
An In-depth Study of LTE: Effect of Network Protocol and
Application Behavior on Performance

Junxian Huang∀ Feng Qian∃ Yihua Guo∀

Yuanyuan Zhou∀ Qiang Xu∀ Z. Morley Mao∀

Subhabrata Sen∃ Oliver Spatscheck∃
∀University of Michigan ∃AT&T Labs - Research

ABSTRACT
With lower latency and higher bandwidth than its predecessor 3G
networks, the latest cellular technology 4G LTE has been attracting
many new users. However, the interactions among applications,
network transport protocol, and the radio layer still remain unex-
plored. In this work, we conduct an in-depth study of these inter-
actions and their impact on performance, using a combination of
active and passive measurements. We observed that LTE has sig-
nificantly shorter state promotion delays and lower RTTs than those
of 3G networks. We discovered various inefficiencies in TCP over
LTE such as undesired slow start. We further developed a novel
and lightweight passive bandwidth estimation technique for LTE
networks. Using this tool, we discovered that many TCP connec-
tions significantly under-utilize the available bandwidth. On aver-
age, the actually used bandwidth is less than 50% of the available
bandwidth. This causes data downloads to be longer, and incur ad-
ditional energy overhead. We found that the under-utilization can
be caused by both application behavior and TCP parameter setting.
We found that 52.6% of all downlink TCP flows have been throttled
by limited TCP receive window, and that data transfer patterns for
some popular applications are both energy and network unfriendly.
All these findings highlight the need to develop transport protocol
mechanisms and applications that are more LTE-friendly.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: wireless communi-
cation; C.4 [Performance of Systems]: measurement techniques,
performance attributes; D.2.8 [Metrics]: Performance measures

Keywords
LTE, 4G, bandwidth estimation, TCP performance, resource under-
utilization

1. INTRODUCTION
4G LTE is the latest deployed cellular network technology that

provides high-speed data services for mobile devices with adver-
tised bandwidths matching and even exceeding the home broad-

band network speeds. Recent work [13] has demonstrated the power
model of the LTE network. Compared to 3G, LTE provides the
promise of higher energy efficiency as a result of a new resource
management policy and higher achievable throughput. However,
this new technology has not been extensively studied empirically in
a deployed commercial network setting to understand how network
resources are utilized across different protocol layers for real users.
It is important to evaluate the benefits of increased bandwidth for
popular mobile applications and essential network protocols such
as TCP to identify their limitations for needed improvements. In-
tuitively, network protocol overheads can be significant enough to
prevent efficient usage of available network resources [37]. This
has been shown in network settings with high network capacity but
potentially unpredictable network conditions [32].

We are motivated by the fact that LTE uses unique backhaul and
radio network technologies, and has unique features distinguish-
ing it from other access technologies (e.g., much higher available
bandwidth and lower RTT), requiring some existing topics to be re-
visited. Also, the prevalence of these problems in commercial LTE
networks is very important for both academia and industry. In this
work, we evaluate the usage of LTE network resources by analyz-
ing an extensive data trace collected at a commercial LTE network.
As far as we know, this is the first in-depth analysis of deployed
LTE technology in a commercial setting. We systematically com-
plement the data analysis with local experiments using controlled
traffic patterns to confirm or further investigate our observations
based on data traces. Given the prevalence of proxy deployment in
cellular networks for improving user perceived performance due to
inherently limited radio network resources, we also study the im-
pact of such middleboxes on performance. No previous work has
performed any detailed evaluation of such impact.

Our approach to characterizing the usage of a commercial LTE
network starts with a careful analysis of basic network character-
istics in terms of TCP flow properties, network latency, followed
by the congestion control statistics of observed TCP flows. To an-
swer the question whether application traffic is effectively utilizing
available network resources, we devise a lightweight method to es-
timate the available network bandwidth based on the fine-grained
TCP data packet and ACK packet exchange close in time, while
making use of the TCP Timestamps option. We validate the ac-
curacy of our bandwidth estimation algorithm using controlled ex-
periments. We expect this algorithm to be helpful in identifying
protocol level and application level inefficiencies even in the pres-
ence of sufficiently available network resources. Besides perfor-
mance overhead, network usage efficiency has direct impact on the
energy usage of mobile devices. We highlight the potential energy
waste due to ineffective use of available network resources. Given
the prevalence of video and audio applications in cellular networks

363

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright © 2013 ACM 978-1-4503-2056-6/13/08…$15.00.

and their significant contribution to the network resource usage, we
perform a case study on popular multimedia applications from the
perspectives of network resource usage.

In summary, we make the following contributions:

• Using the TCP Timestamps option, we devise a passive method
to estimate the available bandwidth by observing the TCP
packet streams between the mobile device and the server.

• We develop a set of pragmatic techniques for passively cap-
turing TCP flow characteristics such as flow size, flow dura-
tion, flow rate, loss rate, queuing delay, LTE promotion delay
from a monitor placed between the LTE Radio Access Net-
work (RAN) and the Serving Gateway (SGW) or Packet Data
Network Gateway (PGW).

• To evaluate performance of TCP flows, we design simple
heuristics to identify abnormal TCP behavior based on du-
plicate ACKs, out of order packets, and slow start through
the analysis of packet traces and congestion window size.

Besides these methodological contributions, we make the fol-
lowing insightful observations about LTE network usage.

• For large TCP flows, queueing delay may increase RTT to a
few times the normal value. However, as TCP does not use
duplicate ACKs to update RTT estimation (thus the retrans-
mission timeout), undesired slow start may occur in the mid-
dle of a flow upon a single packet loss, and this phenomenon
is observed for 12.3% of all large TCP flows.

• We observe that 52.6% of all downlink TCP flows have ex-
perienced full TCP receive window or even zero receive win-
dow, limiting the sending rate.

• Overall, with the bandwidth estimation algorithm, we ob-
serve that for 71.3% of the large flows, the bandwidth uti-
lization ratio is below 50%. And on average, data transfer
takes 52.9% longer than if the bandwidth was fully utilized,
incurring additional radio energy overhead.

Based on these observations, we make several recommendations
on protocol and application design to more effectively take advan-
tage of the available network resources. We believe our findings
apply to other LTE networks given the extensive coverage of the
data set and independent controlled experiments carried out locally.

Here is the roadmap for the paper. §2 covers related work, fol-
lowed by §3 where we describe the data set studied and setup for
controlled experiments. We then characterize the LTE network
characteristics in §4 and discuss a newly identified TCP perfor-
mance issue in LTE networks in §5. We investigate the network
resource usage efficiency with a devised bandwidth estimation al-
gorithm in §6, and then explore the network application behaviors
that cause network inefficiency in §7, before concluding in §8.

