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ABSTRACT
Traffic differentiations are known to be found at the edge of the
Internet in broadband ISPs and wireless carriers [13, 2]. The
ability to detect traffic differentiations is essential for customers to
develop effective strategies for improving their application perfor-
mance. We build a system, called NetPolice, that enables detection
of content- and routing-based differentiations in backbone ISPs.
NetPolice is easy to deploy since it only relies on loss measurement
launched from end hosts. The key challenges in building NetPo-
lice include selecting an appropriate set of probing destinations and
ensuring the robustness of detection results to measurement noise.

We use NetPolice to study 18 large ISPs spanning 3 major conti-
nents over 10 weeks in 2008. Our work provides concrete evidence
of traffic differentiations based on application types and neighbor
ASes. We identify 4 ISPs that exhibit large degree of differentiation
on 4 applications and 10 ISPs that perform previous-AS hop based
differentiation, resulting in up to 5% actual loss rate differences.
The significance of differences increases with network load. Some
ISPs simply differentiate traffic based on port numbers irrespec-
tive of packet payload and the differentiation policies may only be
partially deployed within their networks. We also find strong corre-
lation between performance differences and Type-of-Service value
differences in the traffic.

Categories and Subject Descriptors: C.2.5 COMPUTER-
COMMUNICATION NETWORKS: Local and Wide-Area Net-
works

General Terms: Measurement, Experimentation

Keywords: Internet measurement, Traffic differentiation

1. INTRODUCTION
Since its early days, Internet is designed under the end-to-end

principle which argues for intelligent end systems and a “simple”
network. Under this principle, networks deliver traffic with best
effort and do not treat traffic preferentially based on various prop-
erties such as IP address, port number, or packet content [27]. In
recent years, a variety of new applications have emerged and pro-
liferated on the Internet. Some require high bandwidth (e.g., peer-
to-peer file sharing and video streaming) while others require low
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latency and loss rate (e.g., voice-over-IP and online gaming). Such
trend has inspired ISPs to perform various types of traffic shaping
to manage network resource usage and introduce tiered services to
meet the requirements of different customers and applications.

Residential broadband ISPs are known to treat traffic differently,
e.g., by limiting the bandwidth usage of peer-to-peer file sharing ap-
plications [13]. Cellular network carriers have also been reported
to restrict the usage of video streaming services to preserve their
limited wireless spectrum [2]. Researchers have proposed various
techniques for detecting traffic differentiation. Beverly et al. pre-
sented one of the first measurement studies of port blocking be-
havior from the edge of the Internet [8]. POPI is another tool for
determining router traffic differentiation policy based on port num-
bers via end-host measurements [19]. More recently, Dischinger
et al. developed tests for detecting whether broadband ISPs rate-
limit or block BitTorrent traffic [13]. Besides these active measure-
ment techniques, Tariq et al. proposed to identify differentiation
by applying statistical method to passive measurements from end
hosts [32]. Yet so far, there has been no detailed and comprehensive
study on the current practice of traffic differentiation inside the In-
ternet core. Traffic differentiation in the core arguably has a much
wider scope of impact, as such policies affect much more traffic
compared to the policies near the edge of the Internet.

In this paper, we consider the problem of detecting traffic dif-
ferentiation in backbone ISPs. Different types of traffic may expe-
rience different performance within the same ISP network due to
various reasons. An ISP may “passively” throttle the traffic from
a neighbor (e.g., a peer) by carrying the traffic over a low-capacity
link, since it may not have the economic incentive to provision or
upgrade the link [4]. It may also “actively” prevent the traffic of
an application (e.g., BitTorrent) from disrupting other traffic via
weighted fair queuing when the network is congested.

Regardless of the actual reasons behind the performance differ-
ences, it is important for customers to be able to reason about the
behaviors of their ISPs. The ability to detect traffic differentiation
enables customers to develop appropriate strategies for improving
their application performance. For instance, large content providers
strive to ensure their Internet applications outperform those offered
by their competitors. If a content provider knows the average loss
rate of its traffic traversing a particular ISP is twice that of its com-
petitor, it may want to negotiate better service level agreements
(SLA) with that ISP. Small customers will also benefit from such
differentiation information. For instance, they may change port
numbers or encrypt packets to circumvent content-based differen-
tiation employed by their ISP.

Most ISPs do not reveal the details of their network policies and
configurations. Realizing this problem, we aim to develop an end-
host based system that can detect traffic differentiation without any



Type Examples
Packet
headers

source & destination port numbers, protocol
type

Application
layer info

application headers (e.g., HTTP header, BitTor-
rent header), application payload

Traffic be-
havior

flow rate, flow duration, packet size, packet in-
terval

Routing
info

previous-hop AS, next-hop AS, source & desti-
nation IP addresses

Available
resources

queue length, link utilization, router load &
memory

Table 1: Information commonly used for traffic differentiation.

ISP cooperation. Such a system is not only easily deployable but
also applicable to many different ISPs. To build such a system,
we face two key challenges: i) unlike in the case of broadband
ISPs, most end hosts are not directly connected to backbone ISPs.
We need to intelligently select probing destinations to cover the
relevant internal paths of backbone ISPs while complying with the
requirement of limited network and CPU resources on end hosts;
ii) measurement data taken from end host is susceptible to various
types of noise on the host or in the network. We need to ensure our
detection results are not distorted by noise.

NetPolice is the first operational system that can detect traffic
differentiation in backbone ISPs by accurately and scalably mon-
itoring packet loss behavior. It relies on an intelligent path selec-
tion scheme to detect both content- and routing-based differenti-
ation while systematically balancing path coverage and probing
overhead. It leverages statistical hypothesis tests to identify sig-
nificant loss rate differences between different types of traffic mea-
sured along the same ISP internal paths after discounting the effects
of measurement noise. Furthermore, it uses a novel technique for
cross-validating the statistical test results and the Type-of-Service
(TOS) value set by ISPs.

By studying 18 large ISPs spanning 3 major continents over a
period of 10 weeks in 2008, NetPolice provides concrete evidence
of traffic differentiation based on application types and neighbor
ASes. We identified 4 ISPs that exhibit large degree of differenti-
ation on VoIP, BitTorrent, PPLive, and SMTP traffic compared to
HTTP traffic. We also identified 10 ISPs that treat traffic differ-
ently based on its previous-hop ASes, reflecting different business
contracts. The significance of differentiation increases with net-
work load, suggesting that differentiation is likely to be triggered
by resource competition. The actual loss rate difference between
certain pairs of applications or previous-hop ASes can exceed 5%,
large enough to impair the performance of many TCP-based appli-
cations. Interestingly, we find a few ISPs simply rely on port num-
bers to perform traffic differentiation irrespective of actual payload.
These ISPs may apply differentiation policies only to a subset of
routers in their networks. We further validate our detection results
on paths where we have two-ended control.

2. TRAFFIC DIFFERENTIATION
An ISP may use various information in traffic and routers to con-

struct differentiation policies. Table 1 enumerates a list of such
potential factors [35]. First, an ISP may provide differentiated ser-
vices based on the application type for security or business rea-
sons. It is well-known that broadband ISPs drop certain SMTP
traffic to fight spams and throttle P2P traffic to manage bandwidth
usage. Application types can be determined from packet header
fields or application layer information [24]. Even with encrypted
traffic, there are sophisticated techniques that can infer application

Ingress router
Internal routers

Egress router
ISP

action: packet marking

action: per-hop queuing/dropping

Figure 1: One common implementation of differentiation.

types by identifying certain traffic behavior [34]. Second, an ISP
can differentiate traffic according to routing information, reflecting
distinct business contracts with its customers and peers. An ISP
may assign high priority to traffic from customers who pay for pre-
mium services or assign low priority to traffic from peers. This type
of differentiation can be applied based on the previous-hop or next-
hop ASes, which can be easily extracted from packet headers and
routing state. Third, an ISP may enforce differentiation policies
according to available resources. Using the link utilization infor-
mation readily available from SNMP [11], it may slow down traffic
with low priority to preserve sufficient bandwidth for other traffic.

