An Untold Story of Middleboxes in Cellular Networks

Zhaoguang Wang!, Zhiyun Qian!, Qiang Xu!, Z. Morley Mao!, Ming Zhang?

'University of Michigan

{zgw, zhiyunq, giangxu, zmao}@umich.edu

ABSTRACT

The use of cellular data networks is increasingly popular as net-
work coverage becomes more ubiquitous and many diverse user-
contributed mobile applications become available. The growing
cellular traffic demand means that cellular network carriers are fac-
ing greater challenges to provide users with good network perfor-
mance and energy efficiency, while protecting networks from po-
tential attacks. To better utilize their limited network resources
while securing the network and protecting client devices the car-
riers have already deployed various network policies that influence
traffic behavior. Today, these policies are mostly opaque, though
they directly impact application designs and may even introduce
network vulnerabilities.

We present NetPiculet, the first tool that unveils carriers’ NAT
and firewall policies by conducting intelligent measurement. By
running NetPiculet on the major U.S. cellular providers as well as
deploying it as a smartphone application in the wild covering more
than 100 cellular ISPs, we identified the key NAT and firewall poli-
cies which have direct implications on performance, energy, and se-
curity. For example, NAT boxes and firewalls set timeouts for idle
TCP connections, which sometimes cause significant energy waste
on mobile devices. Although most carriers today deploy sophisti-
cated firewalls, they are still vulnerable to various attacks such as
battery draining and denial of service. These findings can inform
developers in optimizing the interaction between mobile applica-
tions and cellular networks and also guide carriers in improving
their network configurations.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions

General Terms

Measurement, performance, security

Keywords

NAT, firewall, middlebox, TCP performance, cellular data network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’11, August 15-19, 2011, Toronto, Ontario, Canada.

Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

2Microsoft Research _
2mzh@microsoft.com

1. INTRODUCTION

Data cellular networks have undergone tremendous growth in re-
cent years due to the increasing popularity of mobile devices such
as smartphones, tablets, and eBook readers. Their ever-growing
coverage and capacity have enabled a wave of flashy mobile appli-
cations ranging from gaming and video to social networking. In
contrast to their Internet counterparts, cellular networks bear more
constraints due to the scarcity of physical resources in network in-
frastructure and mobile devices as well as the complexity in manag-
ing these resources. Cellular carriers usually deploy various types
of middleboxes to make efficient use of these precious resources
and protect them from potential attacks. For instance, many carri-
ers use NAT (Network Address Translation) to provide data service
to millions of users over a limited public IP address space. They
also deploy firewalls to isolate mobile users from rampant mali-
cious activities (e.g., worms and DoS attacks) on the Internet.

Today, cellular network middleboxes and mobile applications are
independently managed by two groups of entities: cellular opera-
tors (e.g., AT&T, T-Mobile) and application developers. The lat-
ter group is often unaware of the middlebox policies enforced by
operators while the former has limited knowledge about the ap-
plication behavior and requirements. Such knowledge mismatch
could potentially impair application performance, aggravate energy
consumption, or even introduce security vulnerabilities. One illus-
trative example is that a carrier sets an aggressive timeout value
to quickly recycle the resources held by inactive TCP connections
in the firewall, unexpectedly causing frequent disruptions to long-
lived and occasionally idle connections maintained by applications
such as push-based email and instant messaging.

Prior work has studied middleboxes on the Internet by character-
izing NAT properties such as mapping type and filtering rule [22}
[21]], and proposed various schemes to perform NAT
traversal. It is unclear whether the NAT box behavior remains the
same or the NAT traversal schemes are still applicable in cellu-
lar networks. Other work quantified the end-to-end performance
degradation (e.g., lower throughput or larger transaction delay) in-
duced by middleboxes [13]. In addition to performance, energy
consumption is another critical perspective in the cellular network
context. However, no previous studies have investigated how mid-
dleboxes affect energy consumption on mobile devices. Several re-
search efforts revealed that cellular infrastructure and mobile hand-
sets are vulnerable to various types of DoS attacks 36 23].
However, they did not investigate the feasibility of launching these
attacks when the targets are behind middleboxes.

In this study, we design and implement NetPiculet, a measure-
ment tool for accurately and efficiently identifying middlebox poli-
cies in cellular networks. We focus on firewalls and NAT boxes,
which are widely deployed by many cellular carriers. Although a



carrier may employ many policies, we focus on those that directly
impact mobile users and their applications in terms of important
properties including connectivity, performance, energy consump-
tion, and security. Informed by our findings, we propose new tech-
niques and modifications to applications to better cope with exist-
ing policies. We also offer concrete suggestions on policy changes
for carriers to improve the experience and protection of their mo-
bile users as well as robustness of their network infrastructure in
response to attacks.

We released NetPiculet on Android Market in January 2011 and
attracted 393 unique mobile users within merely two weeks. Lever-
aging the data from these users, we report our findings from 107
cellular carriers around the world. In particular, we studied the
policies of two large nation-wide U.S. carriers in more depth and
corroborated our findings carefully with controlled experiments.
Due to security and privacy concerns, we anonymize their names
and label them as Carrier A and Carrier B. We summarize our key
findings as follows:

e In some cellular networks, a single mobile device can en-
counter more than one type of NAT, likely due to load bal-
ancing. We also discovered some NAT mappings increment
external port number with time which was not documented
in any prior NAT study. Accordingly, we develop new NAT
traversal techniques to handle both cases.

Four cellular networks are found to allow IP spoofing, which
provides attack opportunities by punching holes on NATSs
and firewalls “on behalf of” a victim from inside the net-
works, and thus directly exposing the victim to further at-
tacks from the Internet.

e Eleven carriers are found to impose a quite aggressive time-
out value of less than 10 minutes for idle TCP connections,
potentially frequently disrupting long-lived connections main-
tained by applications such as push-based email. The result-
ing extra radio activities on a mobile device could use more
than 10% of battery per day compared to those under a more
conservative timeout value (e.g., 30 minutes).

e One of the largest U.S. carriers is found to configure fire-
walls to buffer out-of-order TCP packets for a long time,
likely for the purpose of deep packet inspection. This un-
expectedly interferes with TCP Fast Retransmit and Forward
RTO-Recovery, severely degrading TCP performance trig-
gered merely by a single packet loss.

At least one firewall of a major cellular ISP liberally accepts
TCP packets within a very large window of sequence num-
bers, greatly facilitating the traditional blind data injection at-
tacks, endangering connections that transfer relatively large
amount of data (e.g., streaming applications).

Some cellular network firewalls do not immediately remove
the TCP connection state after a connection is closed, allow-
ing attackers to extend his attack on a victim even after the
victim has closed the connection to a malicious server. This
also dramatically lengthens the NAT traversal time to a few
minutes, given that the same TCP five tuple cannot be reused
quickly.

2. OVERVIEW

Today’s cellular data networks are susceptible to DoS attacks [34]
and face the problem of IPv4 address depletion, which
prompts carriers to deploy NATs and firewalls at network bound-
aries to protect cellular infrastructure and mobile users from unso-
licited traffic from the Internet and to effectively share public IP

N
Piculet Server, T~ =

N Cellular Core V2

Network ~_ <~
.; ~
:

Figure 1: Physical view of the NetPiculet system

Count Technology Continent IP address
by # of [UMTS [EVDO | EU [AS|NA [SA[AU [ AF | Public | Private | Both'
Carriers | 97 10 |46 (26|20 11| 2 |2 25 72 10
Users | 246 148 | 1133523111 | 2 | 2 73 316 52
T"Some carriers assign both public and private IP addresses
2 A single user is observed to have public IP or private IP at different times

Table 2: Properties of the studied carriers

addresses. However, they also directly impact end-to-end perfor-
mance, connectivity, energy consumption, and security. Popular
mobile P2P applications, e.g., Fring [3] and Tango [6] for video
chatting, use NAT traversal to establish direct connections between
peers behind NAT. Correctly determining the NAT mapping type
and filtering policy is crucial for the success of NAT traversal. Fire-
walls attempt to block unwanted traffic by detecting anomalous
traffic patterns. Such behavior, however, may tamper with TCP’s
control and feedback mechanism, resulting in longer transaction
delay and higher energy consumption. Furthermore, firewalls in
cellular networks must accommodate a diverse and large set of mo-
bile devices and applications. Such flexibility may come at the
expense of security, leaving opportunities for mindful attackers.

Our goal is to develop a tool that can help application design-
ers gain insight into NAT and firewall policies in cellular networks
and make targeted improvements to applications. It can also help
carriers fine-tune their middlebox policies to attain better user ex-
perience and security. A few technical challenges remain. First,
the middlebox policies in a cellular network can be quite complex
and are usually proprietary. We need to design a suite of end-to-
end probes to accurately infer the policies and quantify their im-
pact. Second, the middleboxes usually block unsolicited traffic
from the Internet, making purely server-based probing infeasible.
We need to carefully coordinate probing between a mobile client
and an Internet server to infer these policies, while ensuring the
policies inferred are not due to middleboxes on the Internet. Third,
cellular carriers are diverse, often spanning a large geographic area
and offering multiple types of subscription plan. We need to make
our tool both efficient and user-friendly to attract different types of
users from many carriers and locations.