2. RELATED WORK
We summarize three categories of work in understanding smart-

phones and mobile networks.
Characterizing Mobile Network Usage and Performance. Prior

efforts [8, 30, 23] deployed smartphone user studies and collected
data from tens to hundreds of participating users. Those stud-
ies investigated various aspects including the diversity of smart-
phone users, the popularity of mobile applications, and the effec-
tiveness of compression techniques on cellular traffic etc.. The 3G
Test study [14] adopts another approach by publishing an app that
actively measures various network performance metrics on users’
handsets. Our study features a much larger user base of around
300K customers using the LTE networks whose characteristics are

eNB
Monitor

PEP

SGW &

PGW

Other Traffic

Firewall

UE RAN Core Network (CN)

Internet

Figure 1: Simplified network topology of the large LTE carrier
from which we obtained our measurement data.
far from being well understood. Some previous studies also per-
formed large-scale measurement of mobile networks and smart-
phones. Sommers et al. compared cellular and WiFi performance
using crowd-sourced data from speedtest.net covering 15 metro
areas, focusing on throughput and latency [31]. Xu et al. profiled
diverse usage behaviors of smartphone applications [34]. Qian et
al. performed network-wide measurement studies of cellular peri-
odic transfers [24]. In contrast, our investigated spectrum is more
diverse, covering traffic characteristics, network performance, pro-
tocol interaction, bandwidth utilization, and application usage in
the increasingly popular LTE networks. We also compare our re-
sults with those presented in [14] and [31]. Some previous stud-
ies [9, 6] also examined mobile handsets using WiFi networks.

Cellular Resource Management and Cross-layer Interaction.
In cellular networks, there exists a radio resource control (RRC)
state machine that manages the handset radio interface. It is the
key coupling factor bridging the application traffic patterns and the
lower-layer protocol behaviors. Previous studies [25] and [13] ex-
amine the RRC state machine and its interaction with cellular traf-
fic, for 3G UMTS and 4G LTE networks, respectively. We study
for hundreds of thousands of users their state transition delay and
transport-layer idle time, two key factors incurring signaling load
and energy overhead, respectively, due to the LTE RRC state ma-
chine. Previous studies also examined the interplay between TCP
and cellular networks. For example, Liu et al. studied the physical
and MAC layers in 3G EvDO networks and their impact on TCP
performance [17]. Jiang et al. examined how large buffers in cellu-
lar networks contribute to significant TCP queuing delay [16]. Our
study brings new insight into the complex interaction between LTE
and TCP, as detailed in §4.

Cellular Network Infrastructure. Xu et al. characterized 3G
data network infrastructures, leading to an observation that the rout-
ing of cellular data traffic is quite restricted as traffic must traverse
through a small number of gateway nodes [35]. Wang et al. un-
veiled cellular carriers’ NAT and firewall policies [33]. Balakrish-
nan et al. investigated IP address dynamics in 3G networks. They
found that cellular IPs embed much less geographical information
than wired IPs do [4]. In this work, characterizing LTE infrastruc-
tures is not our immediate focus, but we do have novel findings
that they highly affect our measurement methodology and results
as pinpointed in §4 and §6.

3. LTE DATA AND LOCAL TESTBED
We give an overview of the LTE network topology before de-

scribing our measurement data. We then describe how we perform
controlled experiments for validating our findings.

3.1 The LTE Measurement Data
As depicted in Figure 1, an LTE network consists of three sub-

systems: user equipment (UE), the radio access network (RAN),

364

and the core network (CN). UEs are essentially mobile handsets
carried by end users. The RAN allows connectivity between a UE
and the CN. It consists of multiple base stations called Evolved
Node B (eNB). The centralized CN is the backbone of the cellu-
lar network. It connects to the Internet. In Figure 1, within the CN,
“Monitor” is our data collection point. “SGW” and “PGW” refer to
the serving gateway and the packet data network gateway, respec-
tively. “PEP” corresponds to the performance enhancing proxy to
be described shortly. From the perspective of UEs, we define down-
link as the network path from the Internet to UEs, and uplink as the
path in the reverse direction. Similarly, we also use the terms down-
stream and upstream from the perspective of the Monitor to indi-
cate the relative locations of network elements, e.g., downstream
refers to the path between monitor and UEs.

The Performance Enhancing Proxy (PEP). The data collec-
tion point is located within the core network of the studied LTE
network. TCP traffic from or to server port 80 or 8080 traverses the
PEP on the upstream side of the monitor. The PEP splits the end-
to-end TCP connection into two, one between the UE and the PEP
and the other between the PEP and the server. It can potentially
improve the Web performance by, for example, performing com-
pression and caching. Also the PEP makes the split transparent to
UEs by spoofing its IP address to be the server’s IP address.

Data Collection. Our measurement data is a large packet header
trace covering a fixed set of 22 eNBs at a large metropolitan area
in the U.S. The data collection was started on October 12 2012 and
lasted for 240 hours. We record IP and transport-layer headers, as
well as a 64-bit timestamp for each packet. No payload data is
captured except for HTTP headers, the dominant application-layer
protocol for today’s smartphones [34]. No user, protocol, or flow-
based sampling is performed. No personally identifiable informa-
tion was gathered or used in conducting this study. To the extent,
any data was used, it was anonymous and aggregated data. During
the 10 days, we obtained 3.8 billion packets, corresponding to 2.9
TB of LTE traffic (324 GB of packet header data, including HTTP
headers). To our knowledge, this is the first large real-world LTE
packet trace studied in the research community.

Subscriber Identification. Due to concerns of user privacy, we
do not collect any subscriber ID or phone numbers. We instead
use private IP addresses (anonymized using a consistent hash func-
tion) as approximated subscriber IDs, since private IPs of the carrier
are very stable. They change only at the interval of several hours.
In contrast, public IP addresses observed by servers may change
rapidly [4]. Private IPs can also be reused. We take this into ac-
count by using a timing gap threshold of one hour in our analysis.
If a private IP has not been seen for one hour, we assume its cor-
responding user session has terminated. This potentially overesti-
mates the user base, but its impact on our subsequent analyses is
expected to be small since changing this threshold to 30 minutes
or 2 hours does not qualitatively affect the measurement results
in §4, §6, and §7. In total, we observe about 379K anonymized
client IPs and 719K server IPs.

Flow Extraction. From the data set, we extract flows based on
a 5-tuple of src/dst IP, src/dst port numbers, and protocol (TCP or
UDP). We conservatively use a threshold of 1 hour to determine
that a flow has terminated if no flow termination packets are ob-
served. We find that similar to the idle period threshold for sub-
scriber identification, the impact of this value on subsequent anal-
ysis results is negligible. Overall, 47.1 million flows are extracted
from the trace.

We emphasize here that no customer private information is used
in our analysis and all customer identities are anonymized before
any analysis is conducted. Similarly, to adhere to the confidential-

ity under which we had access to the data, in subsequent sections,
we present normalized views of our results while retaining the sci-
entifically relevant bits.

3.2 Controlled Local Experiments
We also set up a measurement testbed in our lab for controlled

experiments. The UE used is a fairly new smartphone model —
Samsung Galaxy S III (SGH-I747) running Android 4.0.4 (Ice-
Cream Sandwich, Linux kernel version 3.0.8) connecting to an LTE
network. We tested on two large commercial LTE carriers referred
to as Carrier A and Carrier B, using two Samsung Galaxy S III
phones purchased from the two carriers. We configure a server
with 2GB memory and 2.40GHz Intel Core 2 CPU, running Ubuntu
12.04 with 3.2.0-36-generic Linux kernel. Both the UE and
the server use TCP CUBIC as their TCP implementation.