It is feasible to implement traffic differentiation in a backbone
network with many high-speed links. Today’s router already sup-
ports various queuing mechanisms to fulfill the need of traffic en-
gineering, quality of service, and security guarantees. Figure 1 il-
lustrates a common architecture for implementing differentiation
within a backbone ISP. The ingress routers perform traffic classi-
fication by marking packets according to packet header fields and
routing information, such as port numbers and previous-hop ASes.
The marking is usually applied to the Type-of-Service (TOS) field
in the IP header. The internal routers perform traffic shaping ac-
cording to the TOS value in the packets [17]. There are various
queuing and dropping mechanisms that provide different levels of
service to traffic, e.g., priority queuing, proportional share schedul-
ing, and policing [10]. These mechanisms differ in details of how
and when differentiation is carried out. In §6.7, we demonstrate
traffic differentiation can be easily implemented on today’s com-
mercial routers in testbed experiments.

Other than the router marking-based mechanisms using packet
header information, ISPs may perform deep packet inspection
(DPI) [14] to classify application types according to packet con-
tent. Some DPI devices can perform pattern matching in packet
payload with hardware support for 100 Gps links [1, 12]. Because
DPI devices can be quite expensive, they are usually deployed only
at selected locations.

In this work, we examine all types of differentiation listed in
Table 1 except for the one based on traffic behavior (Table 1 row
4) due to limitations of end-host based probing (§3.2). In fact,
behavior-based differentiation could be expensive to implement by
ISPs due to the required per-flow state information and potentially
high false positives. Our goal of detecting these four types of dif-
ferentiation guides the design of path selection and probe packet
composition in NetPolice. By providing concrete evidence of dif-
ferentiation, we hope to stimulate more research to fully understand
possible differentiation policies in backbone ISPs.

3. METHODOLOGY
NetPolice detects traffic differentiation inside a particular ISP by

launching probes from a distributed set of end systems. For this
purpose, we have to decide what paths to measure, how to measure
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Figure 2: Detecting various types of differentiation with end-host
based probing

each path, and how to identify differentiation based on measure-
ment results. We address these three issues below.

3.1 Path selection
NetPolice is designed to detect traffic differentiation based on

packet headers, application layer information, and routing infor-
mation (described in Table 1). Figure 2 illustrates how NetPolice
uses measurements from end systems to identify differentiation in
ISP I. In Figure 2(a), an end host probes two paths to different des-
tinations, sharing the same ingress and egress within ISP I, but di-
verging into two distinct next-hop ASes after leaving the egress. By
comparing the performance of the two internal paths between the
ingress and egress of ISP I, NetPolice can determine whether ISP I
treats traffic differently based on the next-hop ASes. Similarly,
Figure 2(b) shows how NetPolice detects differentiation based on
previous-hop ASes. In Figure 2(c), an end host probes a path that
traverses the same ingress and egress of ISP I to the same desti-
nation. By comparing the internal path performance measured by
packets of different applications (e.g., a1 vs. a2), NetPolice can
detect differentiation based on content, such as packet headers and
application layer information. We leave the discussion of resource-
based differentiation to §6.5.

To detect traffic differentiation inside an ISP, we devise an in-
telligent path selection strategy to ensure good coverage and low
overhead. On the one hand, a backbone ISP typically consists of
multiple PoPs (Points of Presence) at many geographic locations.
We want to cover as many distinct PoP pairs as possible in order
to quantify the scope of traffic differentiation policies inside the
ISP. On the other hand, NetPolice relies on end hosts to perform
measurements. While this makes NetPolice easily deployable and
applicable to different ISPs, we must aggressively reduce the mea-
surement overhead to comply with the requirement of limited CPU
and network resources at each host.

Given a target ISP, a list of probing sources, and all the des-
tination prefixes on the Internet, a naive approach is to probe all
the prefixes from all the sources. This may lead to both wasteful
probes that do not traverse the target ISP and redundant probes that
traverse the same internal paths multiple times. To avoid these two
problems, we frame the path selection problem as follows.

1. Each three-tuple (src, ingress, egress) is traversed at least
R times by probes to different destinations.

2. Each three-tuple (ingress, egress, dst) is traversed at least
R times by probes from different sources;

3. A probing source does not send more than m probes.

Here, src is a probing source, dst is a destination prefix, and
ingress and egress are the PoPs in the ISP.

Conditions 1 and 2 allow us to detect differentiation based on
routing information, e.g., previous-hop and next-hop ASes. We can
also detect content-based differentiation by probing the same path
with packets of different applications. R is a tunable redundancy
factor that determines the tradeoff between probing overhead and
coverage. A larger R will increase not only the chance of detecting
routing-based differentiation but also the amount of probing traffic.
Condition 3 restricts the total number of probes from each source.
Because a source needs to probe each three-tuple many times for
reliably detecting differentiation (explained in §3.3), this condition
ensures it will not take too much time for a source to complete all
the probes.

This problem is an instance of the set covering/packing prob-
lem [18, 23]: given multiple sets over a universe of elements, pick
a subset of input sets such that each element is included at least
R times (covering constraint), and no element is included more
than m times (packing constraint). In our case, the input sets
are the probes between source-destination pairs, and the elements
are the probers and the three-tuples of (src, ingress, egress) and
(ingress, egress, dst). A probe typically contains all three el-
ement types. This formulation enables us to perform both re-
dundancy elimination and probing load assignment systematically.
While this problem is NP-hard, we use a greedy based approxi-
mation: at each step, we select the probe that covers the most un-
covered elements without exceeding the probing threshold m. This
process continues until all the elements are covered at least R times.

3.2 Loss rate measurement
NetPolice focuses on detecting traffic differentiation that de-

grades application performance. Currently, it measures loss rate
in order to detect differentiation schemes based on rate-limiting in
backbone ISPs. We may extend it to measure other performance
metrics, e.g., delay, by applying the probing techniques developed
in Tulip [22]. We may also extend it to detect the differentiation
schemes used by broadband ISPs, e.g., traffic blocking and TCP
SYN/RST [13].

Given a path, NetPolice measures the loss rate as follows. First,
to reduce probing overhead, NetPolice only probes the hops that
map to an ingress or an egress of a target ISP instead of all the
hops along the path, given that we are only interested in detecting
differentiation inside the ISP. We will describe the details of iden-
tifying the ingress and egress of an ISP in §4. Second, to measure
the loss rate to a particular hop, NetPolice sends probe packets with
pre-computed TTL (Time-to-Live) value which will trigger ICMP
time exceeded response from that hop. In essence, these packets
are similar to traceroute probes. Although an ICMP packet may be
forwarded on a slow path, it will not affect the loss measurement as
long as the packet is not dropped.

