extracted hrion for reconfiguration planning.
Orion has been set up on two web services and one Win-
dows Messenger service. Preliminary results indicatgis)
Orion has successfully discovered the set of expected de-
pendencies on database servers, AD servers, and pres-

; - [16]
ence servers. The plan is to roll adtion to over 1,000
services managed by MSIT in the next six months. [17]
9 Conclusion

18
In this paper, we present a comprehensive study of th([a ]

performance and limitations of dependency discovery
technigues based on traffic patterns. We introduce thé.9]
Orion system that discovers dependencies for enterprise
applications by using packet headers and timing infor-
mation. Our key observation is the delay distribution be-j5;
tween dependent services often exhibits “typical” spikes
that reflect the underlying delay for using or providing [22]
such services. By deployinQrion in Microsoft’s cor-
porate network that covers over 2,000 hosts, we extract

] IBM  Tivoli.

EMC SMARTS. http://ww. ent. com products/
famly/smarts-fanmly. htm

HP OpenView.ht t p: / / www. openvi ew. hp. com
http://ww. i bm com sof t war e/
tivolil/.

Mercury MAM. http://ww. nercury. conf us/
product s/ busi ness- avail ability-center/

appl i cati on- mappi ng.

Microsoft MOM. http://technet. m crosoft.conl
en- us/ opsngr/ bb498230. aspx.

Taming Technology Sprawl. http://online.wsj.com
articl e/ SB120156419453723637. ht m . ht m ?nod=

t echnol ogy_nai n_prono.l eft.

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance Debugging for Distribusg-
tems of Black Boxes. IfProceedings of SOSR003.

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltxd
M. Zhang. Towards Highly Reliable Enterprise Network Seesgi
via Inference of Multi-level Dependencies. Rroc. ACM SIG-
COMM, 2007.

P. V. Bahl, P. Barham, R. Black, R. Chandra, M. Gold-
szmidt, R. Isaacs, S. Kandula, L. Li, J. MacCormick, D. Maltz
R. Mortier, M. Wawrzoniak, and M. Zhang. Discovering Depen-
dencies for Network Management. HotNets 2006.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Udif@gpie
for Request Extraction and Workload Modeling. @&D|, 2004.
G. Bartlett, J. Heidemann, and C. Papadopoulos. Utaledsg
passive and active service discovery.IMC, 2007.

R. Black, A. Donnelly, and C. Fournet. Ethernet Topgldgjs-
covery without Network Assistance. I€NP, 2004.

O. E. Brigham. The fast fourier transform and its apgtien. In
Prentice-Hall 1988.

A. Brown, G. Kar, and A. Keller. An active approach to cha
acterizing dynamic dependencies for problem determinatia
distributed environment. lintergrated Network Management
2001.

M. Chen, A. Accardi, E. Kcman, J. Lloyd, D. Patterson,Fx,
and E. Brewer. Path-based Failure and Evolution Management
In NSD|, 2004.

R. Fonseca, G. Porter, R. H. Katz, S. Shenkar, and |c&toX-
Trace: A Pervasive Network Tracing Framework NSDI, 2007.

J. F. Kaiser and R. W. Schafer. On the Use of the lo-Sinh-Wi
dow for Spectrum Analysis. IfEEE Transactions on Acoustics,
Speech and Signal Processii®80.

S. Kandula, R. Chandra, and D. Katabi. What's Going On? E
tracting Communication Rules In Edge Networks.Pimc. ACM
SIGCOMM 2008.

S. Kandula, D. Katabi, and J. P. Vasseur. Shrink: A Tawl f
Failure Diagnosis in IP Networks. MineNet 2005.

] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snaetén

Fault Localization via Risk Modeling. INSDI, 2005.

] B. Lowekamp, D. R. O’Hallaron, and T. R. Gross. Topology

Discovery for Large Enternet Networks. 8iGCOMM 2001.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera,dan
A. Vahdat. WAPS: black-box performance debugging for wide-
area systems. IWWW 2006.