We have built the NetPiculet tool that comprises of client soft-
ware running on mobile devices inside cellular networks and a ded-
icated server on the Internet as shown in Figure [[l The server’s
upstream provider and border router are verified to not impose any
restrictive policies. The client software is an Android application
that is publicly available on the Android Market. In order to save
both user time and device battery, except for the TCP connection
timeout measurement running as a background service, the other
tests are parallelized and finish within 10 seconds. By informing
users about their network polices, e.g., the feasibility of running
P2P applications in their networks, the client software is able to
attract users around the world. Both the server and client are im-
plemented in C and Java with approximately 3000 LoC in total.



Category | Policy

Main findings and implications

NAT Mapping type (5.1
Endpoint filtering (§3.1.2)
TCP state tracking (§3.1.2)
Filtering response (§3.1.2)
Packet mangling (§3.1.2)

NAT

- A new NAT mapping was identified that increases external port number with time (§3.2.1)
- One device may experience more than one NAT mapping in the same cellular network (§3.2.1)
- New NAT traversal techniques are proposed to handle the challenges imposed by the above two findings (§3.3)

TP spoofing (§L.LI)
Firewall | Stateful firewall (:
TCP connection timeout (§E13)

- 4 large carriers allow IP spoofing, which weakens the network security (§4.2.1)

- 11 carriers timeout idle connections aggressively, which wastes device energy ($£3.1)

- One large U.S. carrier buffers out-of-order packets, which negatively affects TCP performance (§£3.2)
Out-of-order packet buffering (1. 4) | - One large U.S. carrier sets a large TCP sequence window, which facilitates TCP RST attack (§£3.3)

- Some carriers do not clear TCP state immediately after connection close, which invites battery draining attack (m

Table 1: NetPiculet’s key functionality, findings, and implications.

Table[llsummarizes the policies inferred by NetPiculet and where
they are described. Because the TCP state diagram inference is
time-consuming, we measure the full TCP state diagram only in
local experiments and replace it with a simpler TCP connection
timeout measurement in the released tool. Our results are based on
two weeks of data collected in January 2011 from about 400 users
in 107 carriers. Table[2lbreaks down the carriers and users by tech-
nology, continent, and IP type. Note that for certain type of tests
we may observe smaller number of data points as some tests such
as IP spoofing require root privilege which is not available on ev-
ery phone. Also, NAT tests only consider the carriers that assign
private IP addresses. Moreover, we conducted extensive local ex-
periments to validate the findings and quantify their impact for two
major U.S. carriers: Carrier A and Carrier B.

Although the policies in Table [Tl are associated with either NAT
or firewall, we emphasize that this is simply a classification and
may have little to do with the actual implementation. A carrier
usually has a variety of options in implementing these policies. For
instance, a single network device could have both the NAT and fire-
wall functionalities. Our end-to-end probes treat NAT and firewall
as black boxes, thus only inferring the existence of the policies but
not their inner workings.

3. NAT POLICIES

In this section, we study the feasibility of NAT traversal in cel-
lular networks. We focus on TCP NAT traversal because it is much
more challenging than UDP NAT traversal. Our findings, however,
can be easily applied to UDP NAT traversal as well. We first pro-
vide some background knowledge on several key NAT properties
related to NAT traversal and describe the methodology for measur-
ing these properties. We then present the results from NetPiculet
clients executed by 316 mobile users in 72 carriers with NAT boxes
deployed. We identify a new NAT mapping that increments exter-
nal port number with time. We also find that a single mobile device
may encounter more than one NAT mapping. Since techniques for
traversing NAT with such previously unknown behavior were not
studied, we design and implement a light-weight scheme to traverse
the new NAT mapping with high success rate.

3.1 Methodology
At the high level, existing TCP NAT traversal approaches (e.g.,

STUNT#1 [22]], STUNT#2 [[18]], NATBlaster [13]}, and P2PNAT [20]))

follow a similar idea. Two clients behind NAT first learn each
other’s external IP address through an out-of-band channel, e.g., a
third party server. Then both clients initiate a TCP connection to
each other by sending a SYN packet, which creates a mapping on
their own NATs. The destination port, which the SYN packet was
sent to, is determined from port prediction based on the NAT map-
ping. The two connections are finally reconciled into one if the
traversal succeeds. The key difference among various approaches
is the distinct sequence of packets exchanged between two clients
during the reconciliation process. Besides the NAT mapping, these

approaches also heavily depend on several other NAT properties,
which will be described below.

3.1.1 Identifying NAT Mapping

A NAT box maps a TCP connection to an external endpoint (IP
address and port) based on the TCP five tuple. Based on previous
work [21]], the NAT box can map connections from the same local
endpoint in the following ways:

o [ndependent: external endpoint remains the same for all con-
nections.

e Address and Portg: external endpoint changes when destina-
tion endpoint changes.

e Connectiong: external endpoint changes for each new con-
nection.

The subscript 8 indicates how the external port number changes
relative to its previous value. It can be either a fixed value n (usually
n = 1) or a random value R.

It is important for both clients to know each other’s mapping type
so that they can predict the external endpoint a new connection will
use based on that of a previous connection. This allows each client
to send a SYN packet to the appropriate external endpoint of the
other client and create necessary connection mapping state on its
own NAT.

To discover the mapping type of a NAT box, we follow the ap-
proach in previous work [21]] to create 12 back-to-back connec-
tions to 4 destinations (3 connections to each destination) while
using the same local port. Different from prior approaches, we add
another 12 connections to the same destination but with different
local ports. As explained in §3.2.11 this helps us discover a new
time-dependent NAT mapping type.

3.1.2 Identifying Other NAT Properties

Endpoint filtering: A NAT box forwards an incoming packet to
a destination based on its existing connection mapping state. A
packet will be filtered if its destination address and port are not
found in the maintained mapping state. Even if they do exist on
the NAT, the packet can still be filtered based on its source address
and/or port. This is referred to as the endpoint filtering policy.

To measure endpoint filtering policy, a NetPiculet client behind

NAT first establishes a TCP connection to the NetPiculet server and
thus creates the corresponding mapping state on the NAT. Outside
the NAT, the NetPiculet server varies the source IP address and
port and sends back SYN packets to the external endpoint of the
connection established earlier. The client checks if it can receive
the SYN packets from the server to determine the endpoint filtering
policy.
TCP state tracking: A NAT may also track TCP state and filter
certain sequence of TCP packets that are considered invalid. We
test the following two types of packet sequence that are critical for
existing TCP NAT traversal schemes (e.g., STUNT#2, NATBlaster,
and P2PNAT):



| NAT Mapping | # carriers |
Independent 30
Address and Port; 15
Connectiong 19
Connectiony 5
Address and Porty & Connectiony 3
Total 72

Table 3: NAT mapping results for 72 cellular networks that
deploy NAT boxes.

e SYN-out SYN-in tests if a NAT allows an incoming SYN
packet after an outgoing SYN.

o SYN-out SYN-ACK-out tests if a NAT allows a client to send
out a SYN-ACK packet after sending a SYN packet.

Filtering response: Recall that at the beginning of NAT traversal,
each client sends out a SYN packet to create a connection mapping
on its own NAT. However, when the SYN packet reaches the other
NAT, it could be dropped or trigger a TCP RST or ICMP packet.
The returning RST or ICMP packet may cause the newly-created
mapping to be removed from the NAT and thus disrupt the NAT
traversal process.

To test the filtering response, the NetPiculet server sends SYN

packets to some random ports on the external IP address of a pre-
established TCP connection. If no response packet is received, it
means the NAT box drops the packet.
Packet mangling: A NAT may mangle TCP packets by modify-
ing sequence number, which is vital to STUN#1 and NATBIlaster.
To test if a NAT box implements this, the NetPiculet client sends
several SYN packets to the NetPiculet server with a predefined se-
quence number. The server can check if the sequence numbers in
the received packets match the predefined value.

3.2 NAT Characteristics

3.2.1 NAT Mapping Results

Table [B] shows the NAT mapping results of 72 cellular carriers
deploying NAT. A majority of them exhibit either Independent or
Address and Port; mappings, which are quite easy to traverse. Sur-
prisingly, 19 of them (26.4%) fall into Connectiong, which cannot
be handled by most existing NAT traversal schemes. This percent-
age number is significantly higher than the 0.5% number for home
NAT boxes [21]]. NATBIaster [I3] proposes to use the birthday
paradox to deal with Connectiong. However, NATBlaster requires
root access to the mobile device, which is usually not easily ob-
tained on mobile devices. The results suggest that NAT traversal is
much more challenging in cellular networks.
Time-dependent NAT mapping: There are 8§ carriers that were
initially classified as Connectiong or Address and Port;. However,
a closer examination revealed that the external ports of the 24 con-
nections created during the test are well correlated with time. To
further validate this observation, we conducted controlled exper-
iments in Carrier B’s network. We have a mobile client create
new connections to the NetPiculet server with a random interval
between 0 and 60 seconds. Each new connection uses the same
destination port but a different local port so that it will be assigned
a new external port by NAT. The experiment lasts half an hour.
Figure 2l plots the start time and external port number of each con-
nection. It is clear that the external port number increases linearly
with time, and it restarts from a small number after reaching the
maximum value.

