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Abstract— We usually have well-defined classification scales
to estimate the intensity and impact of natural disasters.
Prominent examples are the Richter and the Fujita scales for
measuring earthquakes and tornadoes respectively. In this pa-
per, we apply similar ideas to estimate the impact of distributed
denial of service (DDoS) attacks from the perspective of network
operators. Devising such a classification scale improves our
understanding of DDoS attacks by assessing the actual damage
incurred from an ISP’s perspective, and allows comparison
of various mitigation strategies. We have designed MIDAS, a
DDoS impact scale, based on the economic impact of a DDoS
attack, calculated using economic and network data. We then
present an approximation of the MIDAS scale that relies only on
network measurements for ease of computation. To demonstrate
the usefulness of the scale, we perform sensitivity analysis to
qualitatively validate the magnitude of the scale value for diverse
attacks.

I. INTRODUCTION

Distributed denial of service (DDoS) attacks are becoming
increasingly common [1]. Even though DDoS attacks tar-
get end hosts, networks have to deal with increased traf-
fic demands during attacks. In this work, we address the
economic impact of DDoS attacks and provide a network
centric Measure of Impact of DDoS AttackS (MIDAS) scale
similar to systems used to classify the impact of earthquakes
and tornadoes. Our motivation is that such a classification
scheme can be used by any network operator to assess the
severity of a DDoS attack, and allow comparisons. Currently,
a common way of characterizing DDoS attacks is in terms
of measures such as packets per second (pps) or bits per
second (bps). Such simple measures are misleading as, for
instance, a 100Mbps attack against a well-provisioned server
in a data center is negligible in impact compared to the same
attack against an end-host connected through a cable modem.
Making the classification concrete in terms of the actual
economic impact increases incentives to proactively mitigate
DDoS attacks from an operator’s perspective. Furthermore,
a classification scheme will lead to improved understanding
of the properties of DDoS attacks that have direct impact on
the networks. Ultimately, such a scheme provides valuable
insights into evaluating and designing mitigation schemes.

Two real world examples that inspire our approach, namely
the Richter scale for earthquakes and the Fujita scale for
tornadoes, serve to illustrate two different approaches: mea-
suring attributes of the event directly, versus, measuring
the impact of the event. The Richter scale measures the
magnitude of an earthquake by estimating the energy released
from the motion of tectonic plates. That is, it measures the
size of an earthquake, regardless of whether it caused any
damage or not. The Fujita scale, on the other hand, estimates
the actual damage caused by a tornado based on surveys
conducted afterward. It therefore estimates the impact of a
tornado rather than the size. So for example, a large tornado

Fig. 1. Cost per-byte-carried and DDoS Impact as a function of network
over-provisioning

that causes minimal damage to man-made structures will not
have a significant magnitude on the Fujita scale.

We argue that an approach similar to the Fujita scale is
appropriate for a DDoS attack impact scale. Intuitively, a
large DDoS attack that impacts a single end-user is of less
interest than a very small attack (e.g., a single packet exploit)
that causes a router to crash thus impacting many end-users.
Our specific interest is to develop a DDoS attack impact
scale, the MIDAS scale, from a network service provider’s
perspective. We would like to gauge the actual impact of
DDoS attacks to rank the relative importance of attacks which
could then be used, for instance, to determine priority for
mitigation strategies. Our approach is to estimate the actual
or potential economic impact of DDoS attacks to drive our
MIDAS metric estimation. Rather than absolute values, we
believe that a relative metric provides an intuitive indication
of the severity of impact regardless of provider size. Thus,
the same MIDAS metric should represent the same relative
economic impact across different providers. Our scale is
applicable to ISPs of all sizes and diverse tiers.

We present models to calculate the MIDAS scale using
comprehensive economic and network data. However, obtain-
ing the necessary data to calculate them precisely is in general
infeasible. Therefore, we also indicate how the MIDAS scale
can be estimated in practice.