Note that the purpose of using local experiments from a poten-
tially different LTE carrier at locations that may not match where
our studied data set comes from is to provide a different perspective
and also evaluate whether observations from analyzing the data set
can be empirically observed.

When measuring TCP throughput and RTT (Figures 11,20, and 19),
the UE establishes a TCP connection to the server, which then
transfers randomized data without any interruption. For throughput
measurement, we ignore the first 10 seconds of the TCP connection
(skip the slow start phase), and calculate the throughput every 500
ms from the continuously transferred data. The RTT is measured
by computing the gap between timestamps of transmitting a data
packet and receiving the corresponding ACK from the sender-side
trace collected by the tcpdump tool.

4. LTE NETWORKS CHARACTERISTICS
We study LTE traffic characteristics using the aforementioned

packet traces collected from the studied commercial LTE network.
We also compare our results with two previous measurement stud-
ies of cellular and WiFi performance on mobile devices (§4.4).

4.1 Flow Size, Duration, Rate, Concurrency
We begin by showing the protocol breakdown of the data set. For

the transport-layer protocol, TCP dominates the data set (95.3%
flow-wise and 97.2% byte-wise), with majority of the remaining
traffic in UDP. Within TCP, as the dominant application-layer pro-
tocol, HTTP (port 80/8080) contributes 76.6% and 50.1% of all
TCP bytes and TCP flows, respectively. We also notice the popu-
larity of HTTPS (port 443), which account for 14.8% and 42.1%
of TCP bytes and flows, respectively. We present a more detailed
app-layer content analysis and compare the findings with those for
3G networks in §7.1.

Following previous measurement studies of wired and WiFi net-
works [36, 22, 6], we are interested in three characteristics of LTE
TCP flows: size, duration, and rate. Size is the total number of
payload bytes within the flow (excluding IP/transport layer head-
ers). Duration is the time span between the first and last packet of
a flow. Flow rate is calculated by dividing flow size by flow dura-
tion. Understanding these characteristics is vital to many aspects
in cellular networks such as eNB scheduling, usage-based billing
policy, and RAN resource balancing and optimization. Our focus
is TCP since its accounts for the vast majority of the traffic (95.3%
of flows and 97.2% of bytes).

TCP Flow Size. Figure 2 plots the CDF of uplink and downlink
payload sizes, both exhibiting strong heavy-tail distributions. Most
flows are small: 90% of flows have less than 2.9 KB uplink payload
and 90% of flows carry no more than 35.9 KB downlink payload.
In particular, 11.3% (10.9%) of flows do not have any downlink

365

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Payload (KB)

Downlink payload
Uplink payload

Figure 2: Distribution of TCP flow sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

C
D

F

Time (second)

L
T

E
 ta

il tim
e

TCP flow duration
Last payload byte to flow end

Figure 3: Distribution of flow duration and the duration be-
tween the last payload byte to the end of the flow.

(uplink) payload as they only contain complete or incomplete TCP
handshakes. On the other hand, a very small fraction of large flows,
which are known as “heavy-hitter” flows [22], contribute to the ma-
jority of the traffic volume. For downlink, the top 0.6% of flows
ranked by payload sizes, each with over 1 MB of downlink pay-
load, account for 61.7% of the total downlink bytes. For uplink,
the top 0.1% of flows, each with over 100 KB of uplink payload,
consist of 63.9% of the overall uplink bytes. Such a distribution is
as skewed as that in wired networks [22].

We next examined the top 5% of downlink flows ranked by their
downlink payload sizes. Each of them contains at least 85.9KB of
downlink payload data and 80.3% of them use HTTP. By examin-
ing the HTTP headers (if exist) of the top 5% downlink flows, we
found that 74.4% of their contents (in bytes) are video or audio.
Regarding to the top 5% uplink flows, 73.6% of their bytes are im-
ages. Most of such traffic corresponds to users uploading photos to
social networks such as Instagram.

TCP Flow Duration. Figure 3 shows the distribution of TCP
flow duration (the solid line), defined to be the time span between
the first and the last packets of a flow. Most flows are short: 48.1%
are less than 5 seconds. 8.5% of the TCP flows are not even estab-
lished successfully and they only consist of SYN packets. For the
long-tailed part, 6.8% of the flows last at least 3 minutes and 2.8%
are longer than 10 minutes.

The dotted curve in Figure 3 denotes the timing gap between the
packet carrying the last payload byte and the last packet of a flow.
Note that most flows in the data set are properly terminated by ei-
ther FIN (86.2% of flows) or RESET (5.4%), and the remaining
flows consist of only one or more SYN packets (8.5%). One ex-
ample of the cause of the aforementioned timing gap is persistent
HTTP that tries to reuse the same TCP connection for transferring
multiple web objects so there is a timeout before the connection is
closed. This does not cause any issue in wired or WiFi networks.
However, in LTE networks, there exists a timeout for shutting down

Radio

Packet

ON ON

t=1s 11s 13s 23s

t=1s: last payload packet

t=11s: radio turns off (Tail=10s)

t=13s: TCP FIN, radio turns on

t=23s: radio turns offTime

Figure 4: An example of delayed FIN packet and its impact on
radio resource management.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.0001 0.001 0.01 0.1 1

C
D

F

Normalized TCP rate

Downlink (all)
Downlink (flows<0.1MB)

Downlink (0.1<=flows<1MB)
Downlink (1<=flows<10MB)

Downlink (flows>=10MB)
Uplink (all)

Figure 5: Distributions of normalized TCP flow rates.

the radio interface after a data transfer. Such a timeout, which is
called tail time, saves energy by taking the device to the idle state
once it finishes, and prevents frequent radio state switches [13].
We measured the timeout (i.e., the tail time) to be 10 seconds for
the studied LTE network. A delayed FIN or RESET packet will
incur additional radio-on time and one additional off-on switch if
the delay is longer than 10 seconds, leading to waste of device en-
ergy [26]. Figure 4 shows one such example, which is found to
be prevalent: delaying FIN or RESET for longer than 10 seconds
occurs in 23.1% of the flows in our data set as shown in Figure 3.

TCP Flow Rate. Figure 5 measures the flow rate. We observe a
huge disparity between uplink and downlink rates, due to (i) mobile
devices usually do not perform bulk data uploading (e.g., FTP and
P2P upload), and (ii) cellular uplink channel is significantly slower
than the downlink channel, even in LTE networks [29]. The four
downlink throughput distributions for flows with different sizes in
Figure 5 indicate that larger flows tend to be faster. Previous mea-
surements for wired networks also suggest that for Internet flows,
there exist correlations among their size, duration, and rate [36, 22].
We quantitatively confirm that similar behaviors also hold for LTE
flows. Let S, D, and R be downlink flow size, duration, and rate,
respectively, and (X,Y) be the correlation coefficient between X
and Y . We calculate the values of (logS, logD), (logD, logR),
and (logR, logS) to be 0.196, -0.885, and 0.392, respectively. For
uplink flows, the values of (logS, logD), (logD, logR), and
(logR, logS) are 0.030, -0.986, and 0.445, respectively. We found
the flow duration and the rate are much more negatively correlated,
compared with Internet flows studied in [22], whose correlation co-
efficients are between -0.60 and -0.69 for Internet backbone, VPN,
and DSL flows. This is worth further investigation to confirm if the
sessions are terminated early due to bad performance.