In Table Bl we use Connectiony and Address and Porty to de-
note this new type of mapping. The former means the external port
increments with time for each new connection. The latter means

L S —
60000 A
50000 i1 al 7 / |
40000 4 | g | g T

300

Port number

200
100 e g / L
0 1 m/ 1 1 ﬁ 1 1 1 Ig 1
0 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Figure 2: External port number linearly increases over time for
new connections in Carrier B’s network. (Each square denotes
a new connection.)

the external port increments with time if a new connection has a
different destination endpoint from the previous connection. Un-
aware of this new mapping type, existing NAT traversal schemes
can easily misclassify it as Connectiong. To traverse Connectiong,
NATBIaster [13]] proposes to use the birthday paradox by initiat-
ing 439 connections. Besides the heavy-weight design, it also re-
quires root access to the mobile devices, which normal users do
not have. In contrast, as shown in §3.3] by leveraging the time-
dependent information we propose a light-weight traversal scheme
for time-dependent mapping, which only requires initiating a few
connections without any root privilege.

Multiple NAT boxes for a single client: Interestingly, Table 3]
shows that the NetPiculet clients in 3 carriers encounter two dif-
ferent mapping types. Sometimes, the connections from the same
client are even assigned two distinct external IP addresses although
the client’s private IP address remains the same. To validate this ob-
servation, we conducted controlled experiments in Carrier B whose
clients experience both Connectiont and Address and Portr map-
pings. By establishing many connections with different five tuples
between a mobile client and the NetPiculet server, we found that
the mapping type encountered by a connection is determined by its
source and destination ports. If the two port numbers add up to an
even number, the connection experiences Address and Portr map-
ping. Otherwise, the mapping type is Connectiony. Similarly, a
connection is mapped to one of two external IP addresses depend-
ing on the sum of the source and destination port numbers.

NAT boxes are usually deployed at the top of the network infras-
tructure hierarchy of a cellular network, e.g., near GGSN (Gateway
GPRS Support Nodes) [4]]. They serve the aggregate traffic from
a large number of mobile users. It is likely that a carrier deploys
multiple NAT boxes to balance their load based on the hash of the
five tuple (source and destination ports in Carrier B). This again
may interfere with NAT traversal and will be further discussed in
§3.3

3.2.2  Other NAT Results

Because the NetPiculet client requires raw socket to measure the
remaining four NAT properties, we are only able to report the re-
sults from users who run NetPiculet client with root privilege in 20
cellular networks shown in Table
Endpoint filtering: All the 20 carriers (100%) employ Address
and Port filtering, which requires the source IP address and port of
an incoming packet to exactly match the destination IP address and
port of an existing connection in NAT. This is the most restrictive
filtering policy. Given that only 82% of home NATSs use Address
and Port filtering [21]], NAT traversal in cellular networks appears
to be more challenging.
TCP state tracking: 18 carriers allow an incoming SYN packet



[ NAT property | # carriers

20 use Address and Port

18 allow, 2 disallow

18 allow, 2 disallow

19 silently drop, 1 sends RST

0 modifies sequence number

Endpoint filtering
SYN-out SYN-in
SYN-out SYN-ACK-out
Filtering response
Packet mangling

Table 4: NAT properties for 20 cellular networks.

after an outgoing SYN packet. 18 carriers allow an outgoing SYN-
ACK packet following an outgoing SYN packet. One carrier in
Hungary does not allow either sequence of packets. This suggests
that the two underlying mechanisms (TCP simultaneous open and
packet forging) of the existing NAT traversal schemes [21]] are still
viable in most cellular networks that we studied.

Filtering response: 19 carriers drop unsolicited incoming SYN
packets silently while only one carrier in France responds with RST
packets. This means the NAT traversal process is unlikely to be dis-
rupted by the removal of an existing connection mapping triggered
by a RST packet.

Packet mangling: None of the 20 carriers modifies TCP sequence
number. Hence, packet mangling does not appear to be an issue for
NAT traversal in cellular networks.

3.3 Implications on NAT Traversal

As we have explained, the connections from a single mobile
client may be handled by more than one NAT. Even worse, these
NATs may have different mapping types and external IP addresses.
Because the existing NAT traversal approaches assume a client is
behind only one NAT box [21]], they will have trouble in determin-
ing the correct NAT mapping type and external IP address. For in-
stance, suppose a client obtains two different external IP addresses
(IPs and IP,) when connecting to the third-party server S and the
other client C respectively. Then C will attempt to establish a con-
nection to /P learned from S. This attempt will fail because the
NAT we studied applies Address and Port filtering and only per-
mits connection to /P from S.
Handling NAT load balancing: network load balancing is typi-
cally performed at the flow level, e.g., based on the five tuple hash,
to avoid packet reordering within a flow [16]). If the five tuple hash
is configured statically, we need to discover the hash rule and only
establish connections through the same NAT during NAT traversal.
For instance, in Carrier B, we can ensure that the connections tra-
verse only one NAT by making the sum of source and destination
port numbers an even (or odd) number. We consider it as 2-way bal-
ancing solely based on our measurement observation. This problem
becomes much more challenging if the hash function is more com-
plicated, e.g., based on the real-time load or n-way balancing where
(n>2). We leave it for our future study.
Traversing time-dependent NAT: Since the external port number
linearly increments over time on this type of NAT, we can predict
the port number according to the port increment rate r and elapsed
time ¢ between a new and an old connection. We now describe
how to establish a connection between client, and client; behind
an independent and a time-dependent NATSs. Suppose client;, learns
the external endpoint (1.2.3.4:5678) of client, through a third-party
server S. Client, first creates two connections to S and 1.2.3.4:5678
respectively. It also records the time interval ¢ between the two con-
nections and sends the predicted port number increase (8 = r X t)
to S. Upon receiving this information, S relays the external port
number of client,’s first connection (e.g., 9000) and d to client,,.
Client, then attempts to connect to client; from the same external
endpoint (1.2.3.4:5678) to multiple destination ports in the range
of [9000 + & — 7,9000 + 8 + n] (starting from the middle), until

[N
o

Success rate (%)

o B2 N Wb O DN O O

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
# trials

Figure 3: Success rate for traversing independent and time-
dependent NATs.

it successfully hits the true external port value of client;’s second
connection. Here n is introduced to deal with imprecision in port
prediction and is set to 15 by default.

Note that client, must be behind an independent NAT for the
traversal to succeed. Because it is difficult to precisely predict the
external port of client,’s second connection, client, has to try mul-
tiple destination ports when connecting to client,. If client, is be-
hind other types of NAT, e.g., Address and Portg or Connectiong,
the external port of client,’s trial connections will keep changing.
Thus, a trial connection will be rejected by client;,’s NAT (because
of Address and Port filtering) even if it does hit the right destination
port.

We implemented this traversal scheme on Android and studied
the success rate for establishing a connection between a smart-
phone in Carrier A and one in Carrier B. We learned from our
previous measurements that the two carriers use independent and
time-dependent NAT mappings respectively. Figure Bl shows the
success rate of NAT traversal through 1,000 runs. The x-axis is
the number of trials client, makes before successfully establish-
ing a connection with client;. It also roughly corresponds to the
number of seconds the NAT traversal takes to succeed since we use
a one-second timeout between two consecutive trials. The figure
shows an 80% success rate within 12 seconds. It is noteworthy that
we also tried out two popular P2P video chatting applications on
Android, Fring [3]] and Tango [6], none of which can successfully
establish direct TCP connection in the same experimental environ-
ment.

3.4 Summary
To summarize our study on NAT in cellular networks.

e We discovered a previously-unknown NAT mapping that lin-
early increments port numbers with time. We designed and
implemented a corresponding traversal scheme, which can
succeed with high probability.

e A single mobile client may encounter more than one NAT
mapping in cellular networks, likely due to load balancing,
which requires extra care to ensure the same mapping during
the traversal process.

e 19 out of the 72 carriers we studied assign random ports for
connections on their NATS, which is the worst scenario for
NAT traversal. To better support P2P applications, we sug-
gest operators and vendors implement or configure consistent
mapping on their NATs.