Because packet loss may occur in either direction, we use large
probe packets to ensure the measured loss is mostly due to forward
path loss. The assumption is that large probe packets are more
likely to be dropped than small ICMP packets on the reverse path.
This has also been adopted in previous work [22, 20]. To avoid
triggering ICMP rate limiting, NetPolice probes each hop once per
second for 200 times, allowing us to detect loss rate as small as
0.5%. Probing each hop more times increases the sensitivity of
loss rate detection but also the probing overhead. We subtract the
measured loss rate of the ingress from that of the egress to obtain
the loss rate of the internal path. In §5, we describe how to mitigate
the impact of reverse path loss and ICMP rate-limiting on our loss
rate measurements.



To detect content-based differentiation, we measure loss rate of
an internal path using different application traffic. We select five
representative applications with distinct QoS (Quality of Service)
requirements: HTTP (default port 80), BitTorrent (P2P file shar-
ing, port 6881), SMTP (email, port 25), PPLive (video streaming,
port 4004), and VoIP (port 5060). Except for HTTP, the remain-
ing four applications are selected based on how likely they will
be treated differently by backbone ISPs. HTTP, one of the most
commonly-used application, is used as the baseline to compare per-
formance with other applications. ISPs may slow down BitTorrent
and PPLive traffic due their high volumes. Similarly, ISPs may dis-
favor SMTP traffic due to email spam concerns. We also test VoIP
traffic because many ISPs provide their own VoIP service, raising
incentives for preferential treatment.

We construct probe packets with application-specific content
captured from real application traces. This eliminates any need
to understand the protocols of proprietary applications, such as
PPLive or VoIP. To enable fair comparison between the loss rate
of different applications, all probe packets are chosen to have the
same size.

Because NetPolice relies on TTL-based probes to measure path
performance, it cannot fully mimic the temporal behavior of real
application traffic. If it probes as fast as the packet rate of appli-
cations, it may easily trigger ICMP rate-limiting on routers. An
alternative is to run applications on end hosts and detect differen-
tiation based on observed application performance [32]. However,
such approach requires the participation of a large number of hosts
to cover the internal paths of the backbone ISPs of interest. Fur-
thermore, without directly probing routers, it is challenging to infer
the performance of ISP internal paths purely based on end-to-end
measurements.

3.3 Differentiation detection
NetPolice detects differentiation by observing the performance

differences measured along the same ISP internal path using dif-
ferent types of probe traffic. Due to load variations on a path, the
same type of probes may experience different loss rates at different
times. This suggests we need to take a sufficiently large number
of loss rate measurements to ensure that the observed performance
differences accurately reflect how an ISP treats different types of
traffic.

We first introduce a few notions before describing the details of
our differentiation detection scheme. For a target ISP I , we define
l{s,d,a,t} to be a loss rate sample measured along an internal path of
ISP I from a probing source s to a destination d, using probes of ap-
plication a at time t. We use the term set to denote a set of samples
that are measured with a particular type of probes. For example,
set{s,d,a} includes all the samples measured along a path from s to
d using probes of application a. Similarly, set{pre,ing,d,a} includes
all the samples measured along the paths traversing previous-hop
AS pre and ingress ing to destination d, using probes of applica-
tion a.

Our basic assumption is that the loss rate samples in a set follow
a particular underlying distribution. This distribution reflects how
an ISP treats the corresponding type of traffic. We can then de-
tect differentiation between two types of traffic by comparing the
two corresponding distributions. We use pair{s,d,a1,a2} to denote
two candidate set{s,d,a1} and set{s,d,a2} (see Figure 2(c)). We
can compare the two distributions of an application pair{s,d,a1,a2}
to detect content-based differentiation between a1 and a2. Sim-
ilarly, we use pair{pre1,pre2,ing,d,a} to denote two candidate
set{pre1,ing,d,a} and set{pre2,ing,d,a} (see Figure 2(b)). We can
compare the two distributions of an AS pair{pre1,pre2,ing,d,a} to
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destinations, hops, app.
Task list

Path views

Measurement result
 loss rate

AS pairs and application pairs 
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Figure 3: The NetPolice system

detect previous-hop AS based differentiation between pre1 and
pre2 at ingress ing. As long as the underlying distributions are sta-
ble and the two candidate sets include enough samples, we should
be able to reliably detect differentiation between two types of traf-
fic.

Given a pair of input sets, we apply statistical hypothesis tests to
determine if there are significant differences between them. Sev-
eral commonly-used hypothesis tests exist to compute the statisti-
cal significance of differences between two input sets. Since the
distribution of the loss rate samples in an input set is unknown,
we choose the Kolmogorov-Smirnov (K-S) test [31] which makes
no assumption about the input sample distribution. The K-S test
compares the distance of the two empirical cumulative distribution
functions F1 and F2 corresponding to the two input sets. It com-
putes the Kolmogorov-Smirnov statistic D1,2 = supx |F1(x) −
F2(x)|, where sup is the supremum, under the null hypothesis
that the two sets of samples are collected from the same distribu-
tion. The null hypothesis test is rejected at significance level α ifq

n1n2
n1+n2

D1,2 > Kα. Here n1 and n2 denote the size of the input

sets and Kα is the critical value in the K-S statistic table.
As we just discussed, the validity of a K-S test statistic depends

not only on whether the distributions of the input sets are stable
but also on whether the input sets contain enough samples. We
use Jackknife [33], a commonly-used non-parametric resampling
method, to verify the validity of the K-S test statistic. The idea is
to randomly select half of the samples from the two original input
sets and apply the K-S test on the two new subsets of samples. This
process is repeated r times. If the results of over β% of the r new
K-S tests are the same as that of the original test, we conclude that
the original K-S test statistic is valid. We use r = 400, α = 95%,
and β = 95 in this paper to ensure 95% confidence interval. In §6.1
and §6.3, we will show that the choice of these parameters makes
our differentiation detection results robust against noise in loss rate
samples.

4. IMPLEMENTATION
The implementation of NetPolice is illustrated in Figure 3. It has

three major components:
Path selector takes path views as input and compute a task list
of probing destinations for each prober. The path views are the
traceroute measurements conducted from all the probers to all the
destination prefixes on the Internet. The path selector uses the path
views to learn the ingress and egress of the target ISPs that each
path traverses. It identifies the ingress and egress by attempting to
map each IP hop to an ISP and a PoP based on the DNS name of
the IP hop [29]. We extend the set of naming rules in undns [29] to
increase the number of names that can be successfully mapped. The



ISP PoP Ingress-Egress PoP-AS
ISP1 49 716 337
ISP2 139 2125 806
ISP3 57 1498 1170
ISP4 25 232 102
ISP5 46 501 351
ISP6 71 1750 653
ISP7 59 677 371
ISP8 38 502 195
ISP9 112 822 430
ISP10 45 539 176
ISP11 32 419 119
ISP12 30 267 138
ISP13 64 115 195
ISP14 23 303 82
ISP15 19 137 66
ISP16 44 538 208
ISP17 69 1787 152
ISP18 44 261 316

Table 2: 18 ISPs being studied

path views are updated daily to keep up with the evolution of ISP
topologies. Some path views may become temporarily out-of-date
due to routing changes. We detect routing changes by observing
the mismatch between the IP hops seen in loss measurements and
the corresponding hops in path views. We simply discard all the
loss rate samples affected by routing changes.