Concurrent TCP Flows. We explore the concurrency of TCP
flows per user in the LTE data set, as shown in Figure 6. Specifi-
cally, we use 1 second as a threshold to determine the concurrency,
i.e., for the sampled time point, we count the number of TCP flows
that have the downlink data transfers within the last 1 second. We
observe that for 72.1% of the time, there is only one TCP flow ac-
tively downloading data, and this percentage might be even larger
for smartphone users, considering that our data set also consists of
a small share of users that uses LTE data cards on their laptops,
which may have high TCP flow concurrency.

366

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

TCP concurrency

Figure 6: Concurrency for TCP flows per user uniformly sam-
pled by time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized RTT

C-M
M-P
M-S
C-S

DNS lookup time

Figure 7: Distributions of normalized handshake RTT and
DNS lookup time.

4.2 Network Latency
Figure 7 measures distributions of TCP handshake RTT. “C”,

“M”, “P”, and “S” correspond to the client (UE), monitor (the data
collection point), PEP, and remote server, respectively. Since the
monitor lies in the LTE core network, we can break down the over-
all RTT into two components: the downstream RTT between a
client and the monitor (“C-M”, for all traffic), and the upstream
RTT between either the monitor and the PEP (“M-P”, for TCP port
80/8080 traffic) or server (“M-S”, for other traffic). The down-
stream RTT is an estimation of the latency in the RAN (Figure 1).
In a TCP three-way handshake, let the monitor’s reception time of
SYN (uplink), SYNACK (downlink), and ACK (uplink) be t1, t2,
and t3, respectively. Then the upstream RTT is computed as t2−t1,
and the downstream RTT is t3−t2. The “C-S” curve combines both
the “C-M” and the “M-S” components (for non-PEP traffic only).

It is well known that in 2G/3G data networks, usually the RAN
latency dominates the overall end-to-end delay [35]. This is no
longer the case in LTE networks. Figure 7 shows that the up-
stream RTT to a remote server (“M-S”) has a higher variance, and
is usually larger than the downstream RTT (“C-M”). This is fur-
ther confirmed by Figure 8, which plots the distribution of ratios
between the upstream RTT and the downstream RTT for non-PEP
(“C-S”) flows. For 55% of the non-PEP flows, their upstream RTTs
are larger than the corresponding downstream RTT, whose reduc-
tion (i.e., the reduction of the RAN latency) is mostly attributed
to the flattened network topology in the LTE RAN. For example,
the two-layered RAN architecture (NodeB and the Radio Network
Controller, RNC) in 3G UMTS/HSPA networks is replaced by the
single-layered eNB architecture in LTE, helping significantly re-
ducing the RAN latency [29] (See §4.4 for quantitative compar-
isons). Further, the “M-P” curve in Figure 7 indicates the latency
between the monitor and the PEP is very small.

LTE Promotion Delay. In cellular networks, the end-to-end la-
tency of a packet that triggers a UE’s radio interface to turn on is
significantly long. Such a packet incurs a radio resource control
(RRC) promotion delay during which multiple control messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Ratio of RTT(M-S) / RTT(C-M)

Figure 8: Distribution of the radio between uplink and down-
link RTT (for non-PEP traffic).

UE RAN Monitor Server/PEP

SYN

SYNACK

ACKTSb

TSa

G
(T
S
b
-T
S
a
)

P
ro
m
o

D
e
la
y

R
TT

Figure 9: Estimating the promotion delay.

are exchanged between a UE and the RAN for resource alloca-
tion. The promotion delay can be as long as 2 seconds in 3G net-
works [25], and it also exists in LTE networks [13]. The promotion
delay is not included in either the upstream RTT or the downstream
RTT in Figure 7, since the promotion (if any) has already finished
when the monitor observes a SYN packet, as illustrated in Figure 9.
However, we are able to infer the promotion delay using the TCP
timestamp embedded into a TCP packet when the packet is about to
leave the UE. In a three-way handshake, let the TCP timestamp of
the SYN and the ACK packet be TSb and TSa, respectively. Then
the round-trip time (including the promotion delay) experienced by
the UE is G(TSb − TSa) where G is the inverse of the ticking
frequency of UE’s clock generating the TCP timestamp. Note that
the TCP timestamps are not wall-clock times. Their units depend
on the ticking frequency of the UE. We detail how to compute G
in §6.1. Finally the promotion delay (if exists) could be derived by
subtracting the RTT between the UE and the server/PEP (estimated
in Figure 7) from G(TSb − TSa), as shown in Figure 9.

We calculated promotion delays using the aforementioned method,
by examining TCP handshakes with the following property: the
user does not send or receive a packet within the time window
(t−T, t) where t is the reception time of SYN and T is the window
size. We conservatively choose T = 13 seconds which is larger
than the 10-second timeout of the studied LTE network. This re-
striction ensures the UE is in the idle state when the handshake is
initiated. Therefore, the SYN packet must trigger a state promo-
tion. The 25%, 50%, and 75% percentiles of the promotion delay
are 319 ms, 435 ms, and 558 ms, respectively. We found these are
significantly shorter than the 3G promotion delays (around 2 sec-
onds from idle to high-power state, and around 1.5 seconds from
low-power to high-power state [25]), possibly due to the simplified
signaling protocol in LTE networks [29].

DNS Lookup. The “DNS” curve in Figure 7 measures the DNS
lookup delay, computed as the delta between the reception time of a
DNS request and its response at the monitor. Note this is the latency
between monitor and the DNS server, and we are not able to mea-
sure the downstream latency since DNS messages are transferred

367

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

N
o
rm

a
liz

e
d
 R

T
T

Bytes in flight (KB)

Figure 10: Downlink bytes in flight vs. downstream RTT.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

R
T

T
 (

m
s
)

Bytes in flight (KB)

Figure 11: Downlink bytes in flight vs. downstream RTT (con-
trolled lab experiments with LTE Carrier A).

over UDP. We found that the upstream latency is usually very short
i.e., less than 10 ms for 87.3% of request-response pairs. Since
the studied LTE network (Figure 1) has its own DNS server, the
short lookup delay indicates the desired effectiveness of the DNS
server, which caches most DNS responses so their domain names
are effectively resolved locally within the LTE core network.

4.3 Queuing Delay and Retransmission Rate
§4.2 focuses on the RTT of TCP connection establishment dur-

ing which the small TCP handshake packets are usually unlikely to
be buffered by the network. During the data transfer phase, a TCP
sender will increase its congestion window, allowing the number
of unacknowledged packets to grow. Such “in-flight” packets can
potentially be buffered by routers and middleboxes on their net-
work paths, incurring queueing delays. In LTE networks, buffers
are extensively used to accommodate the varying cellular network
conditions and to conceal packet losses [29].