4. FIREWALL POLICIES
Firewalls are essential for carriers to protect their networks. As
mentioned earlier, without such protection, attackers can more eas-



ily launch various attacks targeting either the network infrastruc-
ture [26] or mobile devices [32]. Even though some carriers deploy
NATs, which naturally protect internal networks by dropping unso-
licited incoming packets that do not have existing NAT mappings,
they often still configure firewalls to further enhance network secu-
rity (e.g., by performing deep packet inspection and tracking TCP
connection state). In this section, we study the key properties of
firewalls in cellular networks from the perspective of their effec-
tiveness to guard against potentially malicious traffic as well as
policies that can negatively impact performance and energy. In-
deed, we uncovered policies and configuration settings that unex-
pectedly impact both performance and energy.

4.1 Methodology

NetPiculet consists of several firewall tests targeting different as-
pects of the firewall. We describe the motivation and methodol-
ogy of those tests in this section. We study the properties of fire-
wall policies in two aspects: IP spoofing and stateful firewall. IP
spoofing policy is one that can be potentially overlooked but in fact
can undermine the purpose of NAT and firewall to protect mobile
phones from probing and scanning. Stateful firewall can impact
reachability, affecting both security and performance.

4.1.1 Testing IP Spoofing

Previous study on Internet IP spoofing [14]] has shown that IP
spoofing is still widely allowed. However, it unclear how prevalent
it is in cellular networks. The unique implication of IP spoofing
can be summarized in the following story [30]: There has been
a well-known attack on jailbroken iPhones’ sshd program where
a default password is used. A worm scanned the public IP ranges
and propagated via this weakness and eventually infected more than
21,000 phones.

Obviously, networks with NATs or firewalls that block unso-
licited incoming traffic are not vulnerable to this worm, as external
hosts cannot scan phones inside the cellular network. The ability
to perform IP spoofing completely changes this by allowing a sin-
gle phone to punch many holes on the NATs and firewalls, thus
allowing external servers to scan the phones in the internal net-
works. More specifically, as long as the attacker controls a phone
in the network, she can send spoofed SYN packets to an attacker-
controlled server which can then send SYN back to the spoofed
IP (victim). Besides scanning, attackers can also launch battery
draining attacks by continuously sending packets to the target
phones.

To determine whether a given phone’s network allows IP spoof-
ing, NetPiculet client modifies the source IP field in the IP header
for outgoing TCP SYN packets. We randomly choose 10 source
IP addresses in its own /24 and /16 IP prefixes and send a SYN
packet using the chosen IP. The SYN packet is to mimic a legit-
imate TCP connection establishment request initiated by a device
inside the cellular network which will be allowed by the firewall
and NAT. We also studied UDP packets. Note that other packets
are not of interest as they can be easily blocked by NAT. If the Net-
Piculet server sees the corresponding public IP address translated
by NAT, it records the spoofed private IP address, obtained from
the payload, and the mapped public IP address pair and consider
the carrier as permitting IP spoofing.

4.1.2 Testing Stateful Firewall

Stateful firewalls can determine legitimate packets under differ-
ent connection states (e.g., states associated with a TCP connec-
tion). In each state, only packets matching certain criteria are al-
lowed to traverse through the firewall (for either incoming or out-
going traffic). For mobile carriers deploying NAT boxes (Carrier A
and Carrier B), external traffic cannot reach devices directly with-

out devices initiating an outbound connection first. Hence, the Net-
Piculet client and server have to coordinate to reveal the firewall
policies for those carriers. We first perform this test in a local en-
vironment setting to help us understand properties of interest, i.e.,
those impact performance and security. We subsequently deployed
only tests associated with such properties on NetPiculet client to
ensure they finish quickly on end-users’ phones.

Note that we verified using local experiments, the packet block-
ing behavior imposed by the firewall is applicable to both incoming
and outgoing traffic. However, the net effect of which incoming and
outgoing packets are allowed may not be symmetric because of the
presence of NAT. Also, the buffering behavior described later in
$&.1 2 applies to both directions as well.

Due to the popularity of TCP, we conduct controlled experiments
between NetPiculet client and server to infer the firewall policies
in various TCP states such as SYN-SENT, SYN-REVD, ESTAB-
LISHED efc. Specifically, in each state, we perform the following
tests:

1. Single packet filter test: Probing using SYN, SYN-ACK,
ACK, DATA, FIN, RST packets from the NetPiculet server
to check if they are allowed.

2. Timeout test for each state: If any such probing packet is
allowed, we infer the timeout value in each state by incre-
mentally increasing the interval between consecutive probes.

3. Sequence (SEQ) window test for state transition: for packets
that trigger state transitions, we probe with a range of SEQ
number and ACK number to verify if they can still enable the
correct transitions.

4. SEQ window test for ESTABLISHED state: we vary the
SEQ number of DATA packets via binary search to infer the
SEQ window size adopted by the firewall.

Given that some of these tests are quite time-consuming, we se-
lected a subset, expected to significantly impact application secu-
rity and performance, as shown in §&.13] and $41.4] to be inte-
grated into the NetPiculet client.

4.1.3 Testing TCP Connection Timeout

Through local experiments, we found that firewalls deployed
by Carrier B have a very short timeout for idle TCP connections.
Thus TCP connections of chat applications are frequently timed
out. Such applications require long-lived connections, e.g.,, MSN
Talk on Android. To understand the timer values of firewalls, we
integrate the timeout inference test into NetPiculet.

To infer the timer value on the firewall that times out idle TCP
connections, NetPiculet client creates multiple connections in par-
allel to NetPiculet server without enabling keep-alive option. Each
connection sends a message to the server after a specific amount of
idle time. The server responds to the client upon receiving the mes-
sage. If the connection is still alive when the message is sent, the
client should receive the response message from the server. Other-
wise, the connection is timed out by the firewall. NetPiculet client
tries four idle time intervals: 5, 10, 20, and 30 minutes, to bound
the inferred timeout timer value within these ranges.

4.1.4 Testing Out-of-Order Packet Buffering

During our controlled experiments to test the SEQ window size,
we accidentally discovered that some firewalls buffer out-of-order
TCP packets. We inject packets with large sequence numbers to
check if the firewall has a SEQ window such that packets with se-
quence number out of the window would be dropped. Initially we
thought packets were dropped whenever the other end did not re-
ceive them, after accounting for network loss. We then discovered



that after those missing packets arrive, the injected packets with
large sequence numbers are released, indicating the buffering be-
havior. This ensures packets are delivered in order, most likely
motivated by the need to perform deep packet inspection (DPI)
to detect security attacks, a feature we found to be available in
some commercial routers [10]. As we discuss later in this
buffering behavior has significant impact on TCP performance in
the presence of packet loss. We implement this test in NetPiculet.

To realize this test for detecting buffering in both directions, we
intentionally drop one packet from the many packets on the sender
side, and observe whether there will be any ACK packet received
for beyond the lost packet. If there is no response after certain time
window (e.g., 5 seconds), we conclude the firewall does buffer out-
of-order packets. 5 seconds is chosen as it is sufficiently large to
account for some of the performance impact on TCP, as described
in §4.3.2

4.2 Firewall Characteristics

We next describe the firewall testing results, including results
from both local controlled experiments and tests implemented in
the NetPiculet client deployed in the wild.

4.2.1 IP Spoofing

For local experiments, we studied one of the carriers found to al-
low IP spoofing to quantify how fast one can scan inside a cellular
network. We scanned a randomly chosen /24 IP range as fast as
possible by sending spoofed SYN packets back to back. We repeat
the experiment for 10 times, and the result shows that it takes on
average 2 — 3 seconds for all IP spoofing packets to be received by
the external server, and then 3 — 4 seconds are spent for the servers
to scan and wait for the response. Note that to receive packets,
mobile devices have to obtain radio resource first, which normally
takes 1 — 2 seconds [31]]. The probing packets will likely experi-
ence such delay before reaching the scanned devices. In practice,
if the attacker is continuously scanning a large range of IPs, the
throughput of spoofing is usually the bottleneck, which we found
to be around 90 packets/second. Compared to data packets, we do
not find any signs of rate limiting on the spoofed SYN packets, as
their throughput numbers are very close. In our scanning of the /24
prefix, we found 54 hosts on average responding to the probing.

NetPiculet was able to perform the IP spoofing test in 60 cellu-
lar networks, among which 4 allow IP spoofing. Despite the low
absolute number, the percentage is still significant: 6.7%. Fur-
ther, all four carriers are large cellular ISPs, covering U.S. and
Europe respectively. Thus they can be profitable targets for attack-
ers. Given that specifications and commercial products are already
available [] that can prevent IP spoofing at finest granular-
ity (using subscriber information IMSI/MSISDN available in each
packet header), it is surprising to see that these four large carriers
allow IP spoofing.

We further investigate the range of spoofable IP addresses (/24
and /16). Surprisingly, each of the four carriers allows /24 and /16
to be spoofed. This is likely due to the fact the NAT box is shared at
the very high level of the network infrastructure inside the cellular
network, usually co-located with GGSN [4]]. We expect IP spoofing
prevention to be enforced at GGSNSs, as confirmed by commercial
products available [9]] that advertise such features.