The path selector implements the greedy algorithm described in
§3.1. Note that path selection is performed for multiple target ISPs
simultaneously. This significantly reduces probing overhead by
leveraging the fact that a single probe often traverses multiple tar-
get ISPs, allowing us to cover the same set of three-tuple elements
(defined in §3.1) with fewer probes compared to probing each ISP
separately. For each of the target ISPs traversed by a probe, we
measure its internal loss rate between an ingress and egress follow-
ing the method described in §3.2.
Probers run on a distributed set of end hosts, probing all the des-
tinations in their task list periodically. After completing each round
of probing to all the destinations, the probers send their measure-
ment results to the differentiation detector for further processing.
Probing is conducted with a customized version of traceroute that
probes multiple hops of a path and multiple destinations in parallel.
The probe packets are constructed to reduce the probability that dif-
ferent probe packets from the same source to the same destination
take different IP-level paths due to load-balancing [6].
Differentiation detector first filters the noise in the measurement
results due to overloaded probers or reverse path losses. It then
tries to detect differentiation based on content, previous-hop AS, or
next-hop AS, following the process described in §3.3. Finally, it
performs detailed analysis on differentiation policies, such as what
input information they use, whether they are affected by network
load, and how significant their impact is.

We deployed NetPolice on the PlanetLab testbed [26]. It uses all
the PlanetLab hosts across about 200 distinct sites. Each round of
probing takes roughly two hours to complete. The results in the pa-
per are based on 74 days of data collected during a period between
August 2008 and October 2008. Each set includes around 1,000
loss rate samples. We run multiple instances of NetPolice to take
measurements of the five applications described in §3.2 in paral-
lel. We randomize the order of destinations to probe in each round
to reduce the chance of a path being simultaneously measured by
multiple instances. We studied 18 large ISPs covering major con-

tinents including North America, Europe, and Australia, consisting
of 9 Tier-1 ISPs, 8 Tier-2 ISPs, and 1 Tier-3 ISP. Table 2 shows Net-
Police has a decent coverage of internal paths and interconnections,
traversing 115 to 2125 ingress-egress pairs and 66 to 1170 PoP-AS
pairs for each ISP. A PoP-AS pair represents an interconnection be-
tween a neighbor AS and the target ISP at the corresponding PoP.

5. REDUCING NOISE EFFECTS
Loss rate measurements taken by end-hosts are susceptible to

various types of noise on the host and in the network. As men-
tioned in §3.2, the inaccuracy of loss rate measurements is likely to
be caused by three main factors: i) overloaded prober; ii) ICMP rate
limiting at router; and iii) loss on reverse path. In this section, we
investigate the effects of these three factors and develop techniques
to mitigate their impact. We emphasize that these techniques can-
not completely eliminate all the noise. However, as shown in the
next section, the remaining noise will have little impact on the dif-
ferentiation detection results.

Many ISPs perform load balancing using equal-cost multi-paths
(ECMP) to ensure effective utilization of network resources [5].
Per-flow load balancing is usually performed based on the five tu-
ple (srcip, dstip, srcpt, dstpt, proto). Thus, different application
packets, e.g., BitTorrent and HTTP, may take different internal IP-
level paths between the same ingress and egress, given their dif-
ferent destination ports (e.g., 6881 vs. 80). We do not observe
any per-packet load balancing in the 18 ISPs being studied. In this
section, we carefully design experiments to ensure our differenti-
ation detection is not affected by potential performance difference
of ECMP paths.

5.1 Overloaded prober
Previous work has shown measurement inaccuracies caused by

resource contention, in particular CPU load, on probing hosts in
PlanetLab experiments [28]. To deal with this problem, we con-
tinually monitor the CPU utilization on each prober by running
the top command and compute the average CPU utilization us-
ing three instantaneous load samples in each minute. We can then
investigate the relationship between CPU utilization and measured
loss rate by temporally correlating these two types of samples. This
allows us to identify and discard abnormal loss rate samples that
could be affected by high CPU utilization.

To determine an appropriate cut-off threshold of high CPU uti-
lization, we design the following controlled experiment to study
the effects of CPU utilization on loss rate measurements. We se-
lect a pair of lightly-loaded PlanetLab machines at the same site.
One machine acts as a “prober” to transmit one 1000-byte probe
packet per second. The other machine acts as an “acker” to receive
probe packets and return 40-byte ACKs. In essence, the “prober”
behaves just like a real NetPolice prober that measures loss rate. We
then run a computation-intensive program to gradually increase the
CPU utilization on the “prober” while keeping the acker lightly
loaded.

Figure 4 illustrates the relationship between CPU utilization and
loss rate measured by the “prober”. Because loss is unlikely to
occur on the light-loaded acker or on the local area network be-
tween the “prober” and the acker, the measured loss rate is almost
certainly due to the CPU load on the “prober.” Clearly, the loss
rate jumps up when the CPU utilization goes above 65%. We re-
peat this experiment on ten pairs of PlanetLab hosts across different
sites and find the loss rates induced by CPU load are consistently
smaller than 0.2% when CPU utilization is under 65%. In §6.6,
we will show that such loss rates are negligible compared to the
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Figure 4: Impact of CPU utilization on loss rate.

observed loss rate differences due to traffic differentiation. By ap-
plying the 65% cutoff threshold on CPU utilization, 15% of the
samples in our data are discarded.

5.2 ICMP rate limiting
ICMP rate limiting is often configured on a per-router basis to

prevent router overload. If triggered, it may significantly inflate the
measured loss rate. To prevent this, we deliberately keep a large
probing interval, e.g., only one probe packet is sent on a given path
per second. We use the following experiments to confirm that this
probing interval is large enough to avoid triggering ICMP rate lim-
iting.
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Figure 5: Impact of probing interval on loss rate.

We conducted five sets of experiments by measuring the loss rate
of all the internal paths of the 18 target ISPs from all the probers.
We gradually increase the probing interval for each set of experi-
ments from 10ms to 2s. The smaller the interval is, the more likely
a router along a path may rate-limit the ICMP time-exceeded re-
ply. As shown in Figure 5, the measured loss rates on 30% of the
paths increase significantly when the probing interval changes from
500ms to 300ms. This indicates the rate-limiting threshold of the
routers along those paths is between 300ms and 500ms. The loss
rate curves of 1s, 2s, and 500ms are almost indistinguishable, sug-
gesting that the 1-second interval is sufficiently large to avoid trig-
gering ICMP rate-limiting on most routers. Otherwise, we would
have observed the loss rates measured by the 2-second interval to
be much smaller than those measured by the 1-second interval.

5.3 Loss on reverse path
NetPolice relies on single-ended probes to measure loss rate. The

measured loss rate can be inflated due to reverse path loss. Since
large packets are more likely to be dropped [20], we use 1000-byte
probe packets to ensure the measured loss is mostly on forward
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Figure 6: Impact of probe packet size on loss rate.

paths. We study the effect of packet size on measured loss rate
using controlled experiments. We conducted three sets of experi-
ments by measuring the loss rate of all the ISP internal paths using
probe packets of 40 bytes, 200 bytes, and 1440 bytes. As shown in
Figure 6, the measured loss rate increases with probe packet size.
Since the size of the ICMP responses is always the same, this con-
firms that bigger probe packets are more likely to encounter losses
on forward path. Nonetheless, the loss rates measured by 200-byte
and 1440-byte packets are roughly the same, suggesting the effects
of packet size on forward path loss diminish when packet size ex-
ceeds 200-byte.
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Figure 7: ReErr before & after filtering.

The loss rate measured by 40-byte probe packets is much
smaller. In fact, we can use this loss rate as the upper bound of the
loss rate on reverse path. To further limit the impact of reverse path
loss, we compute ReErr as the ratio of the loss rate measured by
40-byte packets and that by 1000-byte packets on each path. This
ReErr is a conservative estimate of the relative error of loss rate
measurements induced by reverse path loss. Figure 7 shows that
ReErr is less than 10% on 70% of the paths. We find ReErr
tends to be large on paths with high loss rate, e.g., ReErr exceeds
10% on most of the paths with loss rate >7%. By discarding 6%
of the paths with such abnormally high loss rate, ReErr is within
10% on 80% of the remaining paths. In essence, we sacrifice path
coverage a little for higher measurement accuracy.