Figure 10 shows the relationship between the downstream RTT
and the number of downlink in-flight bytes, which is computed by
counting the unacknowledged bytes. As shown in Figure 10, the
downstream RTT tends to inflate as the number of in-flight bytes
increases. The in-flight bytes in our studied LTE network can be
larger than 1200 KB, causing high latency due to the queuing delay.
We vary this in local experiments (§3.2) where we measure both the
RTT and the bytes in flight at UE for two large commercial LTE
networks. As shown in Figure 11 and 12, the trend that RTT grows
with the number of in-flight packets is obvious. Our observation
is also consistent with a recent study [16] that shows the usage of
large buffers in today’s cellular networks may cause high queuing
delays. In addition to that, we further demonstrate its prevalence
in today’s LTE networks: as shown in Figure 13, which plots the
distribution of downlink in-flight bytes for large flows (> 1MB),
about 10% of measured instances have in-flight bytes greater than
200 KB, potentially leading to long queuing delays.

Clearly, for short flows or traffic triggered by user interactions
(e.g., web browsing), queues are not likely to build up. For long-
lived flows, usually it is the throughput instead of latency that mat-
ters. However, when short-lived and long-lived flows coexist (e.g.,
performing browsing while streaming in the background), queuing
delay may severely deteriorate user experience by introducing un-

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

R
T

T
 (

m
s
)

Bytes in Flight (KB)

Figure 12: Downlink bytes in flight vs. downstream RTT (con-
trolled lab experiments with LTE Carrier B).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

Downlink bytes in flight for a TCP flow (KB)

TCP downlink bytes in flight

Figure 13: Distribution of downlink bytes in flight for large
flows (> 1 MB).

acceptable delays for short flows. Moreover, as a new observation,
we found that a high downstream queuing delay may often cause
TCP’s congestion window to collapse upon a single packet loss.
We discuss this newly identified and rather severe issue in §5.

Retransmission Rate. We study TCP downlink retransmission
rate, defined as the number of retransmitted packets divided by
all packets, across all downlink flows in our data set. 38.1% of
the flows have zero retransmission, and the median is only 0.06%.
Such low retransmission rates are comparable to those in wired net-
works [22]. There are even fewer packet losses since the retrans-
mission rate is an upper bound of the packet loss rate in the down-
stream (i.e., between UE and monitor, note we are not able to cap-
ture losses occurring on the upstream side of the monitor). In fact,
in cellular networks, most transport-layer losses are concealed by
physical/MAC-layer retransmission and reduced by buffering. In
particular, buffers in LTE networks upstream from the airmile can
play an important in absorbing the burstiness of the traffic transmit-
ted over the lossy wireless link, helping achieve a low loss rate.

4.4 Comparison to Previous Studies
We compare our results with three previous measurement stud-

ies, focusing on three important metrics: TCP downlink through-
put, TCP uplink throughput, and TCP handshake RTT. The 3GTest
study [14] deployed an app that measures network performance
metrics on users’ handsets. Their data consisted of 35K cellular
(3G only) tests from customers of four large U.S. cellular carri-
ers in late 2009. The 4GTest study [13] adopts a similar approach
while focusing on LTE users. Its data comprises of about 1K LTE
tests and a few WiMAX tests across the U.S. in late 2011. A recent
study [31] examined a 15-week data set from speedtest.net in
2011. Table 1 shows their reported performance metrics for hand-
held device users from three locations: New York City (246K WiFi
tests / 79K cellular tests), Madison Wisconsin U.S. (24K WiFi / 4K
cellular), and Manchester U.K. (291K / 31K). The cellular technol-
ogy ranges from 2G EDGE to 4G LTE, but is dominated by 3G
(UMTS/EvDO/HSPA).

We discuss three major issues that may affect the comparison.
First, all three previous studies perform throughput measurement

368

Table 1: Comparing with previous measurement studies
Study Our Results 3GTest [14] 4GTest [13] SpeedTest [31]
Time October 2012 Aug to Dec 2009 Oct to Dec 2011 February 21 2011 to June 5 2011 (15 weeks)

Location One US Metro Area Across U.S. Across U.S. New York City Madison WI, US Manchester UK
Type LTE Only Four 3G ISPs LTE WiMAX Cellular WiFi Cellular WiFi Cellular WiFi

5% TCP DL∗ 569 74 – 222∗∗ 2112 431 108 404 99 347 28 267
50% TCP DL 9185 556 – 970 12740 4670 1678 7040 895 5742 1077 4717
95% TCP DL 24229 1921 – 2943 30812 10344 12922 17617 3485 14173 3842 15635
5% TCP UL 38 24 – 52 387 172 52 177 55 168 25 180

50% TCP UL 2286 207 – 331 5640 1160 772 2020 478 1064 396 745
95% TCP UL 8361 434 – 664 19358 1595 5428 10094 1389 5251 1659 5589
5% HS RTT 30 125 – 182 37 89 68 21 99 24 98 34
50% HS RTT 70 160 – 200 70 125 159 54 184 69 221 92
95% HS RTT 467 645 – 809 127 213 786 336 773 343 912 313
∗ TCP DL: downlink throughput (kbps). TCP UL: uplink throughput (kbps). HS RTT: TCP handshake RTT (ms). 5%, 50%, 95% are percentiles.
∗∗ For a range x – y, x and y are the result of the worst and the best carriers, respectively, for that particular test.

using bulk data transfer of a large file without any pause while our
flows may consist of idle time periods (e.g., due to user think time),
leading to a lower throughput. To obtain more fair comparison,
here we only consider large non-PEP flows in our data set (with at
least 200 KB for uplink and 1 MB for downlink) with no visible
idle time period (with maximum inter-packet time of less than 1
second, which is larger than 99.9th percentile of RTT). Second,
in our case, remote servers may impose rate limit [10] while all
previous studies perform active probing using dedicated test servers
without any limitation on throughput. Third, we infer performance
metrics from traces of real Internet servers, while 3GTest, 4GTest,
and SpeedTest employ different server selection policies: 3GTest
uses a single server located in U.S. while 4GTest and SpeedTest
picks a server geographically close to the UE. This in particular
affects the latency estimation.

The comparison results are shown in Table 1. Despite aforemen-
tioned differences among diverse measurement approaches, we be-
lieve the comparison can still demonstrate the advantage of LTE
over other types of cellular access technology, since their perfor-
mance difference is quite significant: the median downlink through-
put, uplink throughput, and handshake RTT are 9.5x, 6.9x, and
0.43x compared with the median values of the best U.S. 3G car-
rier in 2009, respectively. Compared with the 2011 New York City
cellular results, the ratios are 5.5x, 3.0x, and 0.44x for DL through-
put, UL throughput, and RTT, respectively. Moreover, on mobile
devices, LTE also outperforms WiFi in many cases. Specifically,
for the 5th/50th/95th percentiles of downlink throughput and the
median uplink throughput shown in Table 1, LTE performs bet-
ter than WiFi. Based on Table 1, LTE’s latency appears higher
than that of WiFi. However, recall that Speedtest always picks a
nearby test server while we are measuring the RTT between UE
and real servers that may be far away. This may lead to an unfair
RTT comparison. Furthermore, our performance values are con-
sistently lower than those reported by LTE tests from 4GTest, very
likely due to the rate limiting imposed by remote servers as men-
tioned before. A recent study [10] indicates such rate limiting is
prevalent across today’s Internet servers. We also observe that LTE
significantly outperforms WiMAX in all three metrics.