4.2.2  Stateful Firewall

We observe that the stateful firewall policies usually do not strictly
follow the TCP specifications (e.g., packets with an invalid ACK
number can still traverse the firewall). There are two key reasons
for this: (1) It is expensive to check all the low-level details to the
degree that a host networking stack does. (2) There are many TCP
variants; thus, firewall policies should be flexible enough to accom-

- Stays in the state
for 30 sec

ZPhone: non SY|
or SYN-ACK
- Stays in the

- Server:
SYN-ACK

<Phone: ACK

- Server: ACK
(with strict SEQ
ESTABLI and ACK number)
SHED
- SEQ window
[1G, +1G]

Figure 4: TCP State diagram of Carrier A’s firewall.

- Phone: ACK, with
strict SEQ and ACK
number

- Timeout after ~
1800 secs of
inactivity

modate most if not all of them. The latter is an inherent problem
of network-based firewalls and intrusion detection systems [33]]. In
our study, we found significant variations among the stateful fire-
wall policies adopted by various carriers. Next we explain in detail
the key properties of the inferred TCP state machine on the fire-
walls, which serves as the necessary prelude for discussing their
implication.

Figures Ml shows the TCP state diagram we inferred for the fire-

walls in Carrier A. Carrier B has a similar diagram except for some
minor differences, which can still have significant implications for
applications as explained below.
Carrier A’s firewall: In Figure [l we infer that there are 5 states,
slightly different from the TCP states defined on end-host. The fig-
ure is fairly self-explanatory. We only highlight the key interesting
state transitions identified, as indicated with bold lines.

There are several observations associated with the ESTABLISHED
state. We found that even after a legitimate close sequence (FIN,
FIN-ACK, ACK), one can still send packets into the cellular net-
works from external networks, indicating that the firewall did not
go back to the CLOSED state. We discuss implications of this un-
expected behavior in §4.3.4]

The ESTABLISHED state has an inactivity timer associated with
each TCP connection. If the timer expires, the connection state is
removed from the firewall and no additional packets are allowed
until a new connection is established (starting over from TCP’s
three-way handshake). This timer value is 1800 seconds which we
compare with another carrier and discuss its impact in §£3.1]

In the ESTABLISHED state, the firewall checks the TCP SEQ
of all packets from either direction to ensure that they fall into a
window of SEQ from previously seen packets. The problem is that
this window size 8 seems to be statically configured to liberally ac-
commodate packet reordering. As an example, if the server’s first
packet has SEQ of n, the second packet must have a SEQ from
[n—8,n+8]. The range [n—d,n) is to allow retransmission of
lost packets. The range (n,n+ 9] is to allow out-of-order pack-
ets. Dropping them would cause unnecessary retransmission from
the sender. Surprisingly, we found that & can be as large as 1G
(and sometimes 128K), depending on the types of firewall encoun-
tered. We also found that different IP ranges go through different
firewalls likely due to different network paths. 128K is normally
good enough in today’s 3G networks as the delay x bandwidth is
typically capped at 0.2s x 4Mbps = 100KB, which is smaller than
128KB. However, for future networks such as 4G with higher net-



Timeout (min) | (0,5] | (5,10] | (10,20] | (20,30] | (30,00) | Total
# carriers 4 7 6 8 48 73

Table 5: Measured TCP timeout timers in cellular network fire-
walls.

work capacity, a loss of one packet may cause its following packets
overflow the 128KB window and be unnecessarily dropped.

Also, another important finding is that for packets that fall within
(n,n+ 8], they are not delivered immediately. Instead, they are
buffered until in-order packets arrive. This behavior actually leads
to security issues as well as performance impact due to unexpected
interaction with TCP stack as discussed later in §4.3.3and
Carrier B’s firewall: Its state diagram closely resembles that of
Carrier A’s. One major difference is that its firewall is much less
restrictive in determining if a TCP connection is established (from
SYN-ACK-RCVD and SYN-RCVD to ESTABLISHED). As long
as the SEQ of the ACK packet falls into a (-128K, +128K) window
from the previous SEQ, the firewall advances the state to ESTAB-
LISHED. This may allow fake connections to be established on the
firewall. Also, unlike Carrier A’s firewall, Carrier B’s firewall does
not buffer out-of-order packets.

In the ESTABLISHED state, the inactivity timeout value is much
smaller (255 seconds) compared to that of Carrier A’s, more seri-
ously affecting long-lived connections such as push-based services
as elaborated in §£.3.1] In addition, the SEQ window of 128K for
the ESTABLISHED state is much smaller compared to Carrier A’s.

4.3 Implications and Recommendations

Given our previous discussions on several interesting observa-
tions from the firewall policy inference results, we elaborate on
their impact on application performance and security. To quantify
such impact we conduct further controlled experiments. We also
describe the important implications and recommendations for the
firewall.

4.3.1 Energy Impact of TCP Connection Timeout

Long-lived connections (e.g., push-based services such as email)
assume persistent TCP connections. Given the inactivity timer on
the firewall, periodic keep-alive messages must be sent to maintain
the connection. Otherwise, applications’ ability to receive timely
notifications can be impaired. The default TCP keep-alive timer of
2 hours [7] is clearly too large to help maintain the connection. In
fact, we tested MSN Talk, one of the MSN messenger applications
on Android, and discovered that Carrier B’s firewall terminates idle
connections (using spoofed RST packet) after 255 seconds, forc-
ing the application to re-establish the connection immediately to
restore the service. This may appear to be equivalent to sending
keep-alive messages but transmitting more data and incurring addi-
tional delays.

Table [5] summarizes the measured TCP timeout timers of vari-
ous carriers tested by NetPiculet. Among the 73 carriers measured,
11 have a timer shorter than 10 minutes, four of them with a timer
of only at most 5 minutes. Since radio resource is allocated every
time a keep-alive packet is sent for an idle connection, over time
such packets can consume significant amount of energy for end de-
vices and also incur high signaling overhead for cellular networks.
To quantify the energy impact, we assume a long-lived connection
which regularly sends keep-alive to reset the firewall timer right be-
fore it is about to expire. We use existing cellular interface power
models to estimate the ratio of energy spent on keep-alive per
day for a common smartphone battery capacity (1350 mhA). While
the actual energy consumption may vary across different networks
and devices, the overall conclusion that significant energy waste
due to small timers shown in Figure Blis generally applicable. For
example, more than 17% of the battery capacity is spent on keep-

10

RN
N

0 A N
1 10 100
TCP timeout timer (min)

Energy on keep-alive / battery capacity (%)
[=2]

Figure 5: The ratio of energy of sending keep-alive messages
per day to the battery capacity (1350 mAh).

alive everyday when the timer is less than 5 minutes, while it drops
sharply as the timer becomes longer. The waste is reduced to less
than 2% for 30 minute timers.

Network operators must consider an inherent tradeoff when set-
ting the timer for terminating idle TCP connections. On one hand,
larger timer values reduce the energy cost and signaling overhead
caused by keep-alive packets to maintain the connection. On the
other hand, they use up more memory at the firewalls for keep-
ing track of existing connections. Firewalls generally have limited
capacity to process concurrent connections; thus, carriers have in-
centives to set smaller timers to terminate idle connections in order
to support more concurrent active users.

It is of interest to investigate the best way for developers to im-
plement push-based services which are becoming more popular.
One approach is to use the push service framework in the SDK.
Both Apple and Google provide such framework API, which de-
velopers can use to implement push based services [2} 3]]. The way
it works is that when the third-party application server o has data
to push to the mobile device, it informs the push notification server
B, which belongs to Apple or Google,  then sends a notification
message to the targeted mobile device through a long-lived TCP
connection maintained by the framework. The framework provides
two benefits. First, since the framework takes care of maintaining
the long-lived connection, developers do not need to deal with di-
verse timer values in different networks. Second, since notifications
of different applications share the single long-lived connection, en-
ergy cost on the mobile device is lower compared with the case
where each application has its own long-lived connection.

It is interesting to note that in Carrier B’s network, port 5228
stands out from others with a larger timeout value of 1600 sec-
onds compared to the default of 255 seconds. Port 5228 is actually
used by Google’s push service framework [3]] to send notifications.
We suspect that Carrier B intentionally makes this optimization for
Google, which reduces the overhead of re-establishing the connec-
tion repeatedly. However, verified by our experiments, Carrier B
only uses the port number to make the distinction. Therefore, de-
velopers can take advantage of this port number to obtain a longer
connection timeout value.