II. WHY AN IMPACT METRIC?
While typically aimed at specific end-systems, DDoS

attacks can also impact networks that carry the attack traffic
and therefore, can indirectly impact other network users. This
collateral damage implies that a holistic network-wide view
of DDoS attacks is necessary to fully assess their impact.
Ideally, this assessment should span all impacted networks
(e.g., crossing AS boundaries). While appropriate information
sharing would help realize such an eventuality, our immediate
focus is at the more pragmatic single provider case. We
motivate our decision to develop a DDoS scale based on the
impact of an attack. Specifically we attempt to illustrate that
while there is a cost involved in carrying all DDoS traffic,
only some DDoS attacks impact the network and its users.
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IP networks are typically provisioned based on some pre-
determined engineering rules involving the observed aggre-
gate and peak link utilization [2]. Note that the observed traf-
fic load includes both regular and DDoS traffic. IP networks
have to be over-provisioned because of the unpredictability
and changing nature of the offered traffic load. The per-
byte-carried cost of a particular network increases as the
amount of over-provisioning in a network increases. This
is illustrated graphically in Figure 1. For brute force DDoS
flooding attacks it is possible (at least in theory) to increase
the over-provisioning in a network to the point where DDoS
attacks have no impact on the network or its users, except
for the actual target of the attack. Intuitively, (and shown in
Figure 1), as the amount of over-provisioning in a network
decreases, the impact of DDoS attacks increases.

At any moment in time a network operates at some point
along the X-axis. The exact operating point is determined
by both the available capacity (amount of over-provisioning)
and the offered load. For example, if the offered load
stays the same, an increase in capacity would move the
operating point to the right, thus increasing the per-byte-
carried cost and decreasing the impact of DDoS attacks. This
discussion illustrates the trade-off network operators face
between reducing the operational costs of running a network
and increasing the robustness of the network against DDoS
attacks. Furthermore, while we framed the argument in the
context of increased capacity, it would apply equally well to
cost involved in using other DDoS mitigation mechanisms
(e.g., dedicated DDoS filtering devices).

Interestingly, in a best-effort network like the Internet the
network operator typically does not directly pay any of the
costs involved in carrying DDoS traffic. As outlined above,
the costs for the operator are operational in nature (due to
increasing the capacity of the network). For flat-rate billing
models, this increased cost would effectively reduce the
operator’s income. However, for usage-based billing models,
the operator’s income typically increases with increase in
traffic, be it good or bad. This implies that the main driver
for a large provider to address the DDoS issue is not the
billing model but the potential loss of revenue because of
customers’ dissatisfaction due to DDoS attacks.

This situation is slightly different for small network opera-
tors which typically pay a usage based fee for their uplinks to
higher tier network operators (for example tier-2 ISPs paying
tier-1 ISPs). This uplink fee increases as the DDoS traffic
on the uplinks increase. However, even the small network
operators typically receive more usage based fees from their
customers then they pay the higher tier network operators
for uplink services. Therefore, as long as the DDoS traffic
either originates or targets customers of the network operator
the increased cost of DDoS traffic carried over the uplink is
covered directly by increased revenues from customers. For
these reasons we ignore this component in the MIDAS scale.

III. IMPACT OF DDOS ATTACKS

As outlined in the previous section, the MIDAS scale
of DDoS attacks focuses on capturing the cost of a DDoS
attack in the context of a particular network. Similar to the
Fujita scale, we exclude long-term costs, such as network

upgrades or deployment of DDoS mitigation equipment, from
the attack costs. In our approach we focus on the potential
economic impact of DDoS attacks on the network provider
given a specific network. Specifically, we consider the cost
of SLA violations and the cost of losing customers as the
potential economic impacts to be captured in the MIDAS
scale.