5. ABNORMAL TCP BEHAVIOR
Due to their resource usage, we focus on large flows defined to be

relatively long flows, with more than 5 seconds data transfer time,
and total downlink payload exceeding 1MB. These large flows ac-
count for only 0.3% of all TCP flows in our data set, but their total
downlink payload contributes to 47.7% of all downlink payload.

As background, upon receiving an out-of-order unacknowledged
segment, a TCP receiver sends an immediate duplicate ACK [3].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Number of Packets (or Packet Ratio)

Duplicated ACK packets
DUP ACK / OutOrder Data ratio

Out-of-order data packets

Figure 14: Observed duplicate ACKs and packet reordering in
large TCP flows.

From the sender’s perspective, duplicate ACKs can be caused by
reordering or loss. Therefore, when there is a large amount of
bytes in flight and one data segment S is lost, each data segment
with sequence number higher than that of S triggers a duplicate
ACK, before a retransmission of S is successfully received. So a
long sequence of duplicate ACKs strongly suggests a packet loss.
When TCP detects 3 duplicate ACKs, it infers a data packet loss
and retransmits it according to the fast retransmit [3]. In the mon-
itor traces, we detect this behavior as the data packet sent by fast
retransmit is out-of-order relative to other packets.

Figure 14 summarizes duplicate ACKs and packet reordering in
the large TCP flows. Although the median of duplicate ACKs in
large flows is 17, for over 29.0% of the large flows, there are over
100 duplicate ACKs. We observe that the number of out-of-order
data packets in large flows is substantially smaller than that of du-
plicate ACKs, with a median value of only 2. By studying the ratio
between duplicate ACKs and out-of-order data packets, 24.7% of
flows have a ratio of over 25, and for some flows, this ratio can
reach up to 5,000. This indicates that even a single out-of-order
data packet can trigger a large number of duplicate ACKs when the
bytes-in-flight are large, using up more uplink bandwidth.

Fast retransmission allows TCP to directly send the lost segment
to the receiver possibly preventing retransmission timeout (RTO).
If so, TCP would resume data transfer with the congestion win-
dow size reduced by half. However, as shown earlier, we identified
significant queuing build up between UE and monitor. Such large
in-network queues capable of holding up to a few megabytes data
could delay the receipt of the retransmitted data packet. In that
case, if TCP does not use duplicate ACKs to update RTO (retrans-
mission timeout), a timeout is likely to happen. Specifically, if the
corresponding ACK does not arrive at the server within the (under-
estimated) RTO, the congestion window would drop to 1 segment,
triggering slow start, significantly hurting TCP performance. We
refer to this as the undesired slow start problem.

369

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 2 2.5 3 3.5 4

R
e

la
ti
v
e

 S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time (second)

Data
ACK

Figure 15: Duplicate ACKs not triggering a slow start.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 0.5 1 1.5 2 2.5 3

R
e

la
ti
v
e

 S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time (second)

Data
ACK

Figure 16: Duplicate ACKs triggering a slow start.

Figures 15 and 16 demonstrate two examples in the data set,
where Figure 15 shows that the train of duplicate ACKs does not
trigger slow start and Figure 16 includes a case where an undesired
slow start is triggered. Their key difference is that Figure 16 has
about 500KB bytes in flight before the first duplicate ACK, while
Figure 15 has much fewer bytes in flight.

In TCP, RTO is computed by the sender using smoothed RTT
and RTT variation [20]. However, using duplicate ACKs to update
RTO, which may be beneficial by allowing more accurate RTT es-
timation, is not standardized. In Figure 16, between 1.1s and 1.5s,
the sender receives many duplicate ACKs. Due to the growing
queueing size, RTT grows from 262ms (the last RTT sample before
the first duplicate ACK) to 356ms, the RTT for the retransmitted
packet. The sender’s TCP implementation apparently ignores these
duplicate ACKs for updating RTO, which remains the same with-
out the duplicate ACKs being considered. Following the method
for calculating RTO [20], we observe that RTO is around 290ms
before the first duplicate ACK, which is smaller than the RTT of
the retransmitted packet (356ms). This problem does not happen
in Figure 15, because the RTT before the first duplicate ACK is
close to that after the last duplicate ACK, due to the small num-
ber of bytes in flight. Although it is recommended that the RTO
should be at least 1 second [20], depending on the operating sys-
tems, different minimum values are used, e.g., Linux’s minimum
RTO is 200ms [28]. Such small values of RTO can exacerbate the
undesired slow start problem demonstrated in Figure 16.

We study the prevalence of the undesired slow start problem.
To tell whether there is a slow start following a long list of dupli-
cate ACKs, we use a heuristic metric Rss, the ratio of slow start:
Rss =

θ[100,200]
θ[0,100]

, where θ[t1,t2] is the average downlink throughput
from t1 ms to t2 ms after the last duplicate ACK. We empirically
choose 200ms as it is observed to be shorter than a typical slow
start in the LTE networks. During a slow start, Rss is expected to
be larger than that when there is no slow start. For example, the
Rss is 1.0 for Figure 15 and Rss is 3.7 for Figure 16. In prac-
tice, we observe that 1.5 is a good threshold forRss in determining
slow start. Using this threshold, we have determined that for all the
large TCP flows with at least one lost data packet, 20.1% of them

t1

TCP DATA

TCP ACK

t0
t2

t5

t3

t4

t6
t7

TS1

TS2

UE (OS) UE (Radio) Monitor Server

P1

P2

Pn-1

Pn

Figure 17: Typical TCP data transfer.

suffer from the slow start problem, which consists of 12.3% of all
large TCP flows. In one case, a 153-second flow even experience
50 slow starts, resulting in an average throughput of only 2.8Mbps,
while the estimated bandwidth actually larger than 10Mbps.

There are different ways to mitigate this problem. One approach
is to update RTO with the help of duplicate ACKs with TCP Se-
lective Acknowledgment options (SACK) [18]. By taking the dif-
ference between the SACK window of two consecutive duplicate
ACKs, we can usually identify the exact data packets correspond-
ing to these ACKs. If there exists ambiguity (e.g., due to lost or
reordered ACK packets), we can simply ignore the corresponding
samples. In our data sets, packet reordering rate is less than 1%
and SACK is enabled in 82.3% of all duplicate ACKs, making this
approach promising. If SACK is disabled, we can use a fall-back
approach to estimate RTT based on duplicate ACKs by assuming
that they are in response to the data packets sent out in order. This
assumption holds in most cases as the packet reordering rate is low.

Using the above approaches, we can obtain RTT estimations for
duplicate ACKs and update RTO accordingly, which effectively
prevents the timeout of retransmitted packets due to increased queue-
ing delay. Our initial analysis shows that these two approaches can
prevent more than 95% of the undesired slow starts. Note that the
RTT estimation method used in TCP Vegas [5] with help of the
TCP timestamps option is not applicable to duplicate ACKs, since
the echo timestamps of all duplicate ACKs are all the same, with
their values being the timestamp of the segment before the lost seg-
ment, rather than the timestamp of the data segments triggering the
duplicate ACKs. From the mobile network operators’ perspective,
one solution of the undesired slow start problem might be to prior-
itize retransmitted packets. However, the security and performance
implications of this approach are yet to be studied.