4.3.2  Performance and Energy Impact of Buffering
As described before, some firewalls buffer out-of-order packets
within a configured range of sequence numbers and deliver them
when in-order packets arrive. Two legitimate cases trigger such
buffering behavior: 1) packet loss; 2) packets re-ordered along the
path. Normally the first scenario happens much more frequently
than the second one. It is worth mentioning that Carrier A, a U.S.
nation-wide cellular service provider, shows the buffering behavior,
and it buffers out-of-order packets for more than an hour.
Disabling “TCP fast retransmit”. A major problem with such
buffering behavior is that it disables TCP fast retransmission, which



4000p0 B

350080 e
300090 $$§

; T

Server (sender) +
Plhone (receivler) o

+ i
B *ﬁié@

Sequence number

150086 1 1
14 16 18 20 22 24

Time (sec)

Figure 6: Sender’s TCP sequence numbers monitored on
server and client in Carrier A’s network.

16 T L . e ——— T
w/o firewall ——

14¢- w/ firewall ---&--- s
) .
8§
[}
E 10
2 8 . — |
-‘E 6 T
o B
[a]

2

0

0 1 2 3 4 5

Loss rate (%)

Figure 8: The average downloading time for 1MB file under
different loss rates.

is used to reduce the time a sender waits before retransmitting a lost
segment and without which a sender has to use a timer to detect any
lost segment. It works as follows: if a TCP sender receives three
duplicate acknowledgements with the same acknowledge (ACK)
number, i.e., a total of four ACKs with the same ACK number, the
sender can be reasonably confident that the segment with the next
higher sequence number was dropped. The sender then retransmits
the packet before waiting for its timeout.

Buffering disables fast retransmission because the sender is un-
able to observe any duplicate ACKs. For instance, if packet 1 is
dropped and packets 2, 3, 4 and 5 arrive. The firewall buffers pack-
ets 2 — 5 since it never sees 1. This way, the receiver does not see
any packets and cannot send any response. As a result, the sender
has to resort to timeout-based retransmission.

Figure [6] illustrates the problem using a packet trace from our
local experiment in Carrier A’s network. A packet loss occurs at
arrow 1, and the sender keeps sending more packets to fill the con-
gestion window. Since the firewall does not see the lost packet, it
buffers all the later packets, which are considered out-of-order. The
sender thus is unable to get any response from the receiver and has
to fall back to time-out based retransmission noted as the gap in the
figure.

Bad interaction with TCP “Protect Against Wrapped Sequence
number (PAWS)”. At arrow 2 in Figure [0l the firewall released
all the buffered packets upon seeing the retransmitted lost packet.
However, those packets were retransmitted later by the sender through
slow start, even though they have successfully reached the receiver.
We investigated this behavior and found the explanation in RFC
where PAWS is defined. PAWS uses TCP timestamp to reject po-
tentially old packets that might corrupt an ongoing TCP connec-
tion. With TCP timestamp option enabled, the timestamp on the
buffered packets was strictly smaller than the timestamp on the re-
transmitted packet. Consequently the receiver rejected the buffered
packets by sending back duplicate ACKs which then triggered the

Sequence number

Server (sender) +
Plhone (receivler) o

1
100 150 200 250
Time (sec)

Figure 7: The impact of firewall buffering on TCP flow
when FRTO is implemented on the sender side.

W XK X

AN KN A X

40

T T
120~ No loss—— ,
w/o firewall 5732
o w/ firewall me—
Q 10¢- .
2
(9]
£ 801 p
j=2
=
5 60 ,
©
o
[
2
[=]
o

SR S R

R
»

20

0 < >
100 500 1000 2000

File size (KB)

Figure 9: The firewall impact on downloading time for dif-
ferent file size under 1% loss rate.

following retransmission. The pile of packets at arrow 2 also indi-
cates that the firewall has a limited buffer size. We measured the
buffer size to be 10 packets per TCP flow and confirmed the setup
with the documentation of commercial routers [10].

To quantify the impact of disabling fast retransmit on applica-
tion performance and energy, we perform controlled experiments
to measure the time and energy consumption for downloading files
of different size from our server. We use WiFi to emulate the delay
of 3G network (400ms RTT derived from a recent study [23]) to
have full control over the loss rate and firewall configuration. On
the hosting server, a small Perl script is used to control the loss
rate by randomly dropping packets with certain probabilities. To
emulate the firewall buffering behavior for the same TCP flow, the
script buffers the first 10 packets (as we observed in Carrier A’s
network) with sequence number larger than the packet previously
dropped intentionally and drops the remaining ones. Upon receiv-
ing a retransmitted packet with the same sequence number as the
intentionally dropped packet, it releases all the buffered packets.
We vary the loss rate from 0 to 5% and download each file 10 times
under each setting.

Figure[8lshows that even with a loss rate of 1%, the downloading
time for a 1MB file is increased by 50% due the firewall buffering
behavior. And the degradation is worse with higher loss rate. Un-
der the same loss rate, the buffering has less impact on smaller files.
As shown in Figure 0] compared with normal loss without firewall,
the firewall incurs 21% extra delay for a 100KB file while 44%
increased delay for SO0KB files for a loss rate of 1%. However,
a recent study points out that TCP-based streaming applica-
tions that typically send large amount of data contribute to majority
of smartphone traffic. So the overall network performance could
be significantly affected by firewall with such buffering behavior.
Note that the cellular radio interface always stays in high power
state during the entire download process. Even when there is no
traffic during RTO, the interface still remains in high power state



due to the tail time [31]]. The energy consumption for downloading
the same amount of data increases almost linearly with the down-
loading time.

Bad interaction with “TCP Forward RTO-Recovery (F-RTO)”
Since PAWS makes the buffered packets useless to the receiver, we
were wondering whether letting the receiver accept the buffered
packet would reduce the negative impact of buffering on TCP per-
formance. Therefore, we disabled the TCP timestamp option on the
sender side and repeated the experiments to measure the download-
ing time. Surprisingly, we found the TCP connection almost hung
up after a single packet loss. As we figured out later, it is due to
the bad interaction between buffering and F-RTO, a TCP extension
defined in RFC [33]].

F-RTO is designed to detect spurious TCP retransmission time-
outs which cause unnecessary retransmissions when no segments
are lost. After a spurious retransmission timeout, the late acknowl-
edgments of the original segments arrive at the sender, usually trig-
gering unnecessary retransmissions of the entire window of seg-
ments. This can happen when, for instance, some mobile network-
ing technologies introduce sudden delay spikes on transmission due
to actions taken during a hand-off.

When a retransmission timeout (RTO) occurs, the F-RTO sender
retransmits the first unacknowledged segment as usual. Deviating
from the normal operation after a timeout, it then tries to transmit
new, previously unsent data, for the first ACK that arrives after the
timeout given that the ACK advances the window. If the second
ACK that arrives after the timeout also advances the window, i.e.,
acknowledges data that was not retransmitted, the F-RTO sender
declares the RTO as spurious and exits the RTO recovery. How-
ever, if either of the next two ACKs is a duplicate ACK, no suf-
ficient evidence is found for a spurious RTO. The F-RTO sender
retransmits the unacknowledged segments in slow start similar to
the traditional algorithm.

This behavior is illustrated in Figure 7l A packet loss occurred
at arrow 1, marked on the figure. The sender keeps sending about
30 more packets to fill the congestion window, 10 of which are
buffered at the firewall, the rest dropped due to buffer space con-
straints. At arrow 2, the sender retransmits the lost packet after
retransmission timeout which triggers the buffered packets to be
released (since it is now in-order). The receiver then receives 11
packets including the retransmitted one. At this point, the sender
behaves according to F-RTO. At arrow 3, instead of retransmitting
unacknowledged packets in the congestion window, it now tries to
transmit new, previously unsent data. If no duplicate ACKs are re-
ceived, the sender can save the unnecessary effort of retransmitting
the unacknowledged packets. However, this optimization fails to
consider the case where the newly transmitted packets are buffered
at the firewall causing no ACKs to be received. Later, the sender
has to repeat the entire process of F-RTO again and further trans-
mit new, previously unsent data. As we can see in the figure, in
each round, the retransmission timeout is doubled with only one
packet successfully delivered, effectively rendering the connection
useless. And this is triggered by only a single packet loss shown by
arrow 1.

The fundamental problem here is that this F-RTO algorithm does
not expect packets to be buffered by the firewall for so long. Intu-
itively, one way to address this issue is to limit the buffering time
to a small value (e.g., < ls). However, we found that firewalls
with Intrusion Prevention Systems (IPS) capability must examine
or perform deep packet inspection (DPI) on in-order packets be-
fore they can be delivered to provide strong security guarantees.
Indeed, many such IPS boxes are sold today by major vendors such
as Cisco [10]. At the moment, we did not observe other carriers im-

plementing similar buffering policy yet, but we did observe consis-
tent buffering behavior from 14 users in 8 U.S. states. Further, this
behavior can become more prevalent in the future due to increasing
security concerns for mobile cellular networks. Since F-RTO was
implemented in Linux kernel 2.6.22 in 2007, the majority of Linux
servers are likely impacted.

In summary, regardless of the TCP timestamp option, the buffer-
ing behavior always disables the TCP fast retransmission which can
degrade TCP performance significantly. If the TCP timestamp op-
tion is enabled, it can have bad interaction with PAWS. Without the
TCP timestamp option, it can have adverse interaction with F-RTO,
seriously rendering the TCP connection completely useless.