In this section, we discuss both an accurate but impractical
model of computing these costs and our MIDAS scale, as
well as a simpler practical model which approximates these
values. The practical model computes what we call the
MIDAS2007 scale. We anticipate that the assumptions we
make in translating the MIDAS scale into the MIDAS2007
scale might not hold indefinitely. Therefore, we expect that
similar to the SPEC CPU benchmarks new MIDASXXXX
scales will appear over time, even though the underlying
principles presented in the MIDAS scale itself are preserved.
Finally, in section IV, we derive estimates for the MIDAS
scale which depends only on direct network measurements.
Because it can be calculated from network measurements,
this MIDAS2007NET scale offers a pragmatic way of calcu-
lating the impact of DDoS attacks while still being based on
the underlying economic impact of such attacks.

A. SLA violation cost

Network operators can provide arbitrary SLAs to their
customers and these could be violated in arbitrary ways by
a DDoS attack. So, judging the cost impact of DDoS attacks
based on SLA violations is a very network specific task. An
exact calculation of this SLA cost, CSLA, of a given DDoS
attack requires knowledge of all SLAs a network provider
offers to all customers and calculating the sum of all penalties
of the violated SLAs. We define Penalty(SLAi, c) to be
the penalty of violating SLAi for a particular customer c.
Therefore CSLA can be computed as follows:
CSLA =

∑
c,i Penalty(SLAi, c) ∀i, if SLAi is violated.

One could argue that such a network specific cost should
not be captured in a DDoS attack impact scale. However,
we reason in its support since this cost is indicative of how
well a network operator can deliver on its promised SLAs
under adverse conditions. Intuitively network operators who
provide SLAs carelessly will experience higher rated DDoS
attacks, indicating to potential customers that they have a
higher DDoS related risk.

As pointed out, in general, SLA violation costs can be
rather arbitrary. So, in the context of MIDAS it would be
useful if we could approximate typical SLA violation costs
without having to assess all SLAs a network operator might
have provided. We investigated, using resources on the Web,
the SLAs that are typically offered by today’s tier-1 network
operators. We found most SLAs to be framed based on
one or more of the following properties: (i) Network-wide
performance: in terms of network availability or network
downtime, latency, loss rate, and jitter in the form of traffic
matrix across major cities with a threshold value for each
based on monthly averages. (ii) Reliability: site to site reli-
ability, backbone reliability. (iii) Packet delivery guarantee:
between the hub routers within the backbone network, the
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packet delivery rate is above a certain threshold. (iv) Outage
reporting guarantee: customer is notified within a certain
amount of time of his equipment becoming unavailable. (v)
Power availability: power to customer’s servers should be
adequate for at least a certain duration of time.

Analyzing the nature of these metrics we notice that most
of them are network-wide properties. The exception is the
power availability. Fortunately violations of this SLA are
most likely not related to DDoS attacks. Also, SLAs help
translate measurements of these network-level properties into
economic costs.

From analysis of industrial practices, we find that penalties
paid to a customer for an SLA violation often range from
one day to one month of the revenues generated by the cus-
tomer. Therefore, we can approximate CSLAi

by computing
C2007SLAi

, the cost of violating SLAi as follows (where
Rev(c, T ) is the current revenue within a recent time period
T of customer c having an SLAi):

C2007SLAi
=

∑

c

Rev(c, T )

In accordance with our observations, the time period T is
chosen between one day and one month.

Using this formula, we can approximate DDoS-related
SLA violation costs simply by determining if a DDoS attack
violated a network-wide SLA and computing the sum of
revenues of customers associated with this SLA for time
period T . For the MIDAS2007 scale we choose T to be
one day which is the most common case for violations of
network-wide SLAs. Then, assuming that a network provider
has multiple SLAi, we compute C2007SLA as the sum of
all C2007SLAi

for which SLAi was violated because of a
DDoS attack.

B. Risk cost
The risk cost captures the risk of a DDoS attack causing

such disruption to a customer that he leaves the network. This
directly affects the future revenues of the network operator.
These costs can be estimated by the following formula (where
Risk(c) is the probability that customer c would leave a
network due to DDoS attacks, Revfuture(c) is the future
revenue for the provider from a customer c, Crisk(c) is the
cost to a provider of customer c leaving, while Crisk is the
cost across all customers):

Crisk(c) = Revfuture(c) ∗ Risk(c)

Crisk =
∑

c

Crisk(c) ∀c if c is impacted.