6. BANDWIDTH ESTIMATION
In order to understand the network utilization efficiency of ex-

isting applications in the LTE networks, we first need to know the
available bandwidth for each user. Previous work on active band-
width measurement methodology to estimate available bandwidth,
e.g., using packet pairs, packet trains, and parallel TCP connec-
tions [21, 15, 12], do not apply here. As existing studies have
shown that network condition is highly variable in cellular net-
works [14], active probing would require us to launch measure-
ments for each user at the time of trace collection. Using packet
traces collected at the monitor, we instead devise a passive band-
width estimation algorithm to capture the available bandwidth for
each user using TCP flows that may not fully utilize the bandwidth.

6.1 Bandwidth Estimation Algorithm
Figure 17 illustrates a typical TCP data transfer. Our monitor

lies between the server and the UE, and we only use packet traces

370

collected at the monitor for analysis. The high-level idea for our
bandwidth estimation algorithm is to select a time window within
which the sending rate is fast enough to exceed the available band-
width, and then calculate the UE receiving rate that corresponds to
the actual available bandwidth during the short time window. Note
that the receiving rate is often smaller than the sending rate, causing
the in-network buffers to be filled up (§4.3).

We use Figure 17 to illustrate our bandwidth estimation algo-
rithm. At t2, UE sends an ACK in response to the two data packets
P1 and P2. And similarly, at t6, the ACK for Pn−1 and Pn is
sent. From the monitor’s traces, we observe that n−2 data packets
(P3 · · ·Pn) are sent to the UE in a time window between t0 and t4.
Assuming the average payload size of these n− 2 packets is S, the
sending rate between t0 and t4 is

Rsnd =
S(n− 2)

t4 − t0
(1)

At UE, the receiving rate for these n− 2 packets is

Rrcv =
S(n− 2)

t5 − t1

Typically, t2 is very close to t1 and similarly t5 ≈ t6. In our
controlled lab experiments, for a 30-minute continuous trace, the
median value of the delay between a data packet and the corre-
sponding ACK is negligible: 0.3ms. However, such a delay, e.g.,
t2−t1, could be large in some cases. Typically, one ACK in TCP is
for two data packets and when there is only one data packet pend-
ing acknowledgement, the receiver may delay sending the ACK by
up to 500 ms, which is known as the delayed acknowledgement
mechanism [27]. In our example, if Pn−1 has already been ac-
knowledged by another ACK and after t5 there is no more data
packet arriving at the UE side, the ACK for Pn could be delayed.
For simplicity, we ignore cases where the last ACK is acknowledg-
ing only one data packet, indicating it might be a delayed ACK. We
also do not consider cases with out-of-order data packets or dupli-
cate ACKs in the time window for bandwidth estimation, as there
may be ambiguity in packet timing. Then we have

Rrcv ≈ S(n− 2)

t6 − t2

If the uplink delay from the UE to the monitor is stable, we can
assume t6 − t2 = t7 − t3. However, this assumption may not hold
as RTT can be significantly affected by the bytes in flight. Instead,
we use the TCP Timestamps option [32] to calculate t6− t2. If that
option is enabled, ACKs sent from a UE will contain the Timestamp
Value field (TSval) i.e., the current value of the UE’s timestamp
clock. The unit for TSval depends on devices’ implementation. We
denote it by G, which can be treated as a constant for the same
device. Assuming G is known, we can estimate Rrcv as

Rrcv ≈ S(n− 2)

G(TS2 − TS1)
(2)

where TS1, TS2 are the TSval in the two corresponding ACKs.
Our bandwidth estimation algorithm only requires a UE having the
TCP Timestamps option enabled. In our data set, for 92.6% of the
TCP flows, this requirement is satisfied.

We infer G using the method from previous work [11]. Using
the example in Figure 17, we have

G ≈ TS2 − TS1

t7 − t3
(3)

To minimize the error, we require t7 − t3 to be large enough
i.e., greater than a threshold δG. A larger δG value leads to more

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

%
 e

rr
o

r

δG: time between ACKs for inference (s)

Device 1 (G = 10.00 ms/tick)
Device 2 (G = 3.91 ms/tick)

Figure 18: G inference and the selection of δG.

accurate estimation of G but requires more time for inference. Fig-
ure 18 plots the relationship between δG and the estimation error
rate forG, based on controlled experiments for two devices, whose
actual G values (i.e., the ground truth) are measured at the UE side
using 30-minute long traces. We observe that the error rate of G
inference drops significantly as δG increases so we conservatively
select δG = 3 seconds, which incurs less than 0.1% of error rate
in Figure 18. The error rate also depends on the value of G. In
our data set, among all large flows, 5.9% of them do not have the
UE Timestamps option enabled, 57.3% have G ≈ 1ms/tick, 36.4%
have G ≈ 10ms/tick, and the rest 0.4% have other values, e.g.,
G ≈ 100ms/tick. With δG = 3 seconds, the error rates of inferred
G are less than 0.1% for the vast majority of large flows.

Summary. for a target TCP flow, if itsG value is not known, the
algorithm uses the initial δG = 3 seconds of the flow to infer G by
selecting two uplink packets that are at least δG seconds apart (For-
mula 3). Flows without UE TCP Timestamps are ignored. Then
the algorithm scans for each time window with high sending rate
Rsnd calculated by Formula 1. If (i) Rsnd ≥ C, a pre-known con-
stant of the maximum possible available bandwidth in the studied
network, and (ii) there is no out-of-order data packets or duplicate
ACKs within the time window, and (iii) the last ACK in the window
is not a delayed ACK, then the algorithm computes a bandwidth es-
timation sample according to Formula 2. The selection of C incurs
the following tradeoff: if C is too small, the bandwidth will be un-
derestimated when the sending rate within the estimation window
is not high enough to fully utilize the available bandwidth; if C is
too large, we may not be able obtain a sufficiently large number of
estimation samples. We conservatively chooseC = 30Mbps, which
is verified to be higher than the rate of most flows, and in the mean-
while allows us to predict the available bandwidth for over 90%
of the large downlink flows. Our algorithm automatically searches
for different window sizes t5− t1 for getting bandwidth estimation
samples, and we only consider the cases where there are packets
at both t1 and t5. Typically, valid bandwidth samples are obtained
when the window size is equal to a few times the RTT.

In addition to downlink bandwidth, our algorithm is also appli-
cable to uplink bandwidth estimation, by interchanging the UE and
the server in Figure 17. Similarly, our bandwidth estimation algo-
rithm also works in other network types, such as 3G, WiFi and even
wired networks, with proper parameter settings of C and δG.