4.3.3 Exploiting Large Sequence Number Window

We have discussed the property of a SEQ window [—3,+8] on
the firewall to allow legitimate TCP packets through while blocking
potentially malicious packets. In general, this window size should
not be much bigger than the receiver window size, which is mostly
64K or 128K in most smartphone operating systems today (with the
TCP window scaling option). For Carrier A, the window of [-1G,
+1G] is too large. This allows arbitrary data packets to be injected
assuming the knowledge of the 5 tuple, since the data packets are
being buffered instead of being dropped immediately.

As the firewall can buffer 10 packets at most, an attacker can
equally spread 40 data packets across the 4G SEQ space where at
most 10 of them are buffered at (0, +1G]. Some of the buffer space
can be occupied by legitimate packets that arrive out of order. To
simplify the discussion, we assume for now that attackers can oc-
cupy all the 10 buffer slots. In this case, a TCP connection will
always be injected with a packet with any payload within at most
100MB of data transfer. On average, about SOMB of data transfer
is needed. The likelihood of success is much higher if this attack
is attempted concurrently on many users and at different times of
the day. Given that it takes only 40 packets for one trial, it is fairly
cheap to blindly launch such attacks. For example, every 500 trials,
an attacker can with high probability succeed at least one connec-
tion within 500KB of data transfer. Therefore, the large sequence
number window property of such firewalls effectively amplifies the
severity of blind data injection attacks [12] against TCP. TCP con-
nections which transfer more data are especially vulnerable. The
effect of this attack varies depending on different types of appli-
cations. For file downloading, it can corrupt the file content and
render it unusable or even dangerous (imagine an executable file
with altered instructions). For video streaming, however, a single
corrupted packet can be tolerated by the video codec without much
problem.

4.3.4  Flaws with Closing TCP Connections

For Carrier A, when the state transitions to the CLOSED state,
the server can still send SYN packets continuously to drain the
phones’ battery even though the phone has invoked socket close ()
on its side. This is because some state is not properly de-allocated
by the firewall and NAT, which operate independently. More specif-
ically, the NAT still keeps an entry for the previous connection
which gets cleaned up only after 20 seconds of timeout if it sees
FIN packets. It is easy to keep resetting the timer by sending a
packet every 20 seconds. The firewall always allows an incom-
ing SYN packet as it treats it as a new connection. By maintain-
ing the state at the NAT and the firewall, a malicious server can
keep sending packets to the phone that it previously communicated
with to drain its battery, even though the phone has already closed
the connection. Such battery-draining attack can cause up to 22.3
times energy consumption and deplete the battery within several

hours [32].



Due to the same problem, the back-to-back connections using
the same five tuple could be delayed up to 25 seconds. As a conse-
quence, the whole process of NAT mapping discovery (described
in §$.1.0) could take more than three minutes. Comparing the
packet traces dumped from both the server and client, we noticed
that the SYN packets sent by the client to create new connections
are dropped in the network during the delayed time duration.

4.4 Summary
Next we summarize the key findings for the firewall study.

e We discovered that 4 of 60 cellular networks allow IP spoof-
ing, which can make hosts vulnerable to scanning and battery
draining attacks even though they are behind the firewall and
NAT.

e We discovered 11 of 73 carriers set the TCP inactivity time-
out to be less than 10 minutes, which can cost significant
amount of energy in maintaining long-lived connections used
by push-based services. For carriers, we recommend a 30-
minute timeout value. For application developers, we sug-
gest they follow the push service framework in SDK where
multiple services share a single persistent connection.

o We discovered the TCP out-of-order buffering behavior in
some firewalls causing several unexpected interaction with
common TCP behavior defined in the TCP specifications,
leading to degraded performance and energy waste. Reduc-
ing the buffering time or increasing the buffer size both have
negative impact on security. Thus, there is an inherent trade-
off between performance and security.

5. DISCUSSION

As we demonstrate throughout the paper, inappropriate middle-
box policies have severe impact on application performance, mo-
bile device energy consumption, and network security. With all the
potential impact in mind, carriers should take the responsibility to
carefully avoid bad middlebox policies in their networks. Due to
some constraints (e.g., cost and security), sometimes they have to
configure policies which may not be friendly to applications. How-
ever, working towards a neutral network environment, instead of
concealing those policies they should inform network users and ap-
plication developers on the middlebox policies and their associated
impact. Despite our focus on cellular network policies, our method-
ologies for inferring NAT and firewall policies and the identified
implications of such policies are also applicable to wired networks.
For example, time-dependent NAT mapping may also exist on the
Internet, and the new traversal scheme we proposed can be used to
traverse such NATs. Firewalls on the Internet may also buffer out-
of-order TCP packets, and the resulting bad interaction with TCP
extensions would still hold. We leave it as future work to monitor
those policies on the wired networks. We notice that some of the
bad policies are identified only in a few carriers, but our findings
are still valuable in preventing operators from falling into the same
pitfalls in the future. The measurement results could also change
over time as carriers modify the policies or upgrade their network
devices. In this case, our tool can still monitor such policy changes
in the long run.

6. RELATED WORK

We heavily draw on prior work on NAT characterization and
traversal. MacDonald er al. defined in an IETF draft a few
key attributes of NAT box, e.g., mapping, filtering, and binding
time, as well as their corresponding tests. NUTSS demon-
strated the feasibility of TCP NAT traversal through a combination

of tricks including port prediction, IP address spoofing, and TCP
packet forgery. Ford et al. identified a few important properties
relevant to NAT traversal and measured them in the wild. In paral-
lel, Guha and Francis [21]] tested nearly 100 commercial NAT boxes
and compared the effectiveness of several NAT traversal solutions.
Majority of the NAT boxes they studied exhibit predictability in
port allocation. Makinen and Nurminen [28|] measured the NAT
properties from one vantage point in each of the six cellular net-
works. They suggested that the existing NAT traversal techniques
would work in cellular networks without modifications. In con-
trast, we discovered some previously unknown NAT properties not
handled by existing techniques and proposed new solutions accord-
ingly. Our focus is on cellular ISPs, and by releasing NetPiculet to
mobile users, we covered significantly more carriers and users.

While providing security and flexibility in IP address allocation,
middleboxes have been shown to have undesirable performance
impact on Internet users and content providers. They can inflate
transaction time, disrupt long-lived connections, and reduce TCP
throughput [13]]. A follow-up study revealed that middleboxes may
also interfere with ECN negotiation, MTU discovery, and IP and
TCP options [29]. More recently, Casado and Freedman [17] inves-
tigated web clients behind middleboxes by injecting active content.
They find most NATs cover a small number of hosts and their IP
addresses are stable over at least several days. They also devised a
suite of classifiers for detecting hosts behind middleboxes. In con-
trast, our work focuses on the middlebox behavior in cellular net-
works and reveals the implications on radio energy consumption, a
unique perspective in cellular network context.

Besides the characterization work focusing on the usage of mid-
dleboxes, several studies investigated various security issues in cel-
lular networks. Compared to their wired counterparts, cellular net-
works have relatively scarce network resource, making them vul-
nerable to various DoS attacks. Some attacks can be carried out by
exploiting the complex and heavy-weight procedure of establish-
ing a communication channel between a handset and the cellular
infrastructure. Serror ef al. found the paging channel can be eas-
ily overloaded in CDMA networks [34]], Traynor et al. proposed
attacks abusing the setup and teardown processes between mobile
devices and base stations in GPRS/EDGE networks et al. [36]], and
Lee et al. showed well-timed traffic can trigger excessive radio re-
source control messages [23)]. Compared with these studies that
identified and exploited resource bottlenecks, our work sheds light
on the feasibility of such attacks in real cellular networks that are
protected by middleboxes. Moreover, we discovered some unex-
pected behavior of middleboxes, which can make cellular networks
and devices vulnerable.

The popularity of cellular data network has inspired a growing
number of measurement studies in this area as well. WindRider []]
proposed to capture network neutrality violations by monitoring
application and system information on mobile devices. A previous
study leveraging dataset from a deployed mobile application
compared the network and application performance of four major
U.S. cellular carriers with the inputs from over 30,000 mobile users.
Falaki collected traces from 255 users and observed dramatic
diversity in their usage behaviors. Our work differs in its emphasis
on middlebox characteristics and implications on mobile users.

7. CONCLUSION

We have presented NetPiculet, the first system that effectively
discovers cellular network policies focusing on NAT and firewall
policies. Beyond the known properties of such middleboxes, we
also focus on unique aspects of cellular networks as they impact
mobile devices, mobile application developers, and cellular ISPs



from perspectives of energy, performance, and security. Based on
the data collected in January 2011, we studied more than 100 cellu-
lar networks around the world, illustrating how a diverse set of poli-
cies can lead to several important implications for network carriers
as well as mobile application developers. Results from NetPiculet
demonstrate the importance of understanding such policies espe-
cially due to potential complex and unexpected interaction among
various policy components. In the long run, NetPiculet is highly
valuable to help make cellular network policies less opaque and ex-
pose their impact as networks and applications continue to evolve.