Unfortunately it is impractical to exactly measure either
value. We attempt to approximate their values as follows:

1) Customer Revenue at Risk: The Revfuture(c) depends
on customer c’s future choice of network operators as well as
future traffic volumes generated by the customer. This partly
depends on external factors. For example, the customer might
decide to switch network operators within the next month
because of a cheaper service from another network operator.
Hence, losing this customer now because of a DDoS attack
has a small impact. On the other hand, a customer might

have stayed with the network operator for years to come and,
therefore, losing this customer has a high impact on future
revenues.

To approximate this cost, we assume that the current
revenues from a customer holds for a fixed time interval
in the future and then calculate Revfuture(c). Since most
contracts have a one year minimum term, we fix the time
interval as one year into the future. We now have a formula
for estimating revenue from a customer as:

Rev2007future(c) = Rev(c, 1month) ∗ 12

2) Risk of Customer Leaving: The risk of a customer
leaving is in general hard to calculate. A customer might
leave because his traffic is impacted by a DDoS attack
targeted at another customer (collateral damage) or, because
he is the target of an attack and another network operator
provides superior DDoS mitigation techniques. In either case,
the customer leaves in the quest for better service in the face
of DDoS attacks. On the other hand, a customer might also
leave because the economical impact of a DDoS attack is
so large that it is no longer economically viable for him to
continue with the same network provider. For example, an e-
tailer who is continuously DDoSed during Christmas season
might not have enough cash to survive.

In short, the risk of a customer leaving is a function of,
(i) attack scope: how much customer traffic is impacted, (ii)
attack duration: for how long customer traffic is impacted,
and (iii) attack frequency: how frequently a customer is
impacted by DDoS attacks.

If any of these values increases, the likelihood of the
customer leaving also increases. Unfortunately it is hard to
accurately model customer behavior. For instance, if cus-
tomers were to be asked what level of DDoS they would
be willing to tolerate, they are likely to suggest numbers that
are much lower than what would be the case in practice. On
the other hand, there is not enough empirical data available to
model what customers will actually do. This leaves us with
modeling customer behavior based on domain knowledge and
what we believe are reasonable assumptions. Specifically, we
make the following assumptions to estimate the risk of a
customer leaving:

• We consider a customer to be impacted if at least 1%
of its traffic is impacted. By “impacted”, we mean that
application specific performance requirements such as
maximum loss rate and jitter are not satisfied. This
choice of 1% is motivated by the fact that most cus-
tomers would not notice if less than 1% of their traffic is
impacted (considering that on the Internet some traffic is
always adversely impacted due to, for example, routing
changes or congestion).

• Unlike the Richter or Fujita scales, history is impor-
tant for computing MIDAS. Intuitively we expect a
customer’s dissatisfaction with DDoS related impact to
grow as a non-linear function of the duration of the
attack. To model this, we bin the duration of the attack
in 10 minute bins. This is reasonable since routing
events on today’s Internet typically are on the order of a
few minutes. So DDoS attacks of shorter durations are
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typically not distinguishable from routing events from
the customer’s perspective, and all Internet users tolerate
these events today. An exponential increase in risk based
on attack durations captures the fact that the longer an
attack impact persists the more likely the customer will
be dissatisfied enough to leave.

• We model the impact of attack frequency also as an
exponential increase. We consider the last 12 months to
count the number of attacks which impacted a particular
customer. We consider 12 months to be a reasonable
compromise between taking recent events into account
and aging out events that happened in the more distant
past. For example, an e-tailer who experienced an impact
over the previous Christmas season is likely to remem-
ber it in the current season, but without any further
incidents it might be less concerned the next season. We
again choose an exponential increase because we expect
customers to become increasingly annoyed if outages
are repeated frequently.