5.4 Load balancing
Per-flow load balancing is observed extensively in our measure-

ments, e.g., BitTorrent traffic and HTTP traffic take different inter-
nal IP-level paths between 48% of the source-destination pairs. To
eliminate the effect of load balancing, we take a conservative ap-
proach in detecting content-based differentiation. We first detect
potential differentiation for each application pair from the initial



ISP App Paths (%) Δtos TOSδ FP (%)
ISP12 BitTorrent 3794 (19) 100 99 12 (0.06)
ISP12 PPLive 825 (4.1) 100 85 24 (0.1)
ISP2 VOIP 172 (3.2) 100 68 11 (0.2)
ISP2 SMTP 573 (11) 100 93 9 (0.02)
ISP3 VOIP 203 (2.1) 100 96 25 (0.2)
ISP5 SMTP 388 (7.2) 100 97 52 (0.9)

Table 3: Test results for content-based differentiation.

measurement data. We then verify that the detected differentiation
still exists when the probe packets of the two applications traverses
the same internal IP-level path. Since per-flow load balancing al-
gorithms use the five tuple (srcip, dstip, srcpt, dstpt, proto) to
choose an internal path, we fix the five tuple of one application
while only changing the source port of the other application un-
til the probe packets of both applications follow the same internal
IP-level path. The results in §6 are obtained after applying this
controlled procedure to each application pair.

6. EXPERIMENTAL RESULTS
In this section, we provide concrete evidence of traffic differenti-

ation based on content (§6.1) and routing (§6.3) in backbone ISPs.
We study the types of information used to construct content-based
differentiation policies and the scope of such policies in an ISP
network (§6.4). Without access to ISPs’ proprietary policy config-
urations, we leverage both TOS value in probe packets (§6.4) and
two-ended controlled probing (§6.2) to validate the detected differ-
entiations. We also provide insight into when differentiations occur
(§6.5) and how significant they are (§6.6) in the large ISPs being
studied. Finally, we demonstrate that content and routing based
differentiation can be easily implemented on today’s commercial
routers (§6.7).

6.1 Content-based differentiation
Table 3 presents the detection results of content-based differen-

tiation. We only listed the 4 ISPs that exhibits large degree of dif-
ferentiation. We use the performance of HTTP as a baseline in
comparison with the performance of each of the 4 remaining ap-
plications. For a particular application, the “Paths” column lists
the number and percentage of ISP internal IP-level paths on which
differentiation of the application is detected. Surprisingly, these
4 large ISPs show clear evidence of differentiation of applications
such as BitTorrent, PPLive, SMTP, and VoIP in Table 3. For in-
stance, BitTorrent experiences higher loss rate on 3794 (19%) paths
in ISP12. This is also true for SMTP on 573 (11%) paths in ISP2.
In contrast, ISP2 and ISP3 treat VoIP preferentially on 172 (3.2%)
and 203 (2.1%) internal paths. While content-based differentiation
is known to exist in broadband ISPs [13], we are the first to detect
such differentiation in backbone ISPs.

The percentage of internal paths with detected differentiation is
relatively small for some applications. This can be explained by
two reasons: i) the differentiation policies are not universally de-
ployed within the ISPs. By analyzing the TOS marking behavior
of these ISPs (explained in §6.4), we find the differentiation poli-
cies are deployed only at certain routers. If we only consider the
internal paths traversing those routers, the percentage of paths with
detected differentiation will become much higher as shown in the
“TOSδ” column in Table 3; ii) traffic differentiation may happen
only during certain periods, e.g., when network is congested. Since
we can only measure the loss rate of a path once every two hours
(explained in §4), we may not observe any loss rate differences on

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6

C
D

F

actual loss rate difference (%)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6

C
D

F

actual loss rate difference (%)

one-way end-to-end
ingress-egress

Figure 8: Validation using two-ended controlled probing

a path even if it is configured with differentiation polices. In §6.5,
we will show that there is indeed a strong correlation between dif-
ferentiation and network load.

The loss rate samples may contain noise even after the filter-
ing process described in §5. The remaining noise may still lead to
false positives in the detection results. Because we do not have the
ground truth, we cannot quantify false positives directly. Instead,
we use the following analysis to show that the detection results in-
deed reflect content-based differentiation performed by the ISPs.
The main idea is to compare for the same paths the detected differ-
entiation across different content with any observable differences
due to noise for the same content. Strong evidence of content-based
differentiation is manifested if the former is much more prominent
than the latter.

We first randomly divide the loss rate samples of the same ap-
plication measured on the same path into two equally-sized subsets
and apply the K-S test to these two subsets. Since the samples in
both subsets are drawn from the same distribution, an acceptance
of the test indicates a false positive due to noise. The test results are
in the “FP” column in Table 3. We then make the conjecture that
ISPs do not carry out any content-based differentiation. Under this
conjecture, we deduce that: i) the detection results in the “Paths”
column are all “false positives”; ii) the number of false positives
results from the K-S test should be independent of whether it is
conducted between the same application (column “FP”) or between
different applications (column “Paths”). Nonetheless, the numbers
in the “Paths” column are mostly over an order of magnitude larger
than those in the “FP” column, contradicting our conjecture. This
therefore suggests the detection results do reflect content-based dif-
ferentiation performed by the ISPs.

In §6.4, we will further cross-validate the detection results and
the TOS values marked by the ISPs (columns “Δtos” and “TOSδ”
in Table 3).

6.2 Validation with two-ended controlled
probing

As mentioned in §5, loss rate measured by TTL-based probing
could be affected by various types of noise. We perform two-ended
controlled probing to partially validate the content-based differen-
tiation results presented in the previous section. Given all the Plan-
etLab node pairs, we first select a subset of them that traverse the
ISP internal paths with detected differentiation. In total, we found
13 such pairs, all traversing the internal paths of ISP12 with dif-
ferentiation against BitTorrent. Between each pair of nodes, we
simultaneously measure the one-way end-to-end loss rate as well
as the loss rate between ingress and egress of ISP12 with TTL-
based probing, using both HTTP and BitTorrent probes. In Fig-
ure 8, the two curves labeled “one-way end-to-end” and “ingress-



egress” correspond to the CDF of actual loss rate differences be-
tween HTTP and BitTorrent measured by two-ended controlled
probing and TTL-based probing respectively. Clearly, the two
curves match quite well, implying that the differentiation between
HTTP and BitTorrent can also be confirmed by one-way loss rate
measurements.

6.3 Routing-based differentiation
Table 4 summarizes our findings for the 10 ISPs which appear

to carry out routing-based differentiation. For previous-hop AS
based differentiation, the “AS pairs” column shows the number and
percentage of previous-hop AS pairs in which differentiation is de-
tected. Clearly, previous-hop AS based differentiation is commonly
used by many ISPs, reflecting the fact that ISPs usually maintain
different business contracts with their customers and peers. The
number of previous-hop AS pairs exhibiting differentiation can be
as large as 1511 (30%) in ISP16 and 1086 (21%) in ISP3. In con-
trast, next-hop AS based differentiation is far less prevalent. Except
for ISP3, all the other ISPs studied show few cases of next-hop AS
based differentiation. This is likely due to the clear advantage of
previous-hop AS based approach in enabling an ISP to manage its
internal resources to meet its SLAs with customers and peers.