8. ACKNOWLEDGEMENTS

We thank all the reviewers and especially our shepherd Mema
Roussopoulos for their constructive comments and suggestions. This
work is partially funded by National Science Foundation under
awards TC-0964545.

9. REFERENCES

[1] Allot: Video streaming dominated mobile data traffic in first
half 2010. http://www.indiatelecomtracker.com/
archives/2669,

[2] Apple Push Notification Service. http://en.wikipedia.
org/wiki/Apple_Push_Notification_Service.

[3] Building Push Applications for Android. http://d1.
google.com/googleio/2010/
android-push-applications-android.pdf.

[4] Cisco Mobile Exchange. http://docstore.mik.ua/
univercd/cc/td/doc/product/wireless/moblwrls/
cmx/mmg_sg/cmxdesc.htm.

[5] Fring. http://www.fring.com.

[6] Tango. http://tango.me.

[7] tcp(7) - Linux man page. http://linux.die.net/man/7/
tecp.

[8] WindRider: A Mobile Network Neutrality Monitoring
System. http://www.cs.northwestern.edu/~ict992/
mobile.htm.

[9] Cisco GGSN Release. http://www.cisco.com/en/US/
prod/collateral/iosswrel/ps8802/ps6947/ps5413/
prod_bulletin0900aecd802e0859.html, 2005.

[10] TCP Out-of-Order Packet Support for Cisco I0S Firewall
and Cisco IOS IPS. http://www.cisco.com/en/US/docs/
i0s/12_4t/12_4t11/ht_ooop.html, 2006.

[11] Interworking between the Public Land Mobile Network
(PLMN) supporting packet based services and Packet Data
Networks (PDN). 3GPP TS 29.061 V6.15.0, 2008.

[12] Improving TCP’s Robustness to Blind In-Window Attacks.
http://tools.ietf.org/html/rfc5961, 2010.

[13] M. Allman. On the Performance of Middleboxes. In Proc.
ACM SIGCOMM IMC, 2003.

[14] R. Beverly, A. Berger, Y. Hyun, and k claffy. Understanding
the Efficacy of Deployed Internet Source Address Validation
Filtering. In Proc. ACM SIGCOMM IMC, 2009.

[15] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig.
NATBLASTER: Establishing TCP Connections Between
Hosts Behind NATSs. In Proc. of ACM SIGCOMM ASIA
Workshop, 2005.

[16] Z. Cao, Z. Wang, and E. Zegura. Performance of
HashingnBased Schemes for Internet Load Balancing. In
INFOCOM, 2000.

[17] M. Casado and M. J. Freedman. Peering through the shroud:
The effect of edge opacity on IP-based client identification.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

In Proc. Symposium on Networked Systems Design and
Implementation, 2007.

J. L. Eppinger. TCP Connections for P2P Apps: A Software
Approach to Solving the NAT Problem. http://
reports-archive.adm.cs.cmu.edu/anon/isri2005/
CMU-ISRI-05-104.pdf.

H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,

R. Govindan, and D. Estrin. Diversity in Smartphone Usage.
In Proc. ACM MOBISYS, 2010.

B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer
Communication Across Network Address Translators. In
Proc. of the USENIX Annual Technical Conference, 2005.
S. Guha and P. Francis. Characterization and Measurement
of TCP Traversal through NATSs and Firewalls. In Proc. ACM
SIGCOMM IMC, 2005.

S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP-based
Approach to UDP and TCP Network Connectivity. In Proc.
of SIGCOMM’04 Workshop, 2004.

J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and

P. Bahl. Anatomizing Application Performance Differences
on Smartphones. In Proc. ACM MOBISYS, 2010.

V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. http://tools.ietf.org/html/
rfcl323, 1992.

P. P. Lee, T. Bu, and T. Woo. On the Detection of Signaling
DoS Attacks on 3G Wireless Networks. In Proc. IEEE
INFOCOM, 2007.

P. P. C. Lee, T. Bu, and T. Woo. On the Detection of
Signaling DoS Attacks on 3G Wireless Networks. In Proc.
IEEE INFOCOM, 2007.

D. MacDonald and B. Lowekamp. NAT Behavior Discovery
Using STUN. http://tools.ietf.org/html/
draft-ietf-behave-nat-behavior-discovery-08.

L. Makinen and J. K. Nurminen. Measurements on the
Feasibility of TCP NAT Traversal in Cellular Networks. In
Proc. of the 4th EURO-NGI Conference on Next Generation
Internet Networks, 2008.

A. Medina, M. Allman, and S. Floyd. Measuring Interactions
Between Transport Protocols and Middleboxes. In Proc.
ACM SIGCOMM IMC, 2004.

P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of the
iKee.B iPhone Botnet. In Proc. of International ICST
Conference on Security and Privacy in Mobile Information
and Communication Systems, 2010.

F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. Characterizing Radio Resource Allocation
for 3G Networks. In Proc. ACM SIGCOMM IMC, 2010.

R. Racic, D. Ma, and H. Chen. Exploiting mms
vulnerabilities to stealthily exhaust mobile phone’s battery.
In Proc. of SecureComm, 2006.

P. Sarolahti and M. Kojo. Forward RTO-Recovery (F-RTO):
An Algorithm for Detecting Spurious Retransmission
Timeouts with TCP and the Stream Control Transmission
Protocol (SCTP). http://tools.ietf.org/html/
rfc4138, 2005.

J. Serror. Impact of paging channel overloads or attacks on a
cellular network. In Proceedings of the 5th ACM workshop
on Wireless security, WiSe, 2006.

U. Shankar and V. Paxson. Active Mapping: Resisting NIDS
Evasion Without Altering Traffic. In Proc. IEEE Symposium
on Security and Privacy, 2003.


http://www.indiatelecomtracker.com/archives/2669
http://www.indiatelecomtracker.com/archives/2669
http://en.wikipedia.org/wiki/Apple_Push_Notification_Service
http://en.wikipedia.org/wiki/Apple_Push_Notification_Service
http://dl.google.com/googleio/2010/android-push-applications-android.pdf
http://dl.google.com/googleio/2010/android-push-applications-android.pdf
http://dl.google.com/googleio/2010/android-push-applications-android.pdf
http://docstore.mik.ua/univercd/cc/td/doc/product/wireless/moblwrls/cmx/mmg_sg/cmxdesc.htm
http://docstore.mik.ua/univercd/cc/td/doc/product/wireless/moblwrls/cmx/mmg_sg/cmxdesc.htm
http://docstore.mik.ua/univercd/cc/td/doc/product/wireless/moblwrls/cmx/mmg_sg/cmxdesc.htm
http://www.fring.com
http://tango.me
http://linux.die.net/man/7/tcp
http://linux.die.net/man/7/tcp
http://www.cs.northwestern.edu/~ict992/mobile.htm
http://www.cs.northwestern.edu/~ict992/mobile.htm
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps8802/ps6947/ps5413/prod_bulletin0900aecd802e0859.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps8802/ps6947/ps5413/prod_bulletin0900aecd802e0859.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps8802/ps6947/ps5413/prod_bulletin0900aecd802e0859.html
http://www.cisco.com/en/US/docs/ios/12_4t/12_4t11/ht_ooop.html
http://www.cisco.com/en/US/docs/ios/12_4t/12_4t11/ht_ooop.html
http://tools.ietf.org/html/rfc5961
http://reports-archive.adm.cs.cmu.edu/anon/isri2005/CMU-ISRI-05-104.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2005/CMU-ISRI-05-104.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2005/CMU-ISRI-05-104.pdf
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/draft-ietf-behave-nat-behavior-discovery-08
http://tools.ietf.org/html/draft-ietf-behave-nat-behavior-discovery-08
http://tools.ietf.org/html/rfc4138
http://tools.ietf.org/html/rfc4138

[36] P. Traynor, P. McDaniel, and T. La Porta. On Attack
Causality in Internet-connected Cellular Networks. In Proc.
of 16th USENIX Security Symposium, 2007.



	Introduction
	Overview
	NAT Policies
	Methodology
	Identifying NAT Mapping
	Identifying Other NAT Properties

	NAT Characteristics
	NAT Mapping Results
	Other NAT Results

	Implications on NAT Traversal
	Summary

	Firewall Policies
	Methodology
	Testing IP Spoofing
	Testing Stateful Firewall
	Testing TCP Connection Timeout
	Testing Out-of-Order Packet Buffering

	Firewall Characteristics
	IP Spoofing
	Stateful Firewall

	Implications and Recommendations
	Energy Impact of TCP Connection Timeout
	Performance and Energy Impact of Buffering
	Exploiting Large Sequence Number Window
	Flaws with Closing TCP Connections

	Summary

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References