Since both frequency of attacks as well as duration of
an attack instance dictate a customer’s experience with a
provider, we add these factors together in the exponent
term. Using these assumptions we can estimate the risk of a
customer leaving as follows (where BaseRisk is the risk of
a customer leaving given a base attack scenario).

// for a DDoS attack a, with duration d:
// AttackCnt(c, T ) = Number of attacks impacting
// >= 1% of c’s traffic in recent T time period.
If (a impacts < 1% of customer c’s traffic)

Risk2007(c) = 0
else

BinCnt = bd/10minc
HistoryCnt = AttackCnt(c, 12months)
Risk2007(c) =

1− ((1−BaseRisk)(BinCnt+HistoryCnt))

For the MIDAS2007 scale, we define the base attack
scenario as the case where more than 1% of a customer’s
traffic is impacted for less than 10 minutes occurring only
once within the last 12 months. We estimate this value by
conservatively assuming that a customer would leave with
99.999% probability if in the last 12 months his service is
interrupted every day for at least one hour. This translates
into a BaseRisk of 0.031.

C. The MIDAS scale
Using the cost models derived in the previous sections

we can now calculate the cost of a DDoS attack within a
particular network as the sum of SLA violation cost and
risk cost: CDDoS = CSLA + Crisk + Cuplink , which can be
approximated in practice using the assumption made earlier
as:

C2007DDoS = C2007SLA +∑

c

[Risk2007(c) ∗ Rev2007future(c)]

which can be computed by a network operator. To calcu-
late the MIDAS scale value that is globally applicable, we
normalize the cost of an attack by the overall revenues of

a network provider. The revenues of the network operator
have to be calculated over a certain amount of time. In
the context of the desired properties of the MIDAS scale,
this duration can be arbitrarily chosen since it only linearly
increases/decreases the MIDAS scale value. To avoid short
time revenue events and to match our risk cost estimation, we
choose the revenue of the network operator in the prior 12
months as the normalization factor. Thus the MIDAS scale
factor (SF) is defined as:

MIDAS SF =
CDDoS

NetworkTotalRevenue(12months)

Since the true MIDAS SF is expected to be hard to compute,
we expect network operators to calculate and compare the
approximate MIDAS values instead. Our approximation is
defined as:

MIDAS2007 SF =
C2007DDoS

NetworkTotalRevenue(12months)

In the next section we introduce a MIDAS value calculation
where the estimation is based purely on network observa-
tions.

IV. MIDAS2007NET

Even though the MIDAS2007 impact factor discussed in
the previous section can be realistically computed on most
networks, it typically requires several data sources maintained
by multiple organizations. For example, traffic impact needs
to be measured on the network, whereas past revenues have to
be collected from the accounting organization. In many large
organizations, establishing this level of accurate and reliable
collaboration is cumbersome. Therefore, we propose a variant
of the MIDAS2007 factor called the MIDAS2007NET which
can be computed based on network data alone. Even though
this factor is not directly comparable with the MIDAS2007
factor, it preserves the same desirable properties.

The basic intuition behind the MIDAS2007NET factor
is that provisioned bandwidth is roughly proportional to
actual traffic volumes seen on the network which are roughly
proportional to the revenues associated with them. So we do
the following:

• The total revenues of a network provider is replaced
by the sum of the link capacities at the perimeter of
the network, totalcapacity, i.e., the link capacities of
all customer/peer facing access router interfaces. Instead
of using traffic volume information, link capacities are
used as they are closely associated with traffic volume
and revenues.

• The total revenues from a customer c is replaced by the
total link capacity of all access interfaces c connects
to (customercapacity(c)). Since most networks have a
provisioning database which associates customers with
access interfaces, this number can be easily computed.

• We assume that all customers are subscribed to all
network-wide SLAs of the provider, as those are the
basic SLAs for network services.