Following the similar logic in §6.1, we show that the detection
results indeed reflect previous-hop AS based differentiation per-
formed by the ISPs. We apply K-S test to path pairs that traverse
the same (preAS, ingress, egress,nxtAS), which are not sub-
ject to any routing-based differentiation. Thus, an acceptance of
the test indicates a false positive due to noise, as shown in the “FP”
column in Table 4. Under the conjecture that ISPs do not carry
out any previous-hop AS based differentiation, we deduce that: i)
the detection results in the previous-hop “AS pairs” column are all
“false positives”; ii) the percentage of false positive pairs results
from the K-S test should be independent of whether it is conducted
between the same previous-hop ASes (column “FP”) or between
different previous-hop ASes (column “AS pairs”). Nonetheless,
the percentage numbers in the “FP” column are negligibly small
compared to those in the previous-hop “AS pairs” column, contra-
dicting our conjecture. This again implies that the detection results
indeed reflect previous-hop AS based differentiation performed by
the ISPs, which we will further cross-validate in the next section
(columns “Δtos” and “TOSδ” in Table 4).

The neighbors of an ISP can generally be classified into cus-
tomers and peers based on whether the ISP receives payments from
them. ISPs may have incentives to give customer’s traffic high pri-
ority. We employ the commonly-used relationship inference results
by Gao [16] to classify the previous-hop ASes into customers and
peers. Among all the previous-hop AS pairs consisting of one cus-
tomer and one peer, the “Customers” and “Peers” columns in Ta-
ble 4 shows the number of cases where customer’s traffic receives
better or worse treatment respectively. Seven of the ten ISPs ei-
ther consistently or mostly give customer’s traffic higher priority,
confirming our conjecture.

6.4 Correlation with TOS value
As previously illustrated in §2, traffic differentiation can be im-

plemented in the router by marking the TOS field in the IP header.
We develop a method to reveal the TOS field marked by the routers
along a path. We then study whether the observed traffic differen-
tiation can be explained by different TOS values.

Our probe packets trigger ICMP time exceeded messages from
routers. These ICMP messages contain the IP header of the orig-
inal probe packets, including the TOS values set by the routers.
Table 5 illustrates an example of the TOS marking behavior of

content-based differentiation. It shows the traceroute output from
a PlanetLab node in University of Arizona traversing ISP12. The
“TOS” column shows the TOS value of original probe packets ex-
tracted from ICMP replies. It is clear that the TOS value of BitTor-
rent probes is set to 128 by the router at the sixth hop while that of
HTTP probes is always 0.

To correlate the loss rate differences with TOS value differences
in the traffic, we first need to infer the relationship between TOS
values and priorities. We assume an ISP has a consistent policy
of associating a TOS value with a fixed priority. However, we do
not assume that a large TOS value is always associated with a high
priority. Starting with all the pairs that pass K-S test, we compile a
list of all the distinct TOS values observed in a target ISP. We then
construct a mapping from TOS values to priorities in a way such
that the loss rate differences between the pairs with differentiation
can be best explained. More specifically, given a pair with differ-
entiation, if the first set has lower loss rates than the second set, the
TOS value of the former should map to higher priority.
Can TOS difference explain detected differentiation? Once
a mapping is constructed for each ISP, we compute Δtos, which
is the percentage of pairs with detected differentiation that can be
explained by differences in priorities inferred from TOS values.
The results are in the “Δtos” columns in Tables 3 and 4, where
“-” means no TOS marking is used. Clearly, a large percentage
of pairs with detected differentiation can be explained by the pri-
ority differences inferred from TOS values. Δtos is 100% for all
the pairs with content-based differentiation (Table 3). For the pairs
with previous-hop AS based differentiation, Δtos is over 80% in 5
ISPs (Table 4). Note that Δtos is not 100% in some ISPs, which
could be caused by ISP’s “passive” differentiation. For instance,
an ISP may route the traffic from a neighbor through an under-
provisioned link, persistently causing high loss rates, even though
the ISP does not “actively” treat the traffic with low priority.
Are differentiation policies applied to all the routers? Interest-
ingly, we observe that some ISPs selectively deploy content-based
differentiation policy within their networks. Among the 4 ISPs in
Table 3, ISP2 and ISP3 only mark the TOS field of VoIP traf-
fic that traverses the PoP in Utah and Virginia respectively. The
differentiation policy of BitTorrent is much more widely deployed
than that of PPLive in ISP12. The TOS marking of BitTorrent is
found on nearly 4 times more paths than that of PPLive, which also
matches the numbers in the “Paths” column in Table 3. In fact,
many routers that perform TOS marking of BitTorrent traffic pay
no attention to PPLive traffic. Given that an ISP may not apply the
same differentiation policy to all the routers, it is important to cover
a reasonable number of ISP internal paths to avoid drawing biased
conclusion.
Why the percentage of pairs with detected differentiation is
small? As shown in Table 3 and 4, the percentage of appli-
cation and AS pairs with detected differentiation is relatively small
in some ISPs. One major reason is the differentiation polices are
not universally deployed within these ISPs. To illustrate this, we
compute the percentage of pairs with detected differentiation by
only considering the pairs that are confirmed to have differentia-
tion policies based on different TOS values. The results are in the
“TOSδ” columns in Tables 3 and 4. Compared to the corresponding
percentage numbers in the “Paths” and “Pairs” columns, TOSδ is
much higher. Only VoIP in ISP2 has a TOSδ smaller than 80% in
Table 3. For previous-hop AS based differentiation, TOSδ exceeds
80% in 6 ISPs in Table 4. The reason that TOSδ is not 100% is
likely due to the fact that differentiation is performed only under
certain conditions, e.g., when there is resource competition. As a
result, we may not observe any loss rate differences between cer-



ISP Previous-hop Next-hop False positive (FP)
name AS pairs (%) Δtos TOSδ Customers (%) Peers (%) AS pairs (%) (%)
ISP1 480 (11) 85 25 58 (10) 7 (1.2) 97 (1.6) 6 (0.1)
ISP2 440 (2.4) 48 94 406 (2.6) 0 130 (0.7) 90 (0.5)
ISP3 1086 (21) 89 86 362 (12) 541 (19) 3159 (15) 11 (0.05)
ISP5 158 (6) 21 65 36 (4) 22 (2.4) 0 0
ISP6 559 (16) 98 79 98 (13) 13 (1.7) 164 (4.9) 10 (0.3)
ISP8 670 (10) 71 41 569 (15) 0 103 (1.3) 33 (0.4)
ISP9 501 (9) 77 81 365 (12) 0 109 (1.5) 5 (0.07)
ISP11 662 (17) 99 80 99 (5) 232 (12) 93 (2.3) 39 (1)
ISP16 1511 (30) 67 90 134 (12) 243 (23) 102 (2) 5 (0.1)
ISP18 51 (9) 94 91 15 (10) 0 0 0

Table 4: Test results for routing-based differentiation.