• We assume a customer is impacted if more than 1% of
the customer’s peak traffic volume in the last 10 minutes
would have to traverse any core or access link which
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is experiencing a loss rate of 5% or more. (It has been
shown that a 5% loss rate becomes problematic for TCP
connections [3].) Links with larger than 5% loss rate can
be determined easily by the network operator by SNMP-
polling the appropriate router interface MIBs. Then a
customer traffic matrix computed based on Netflow data
or by network tomography tools can be used to detect
the fraction of each customer’s traffic impacted by any
such link. Therefore, the only information which is
difficult to gather and is required to determine customer
impact is to decide if the high link loss rate was caused
by a DDoS attack or another network event. We use a
conservative estimate and assume all such link events,
which cannot be explained by non-DDoS related causes,
to be DDoS related.

These approximations result in the following formulas (as
a modification of the MIDAS2007 formulas in the earlier
section):

C2007 netSLAi
= totalcapacity

Rev2007 netfuture(ci) = customercapacity(ci)

C2007 netDDoS = C2007 netSLA +∑

i

[Risk2007(ci) ∗ Rev2007 netfuture(ci)]

MIDAS2007NET =
C2007 netDDoS

totalcapacity

Notice that the C2007 netSLAi
is equal to totalcapacity

due to the fact that we assumed that all customers are
subscribed to all network wide SLAs. So, if any such SLA
is violated the network produces no revenues. Because it can
be calculated directly from network measurements, we use
the MIDAS2007NET scale for our evaluation presented in
Section V.

V. EVALUATION OF THE MIDAS SCALE

In this section we describe our experiences in using the
MIDAS scale in realistic network topologies and show the
sensitivity of the scale. Using simulations [4], we demon-
strate the usefulness and validity of the MIDAS scale by
showing that it qualitatively conforms to our expectation of
attack impact.

To recap from Section IV, the MIDAS2007NET
was calculated using customercapacity(c) as the
Rev2007 netfuture(ci) and totalcapacity as the term
C2007 netSLAi

. We now describe how we calculate the
values of these two terms. In our experiments, we evaluate
the impact of an attack on a customer by considering
impact on the customer traffic flows (as defined in our
earlier work [4]). A traffic flow from a customer is said
to be impacted or affected if at least one link it traverses
is overloaded by the attack, i.e., with more than 5% loss
rate. If a customer flow is affected, then the capacity of
the access link used by that particular flow to enter into
the network is added to the customercapacity(c) term.
The customercapacity(c) is now the sum of capacities of
all access links (counted uniquely) that carry at least one
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Fig. 2. Behavior of various attack instances in a hypothetical setting

affected customer flow. As before, the term totalcapacity is
the sum of capacities of all access links of the network.

Since we are more interested in the relative differences
in MIDAS scale values, we do not consider the contribution
of SLA violation costs to the MIDAS2007NET value. This
is because this contribution is constant for all attacks and
can thus be safely ignored for computing relative values.
Thus, MIDAS2007NET is dependent upon the total number
of affected flows in the network. The higher the number of
impacted flows, the more likely it is that the term customer-
capacity is larger, increasing the MIDAS2007NET value.

We adopt the following categorization of attacks for our
evaluation:

• A strong and concentrated attack denotes an attack
that originates from a few sources, and targets a few
destinations with a large volume (without any attack
scaling) thus overloading a small number of network
links(denoted by s&c).

• Likewise, a weak and concentrated attack has a much
lower attack volume compared to its strong counterpart
while sharing the same concentrated property (denoted
as w&c).

• A strong and distributed attack originates from mul-
tiple sources, usually spread across the network, and
targets several destinations that are typically spread
across various regions in the network thus overloading
a large fraction of network links (denoted as s&d).

• The combination of weak and distributed properties of
an attack is denoted as w&d.

Thus, for example, an s&d attack overloads more links
impacting more customers and is therefore expected to have
a high MIDAS value.