Hop DNS name TOS
BitTorrent HTTP

2 tuco.telcom.arizona.edu 0 0
3 morgan.telcom.arizona.edu 0 0
4 static.twtelecom.net 0 0
5 - 0 0
6 HOPa.ISP12 128 0
7 HOPb.ISP12 128 0
8 HOPc.ISP12 128 0
9 HOPd.ISP12 128 0

Table 5: An example of content-based differentiation confirmed
with TOS

ISP Destination ports
ISP12 1214 (Napster), 4004 (PPLive), 4662 (eDonkey),

6881-6889 (BitTorrent), 6946, 6961-6969, 6999
ISP3 10, 5060 (VoIP)
ISP5 179 (BGP), 16384 (VoIP), 25 (SMTP), 2525 (mail)
ISP2 25 (SMTP), 53 (DNS), 109 (POP3),

443 (IMAP), 1575, 5060 (VoIP)

Table 6: Destination ports used for TOS marking.

tain pairs even if they are configured with differentiation policies.
We will study its correlation with network load in §6.5.
How content-based differentiation policy is constructed? For
the 4 ISPs verified to use TOS markings for content-based differen-
tiation, we further analyze which packet fields are used to perform
TOS marking. Such information is especially useful for customers
who want to circumvent ISP’s differentiation policy. We conduct
controlled experiments by changing packet headers and applica-
tion payloads in probe packets. Surprisingly, we found all the 4
ISPs simply use destination port to mark TOS field despite the fact
that some applications may change their port numbers, e.g., packets
with the default BitTorrent port and fake payloads are still marked.
By enumerating different destination ports, we can clearly observe
changes in TOS markings. Table 6 lists all the destination ports
which are used by the 4 ISPs for TOS marking. For instance, be-
sides PPLive and BitTorrent, ISP12 marks the TOS field of Nap-
ster and eDonkey (both are P2P applications). It also marks the
TOS field of traffic destined to all the default BitTorrent ports be-
tween 6881 and 6889. Similar to VoIP, BGP traffic seems to receive
preferential treatment by ISP5, likely reflecting operator’s desire
to maintain the stability of BGP sessions. We plan to comprehen-
sively study on whether ISPs use other factors rules other than des-
tination port to construct their differentiation policy as future work.

ISP App High loss (%) Low loss (%)
ISP12 BitTorrent 3642 (18) 1707 (8.5)
ISP12 PPLive 825 (4.1) 511 (2.5)
ISP2 VOIP 182 (3.3) 111 (2)
ISP2 SMTP 573 (11) 304 (5.8)
ISP3 VOIP 203 (2.1) 103 (1.07)
ISP5 SMTP 388 (7.2) 54 (1)

Table 7: Effects of network load on content-based differentiation.

ISP High loss (%) Low loss (%)
ISP1 437 (10) 115 (2.6)
ISP2 440 (2.4) 308 (1.68)
ISP3 1108 (21.4) 489 (9.5)
ISP5 158 (6) 32 (1.2)
ISP6 559 (16) 414 (11.8)
ISP8 643 (9.2) 107 (1.6)
ISP9 501 (9) 115 (2)
ISP11 662 (17) 311 (8)
ISP16 1299 (25.8) 982 (19.5)
ISP18 48 (8.5) 20 (3.5)

Table 8: Effects of network load on previous-hop AS based dif-
ferentiation.

6.5 Load-sensitive differentiation
Given the strong evidence of traffic differentiation performed by

some large ISPs using packet content and routing information, we
now investigate whether there exists other factors that may affect
traffic differentiation. In particular, if ISPs intend to use differen-
tiation to conserve limited resource in their networks, we should
be able to observe a strong correlation between network load and
traffic differentiation. For instance, an ISP may throttle BitTorrent
traffic only when its bandwidth usage exceeds 100Mbps.

Although we cannot measure network load directly, we can ob-
serve its effects in terms of loss rate. High loss rate usually indi-
cates heavy load, given that we have discarded the samples affected
by routing changes and failures (in §4). For the two sets in each ap-
plication or AS pair, we sort the samples in each set based on loss
rate value and partition the samples into two equally-sized groups:
high-loss vs. low-loss. We then perform K-S test both between
the two high-loss groups and between the two low-loss groups. Ta-
bles 7 and 8 summarize the number and percentage of application
and AS pairs that pass the tests. The numbers in the high-loss group
are significantly higher than those in the low-loss group, clearly
supporting our conjecture that ISPs perform load-sensitive traffic
differentiation.
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Figure 9: Loss rate differences in previous-hop AS based differ-
entiation.
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Figure 10: Loss rate differences in content-based differentiation.

6.6 Degree of differentiation
The statistical tests we devise can systematically detect whether

there exists differences between two loss rate distributions. We now
study whether the actual loss rate differences are significant enough
to affect the perceived performance of TCP-based applications. For
each AS pair with previous-hop AS based differentiation, we first
compute the mean loss rate of each set. We then compute the actual
loss rate difference between the two mean loss rates. Figure 9 plots
the CDF of actual loss rate differences of all the AS pairs in three
target ISPs. Among them, the AS pairs of ISP9 have the smallest
loss rate differences, mostly under 3%. In contrast, the differences
are much more evident for AS pairs in ISP3. Nearly 10% of them
have loss rate difference over 4%. Such large loss rate difference
will certainly lead to perceptible performance difference for many
TCP-based applications.

Figure 10 illustrates the CDF of actual loss rate differences of the
application pairs included in Table 3. For each application pair, the
actual loss rate difference is computed as the difference between
the mean loss rate of an application (e.g., BitTorrent) and that of
HTTP. Clearly, the degree of content-based differentiation varies
significantly across different applications and ISPs. For instance,
ISP2 treats SMTP only slightly worse than HTTP. Their loss rate
differences are smaller than 2% on nearly 90% of paths. In compar-
ison, ISP3 gives VoIP much higher priority than HTTP, possibly
reflecting their desire to meet the QoS requirements of the VoIP
service provided by themselves. Interestingly, although both Bit-
Torrent and PPLive experience worse performance than HTTP in
ISP12, the loss rates of PPLive are even higher than those of Bit-
Torrent. This is because the paths with PPLive differentiation are
only a subset of those with BitTorrent differentiation (explained in
§6.4) and this subset of paths tend to have higher loss rates than
other paths.

ip nbar port-map custom-01 tcp 6881
class-map BTCLASS match protocol custom-01
policy-map BTPOLICY class BTCLASS dscp 60 

class-map BTCLASS match dscp 60
rate-limit output dscp 60 90000 110000 conform-action transmit exceed-actiono drop

BT traffic
HTTP traffic

Host A Host B

R1 R2

Figure 11: Router testbed setup
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Figure 12: Loss rate differences in testbed experiment

6.7 Implementation of differentiation in
router testbed

In this section, we demonstrate the feasibility of implementing
and enforcing traffic differentiation in today’s commercial routers.
As shown in Figure 11, we set up our own experimental testbed us-
ing two high-end routers (Cisco 7300 and 12000) running the latest
IOS 12.3 from the Schooner testbed [3]. Host A transmits BitTor-
rent and HTTP traffic to host B via R1 and R2. All the machines
and routers are connected using Gigabit Ethernet links. To con-
figure the routers for port-based differentiation, we define a port-
map on R1 to capture all the packets with the default BitTorrent
port and mark their TOS field using policy map. Interestingly, we
found the default router configurations already include pre-defined
port-maps for applications such as Napster, Kazaa, SMTP, etc. [9],
which greatly simplifies the work of configuring differentiation for
these applications. The actual router commands used in the Cisco
command line interface (CLI) are shown in Figure 11. Similarly,
to implement previous-hop AS based differentiation, we can easily
mark packets based on incoming interfaces by changing the defini-
tion of class-map to class-map NEIGHBOR match interface Giga-
bitEthernet 1/0. We configure R2 to prioritize traffic on its incom-
ing interface using weighted random early drop (WRED) queuing.

In § 6.5, we observed that the effects of traffic differentiation are
more perceptible when network load is high. To illustrate this, we
measure the loss rate differences between HTTP and BitTorrent as
we control the sending rate on A. The configurations of R1 and
R2 remain the same throughout the experiments. R2 will restrict
the BitTorrent bandwidth to be within 110Mbps. Figure 12 shows
the actual loss rate differences between BitTorrent and HTTP under
two different ranges of sending rates. When the sending rate is high
(80 - 150Mbps), the loss rate differences can go up to 7%. In con-
trast, when the sending rate is below the bandwidth limit (80 - 110
Mbps), the loss rate differences become negligibly small. We also
measure the overhead induced by the differentiation configurations
on R1 and R2. From the SNMP logs, we observed little changes
in the CPU utilization on R1 and R2 when we disable or enable



the differentiation configurations. This indicates the overhead of
enforcing both types of differentiation is small.

7. SYSTEM EVALUATION
In this section, we study the parameter settings and system per-

formance in NetPolice. We will explain the choice of redundancy
factor and maximum probing threshold (defined in § 3.1). We will
also evaluate the resource usage of NetPolice in terms of network,
memory, and CPU. Our evaluation results demonstrate the feasibil-
ity of deploying NetPolice as a lightweight tool for continually de-
tecting traffic differentiation in multiple large ISPs simultaneously.
Parameter settings The path selection process of NetPolice
is controlled by two pre-defined parameters: the redundancy fac-
tor R and the maximum probing threshold m (§ 3.1). R de-
termines the number of distinct paths that will traverse each ele-
ment. An element can be a three-tuple of (src, ingress, egress)
or (ingress, egress, dst). Figure 13 shows the maximum number
of destinations assigned to a prober increases with R and remains
the same once R exceeds 100. This means when R > 100, the
redundancy of each element is no longer determined by R but by
the set of destinations the probers can probe. We set R = 100 to
obtain the best coverage.

 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000

 1  10  100  1000m
ax

 #
 o

f d
es

tin
at

io
ns

 p
er

 p
ro

be
r

Redundancy factor

 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000

 1  10  100  1000m
ax

 #
 o

f d
es

tin
at

io
ns

 p
er

 p
ro

be
r

Redundancy factor

Figure 13: How to select redundancy factor.
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Figure 14: How to select maximum probing threshold.

NetPolice imposes a maximum probing threshold m to prevent
a prober from being assigned too many probing destinations. This
may cause the actual redundancy of certain elements to be smaller
than R. Figure 14 shows the fraction of elements whose actual re-
dundancy reaches R ≥ 100 under different m. The fraction num-
ber grows slowly when m exceeds 10K. We choose m = 10K
to attain a reasonable balance between element redundancy and
maximum prober overhead. Note that the redundancy of certain
elements can never reach R because the number of distinct paths
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Figure 15: Execution time and memory usage of path selector.
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Figure 16: Probing overhead under single-ISP vs. multi-ISP
path selection.

traversing an element is inherently limited by the set of source-
destination pairs covered by NetPolice.
Performance evaluation In NetPolice, the number of destina-
tions probed by each prober ranges from 6K to 10K. This corre-
sponds to a bandwidth usage from 17Kbps to 443Kbps per prober.
The multi-ISP path selection consumes most of the execution time
and memory compared to other components in NetPolice. Since a
path can only traverse a limited number of elements, the time and
space complexity of the path selection is O(p2) and O(ep). Here,
p is the number of source-destination pairs and e is the number of
elements.

We evaluate NetPolice on a commodity server with eight 3.0
GHz Xeon processors and 8 GB memory running Linux 2.6.18
SMP. Figure 15 illustrates the execution time and memory us-
age of NetPolice as the number of ISPs increases. At 18 ISPs,
NetPolice measures 13K unique ingress-egress pairs from 186
sources to 57K destinations. It takes 3.5GB memory for Net-
Police to store 182M three-tuples of (src, ingress, egress) and
(ingress, egress, dst). The execution time of each run of path
selection is around 25 minutes, which is only 20% of one round of
probing. This means the path selection process can keep up with
measurement speed. To demonstrate the benefit of multi-ISP path
selection, Figure 16 compares the total number of paths probed un-
der single-ISP vs. multi-ISP path selection. The latter reduces the
probing overhead by almost a third when 18 ISPs are being mea-
sured.

8. RELATED WORK
Traffic differentiation detection has drawn significant attention

among the research community in the last few years. One re-
cent study leverages active measurement launched from end-host



to identify traffic differentiation using port blocking [8]. Evidence
of differentiation against P2P traffic has been found in many broad-
band ISPs by BTTest [13]. Unlike the existing works that study
broadband ISPs, NetPolice focuses on differentiation detection in
backbone ISPs. This requires us to devise an intelligent path selec-
tion algorithm to scalably measure a large number of ISP internal
paths.

Our previous work has demonstrated some initial evidence of
traffic differentiation in backbone ISPs [35]. In this paper, we sig-
nificantly extend our prior work by comprehensively presenting,
validating, and analyzing the differentiation detection results col-
lected over 10 weeks. NANO [32] targets a similar goal but takes
a passive monitoring approach. Without coordinating active mea-
surement from multiple end hosts as NetPolice does, its main diffi-
culty lies in collecting sufficient samples across different hosts and
ISPs that enables adjustment for each of the many confounding fac-
tors, e.g., congestion and time-of-day effect.

Our work draws heavily on a broad class of measurement studies
to reverse engineer the Internet using end-host based probing [30,
21]. Rocketfuel [29] infers ISP topologies by launching traceroute
from a set of end-hosts. We extends its DNS naming rules to map IP
addresses to geographic locations. There have been a few network-
wide systems that measure and predict the performance of various
Internet paths [20, 15, 25]. The closest work on monitoring ISP per-
formance is Netdiff [23], which enables cross ISP latency compar-
ison. Similar to NetPolice, the systems above must carefully man-
age measurement overhead for scalable probing. However, none of
them has been used for systematically detecting traffic differentia-
tion.

9. CONCLUSION & FUTURE WORK
In this paper, we presented the NetPolice system to detect

content- and routing-based traffic differentiation in backbone ISPs
by taking loss measurement from end hosts. NetPolice employs
an intelligent probing scheme to attain rich coverage of ISP inter-
nal paths while maintaining reasonable measurement overhead. It
identifies significant performance gap between different types of
traffic using statistical hypothesis tests.

We deployed NetPolice on PlanetLab to study 18 large ISPs
across 3 continents over 10 weeks in 2008. We find 4 ISPs that
perform differentiation on 4 distinct applications and 10 ISPs that
perform previous-hop AS based differentiation, evidenced by up to
5% actual loss rate differences. The degree of differentiation in-
creases with network load. Some ISPs appear to carry out content-
based differentiation simply based on port numbers irrespective of
packet content. These ISPs may deploy differentiation policies only
to a subset of routers in their networks. The loss rate differences are
often associated with different TOS values in the traffic marked by
the ISPs.

Our work serves as an important step towards increasing the
transparency of the Internet. If an ISP blacklists the source IP
addresses of NetPolice or disables ICMP response completely,
we could get NetPolice deployed on hosts spanning educational,
commercial and residential networks to counteract blacklisting of
source IP addresses. We could also leverage end-to-end in-band
probing techniques [7] to detect performance degradation due to
differentiation without requiring router responses. We plan to ex-
plore ways to improve the robustness of differentiation detection in
NetPolice in the future.
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