A. Results

We use a hypothetical topology modeled to reflect pop-
ulation density on the US sub-continent for our evaluation.
Figure 3 shows a sample of the hypothetical topology where
each vertex on the rectangle abstracts the PoP and the
numbers on the vertices reflect the sizes of the PoPs. In
this depiction, only the PoP labeled as 1 is expanded into
its constituent hub and access routers. A similar hierarchical
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Fig. 3. A depiction of the hypothetical topology

topology holds for other PoPs as well with the number of
routers and the link capacities determined by the size of
the PoP. So, for example, the vertex numbered 1 pertains to
the PoP in the hypothetical topology with the lowest traffic-
carrying capacity reflecting a low population density.

In this setting, attacks were designed for specific purposes
to better illustrate the behavior of MIDAS scale under ex-
pected conditions. A strong attack (when not scaled) was
designed to occupy nearly 12 times as much bandwidth as a
weak attack. On the other attack dimension, a distributed
attack originated from at least 5 sources picked from at
least 2 PoPs and attacked at least 5 targets in at least 2
PoPs. While, a concentrated attack originated from at most
2 sources both of which are within the same PoP, targeting
at most 2 targets again co-located in the same PoP. These
numbers were chosen mainly to provide a clear picture of
the behavior of the MIDAS scale.

Figure 2 compares various categories of attacks in this
hypothetical setting. Here the distinction between a strong
and a weak attack is only that at a scaling factor of 1.0,
a strong attack utilized a larger percentage of access link
capacity as opposed to a weak attack. In other words,
both attacks involve the same sets of sources and targets.
Due to the above similarity, attacks belonging to the same
concentrated or distributed category have the same maximum
impact. However, the strength of the attack dictates how early
the maximum impact plateau is reached. Thus, the s&d attack
overloads a set of access links as well as a few core links and
thus its impact curve rises sharply as opposed to the w&d
attack that impacts usually a smaller number of links at a
time resulting in a more gradual increase with more steps. A
similar behavior is observed in the domain of concentrated
attacks but, of course, these have a much smaller maximum
impact plateau value.

Using the above experiments, we have mapped the intuitive
behavior of the MIDAS scale. The above discussions also
serve to indicate that small access links, though providing low
capacities for legitimate customers, also serve a restricting
role for bandwidth intensive attacks. The MIDAS scale
captures this restriction in the plateaus of the curves.

VI. RELATED WORK

The field of service pricing to address congestion and
resource allocation issues in networks is popular among
researchers. However, to the best of our knowledge, there has
been no known previous technical work targeted at measuring
the economic cost of the impact of DDoS attacks. The only
other work that comes close to our focus in this paper is [5],
where the authors provide a purely technical framework for

modeling attacks and their impacts on networks (using a
probabilistic state transition matrix to model the response
of the system to a network attack). Related to our effort,
from the perspective of evaluating the quality of service in IP
networks, Diot et al. [6] defined a new metric defining service
availability in the presence of link failures. Recent research
has focused on building better models to understand DDoS
attacks like in the case of [7] where the authors consider the
network flow model. Though not directly related to DDoS
impact cost measurement, [8] provides an economic analysis
of DDoS defense mechanisms. On the completely economic
front, the Incident Cost Analysis and Modeling Projects
(I-CAMP) I and II [9] dealt with calculating user costs
due to disruptive incidents. [10] presents a purely financial
framework for measuring the cost incurred due to an attack
in terms of loss and recovery effort.

VII. CONCLUSION

We have described an abstract framework to compute a
network operator-centric impact scale for DDoS attacks, the
MIDAS scale. We derived estimations of the cost functions
to compute this scale value based on both economic and
network data (MIDAS2007), as well as network data alone
(MIDAS2007NET). We validated the MIDAS2007NET met-
ric using real and hypothetical network topologies and DDoS
data. Such practical estimations are designed to benefit ser-
vice providers by allowing network operators to rank DDoS
attacks in terms of impact using MIDAS and prioritizing
the use of resources and personnel; and, compare mitigation
strategies for DDoS attacks to understand their effectiveness
based on MIDAS scale values. We believe that MIDAS is
the first important step towards a DDoS attack impact scale
of global relevance, and as researchers obtain additional
insights, new incarnations of the MIDAS scale are expected
to arise while adhering to the model outlined in this paper.
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