Although the described algorithm is based on one single TCP
flow per user, a similar idea can be applied to multiple concurrent
flows per user by summing up the predicted bandwidth for differ-
ent flows. As long as we ensure that the total sending rate for all
concurrent flows are larger than C, the aggregated receiving rate
would be an accurate estimation of the available bandwidth. In this
study, we apply the algorithm on LTE downlink traffic (UEs down-
loading contents from servers) for single TCP flows, i.e., without
other competing downlink flows for the same user.

371

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 0 5 10 15 20 25 30

C
D

F

Downlink throughput (Mbps)

Actual throughput
Error 1.0s window
Error 0.1s window

Estimated bandwidth

Figure 19: CDF of bandwidth estimation results for LTE net-
work (controlled lab experiments with Carrier A).

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400 1600 1800

T
C

P
 t

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Time (s)

Error of estimated bandwidth
Actual throughput

Figure 20: Time series of bandwidth estimation for LTE net-
work (controlled lab experiments with Carrier A).

6.2 Validation with Local Experiments
To validate the bandwidth estimation algorithm, we use con-

trolled experiments with their setup described in §3.2.
Recall that during the throughput test (§3.2), the server sends

data without any interruption so the throughput measured on the
UE is a reasonable (but not necessarily perfect) approximation of
the available bandwidth. Therefore in Figure 19, we compare the
distribution of estimated bandwidth calculated from the server-side
packet trace (§6.1) with the actual throughput measured from the
UE-side packet trace by sliding a window of a fixed length (e.g.,
1.0s) over the trace. For each window position, we get one server-
side bandwidth estimation sample that is time-wise closest to the
center of that window, and we compare this sample with the actual
throughput to obtain an error sample. Note that the term “error”
here is relative to the actual throughput observed from UE-side
traces, which itself might not be the actual available bandwidth,
and the true error rate for our estimation algorithm could be even
smaller. The error distributions for two window lengths, i.e., 1.0s
and 0.1s, are shown in Figure 19. For the 1.0-second window, the
average error is 7.9% and for 0.1s window, the UE throughput has
higher variation and the average error is slightly higher. Figure 19
also directly compares the distributions of the absolute values of
the actual throughput (using a sliding window length of 1.0s) and
the estimated bandwidth, both of which are very close. Figure 20
visualizes an example test by showing the UE-perceived through-
put as well as the absolute error for the estimated bandwidth over
30 minutes (1.0s window). The actual throughput fluctuates around
10Mbps and the error fluctuates within ±1Mbps in most cases.

6.3 Bandwidth Utilization by TCP Flows
In this section, we analyze the LTE traffic data set to understand

network utilization efficiency of TCP flows. As shown in Figure 6
(§4.1), most users have only one TCP flow actively downloading
data. We therefore only consider single TCP flows with no com-
peting downlink flows from the same user.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio of used bandwidth

Figure 21: BW utilization ratio for large downlink TCP flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

N
o

rm
a

liz
e

d
 T

C
P

 t
h

ro
u

g
h

p
u

t

Time (s)

BW estimation for sample flow 1
BW estimation for sample flow 2

Figure 22: BW estimation timeline for two large TCP flows.

We apply the bandwidth estimation algorithm on the large TCP
downlink flows (>5 seconds, >1 MB) that are not concurrent with
other flows. We split each large flow into consecutive windows of
250ms. For each window, we take one bandwidth estimation sam-
ple that is closest to the center of the window. For some flows, there
exist windows that do not contain any valid bandwidth estimation
sample and we simply ignore such windows. This will not qualita-
tively affect the analysis results as such unknown duration accounts
for less than 20% of the total flow duration. For each flow, we use
the average value of all bandwidth estimation samples as the esti-
mated flow bandwidth and compare it with the actual utilized flow
bandwidth, computed by dividing total bytes by flow duration.

Figure 21 plots the ratio of used bandwidth to estimated band-
width across large flows. The median ratio is only 19.8%. For
71.3% of large flows, their bandwidth utilization ratios are below
50%. For 6.4% of the flows, the used bandwidth is slightly larger
than the estimated bandwidth, possibly due to estimation error.
On average, the utilization ratio is 34.6%. Transferring the same
amount of data requires a longer period of time with lower band-
width utilization ratio, which incurs additional radio energy over-
head and more radio resource consumption [13].

Figure 22 shows two sample large TCP flows and their estimated
bandwidth in the LTE data set. They belong to two users at dif-
ferent time and the time is aligned only for presentation purpose.
We observe that the available bandwidth varies significantly over
time and even on the scale of seconds. This could be attributed to
network condition changes (e.g., signal strength) or changes of the
network load in associated eNB. In order to dissect the root cause of
such variability, more information, e.g., load information of eNB,
is needed.

To understand how well TCP performs under highly variable
available bandwidth, we use iptables to redirect packets to a
packet scheduler we designed, which changes the available band-
width following the variations observed in LTE networks. The
packet scheduler also injects varying delays to each packet helping
us to understand the impact of RTT. Intuitively, when RTT is larger,
TCP would adapt slower to the varying available bandwidth, as the
congestion window is updated only once per RTT. We measure the

372

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30

R
e

la
ti
v
e

 S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time (second)

Data
Ideal case

ACK

Figure 23: Full receive window slows Shazam player (a popular
app) in downloading a 30-second music file.

bandwidth utilization ratio with the packet scheduler changing the
available bandwidth every 500ms. We observe that under small
RTTs, TCP can utilize over 95% of the available bandwidth. How-
ever, when RTT exceeds 400ms, the utilization ratio drops to below
50%. We also observe that for the same RTT, higher bandwidth
variation leads to lower bandwidth utilization. These observations
further suggest that large RTTs can degrade TCP performance in
LTE networks, which have inherently varying available bandwidth
likely caused by changes in load and channel conditions.

7. NETWORK APPLICATIONS IN LTE
In this section, we characterize the network applications and traf-

fic patterns in the LTE data set. Specifically, we study the application-
layer causes of inefficient bandwidth usage observed in §6.

7.1 HTTP Content Characterization
HTTP dominates the application-layer protocol usage on mobile

devices [34]. We break down the total bytes of HTTP traffic based
on content types. About 37.8% are video, followed by 19.5% for
images and 11.8% for text. Files in zip format contribute to 8.3%
of the HTTP traffic and they mostly correspond to file downloads
such as app updates. Audio contents are responsible for 6.5% of
HTTP traffic and other content types for 5.6%. The remaining
10.5% are unknown. Within video contents, we observe 12.9% to
be octet-stream type (byte stream in binary format), most of which
are generated by video players via byte-range requests.

Previous studies show that the multimedia contents (video and
audio) correspond to 40% of the traffic generated by mobile hand-
held devices in DSL networks [19], and video contributes to 30%
of the 3G cellular traffic [7]. Although we observe slightly higher
percentage of multimedia traffic in this LTE network, the differ-
ence is insignificant. Overall, we observe multimedia contents still
dominate the LTE traffic, followed by images.

7.2 Inefficient Network Usage
We investigate the large flows with under-utilized network band-

width and observe that the TCP receive window size [32] has be-
come the bottleneck in many cases.

Figure 23 shows one such example: an iOS user launches the
popular Shazam app [2] to download a 30-second music file of
1MB. Initially, the data transfer speed is high and between time 0s
and 2s the average downlink throughput is over 3Mbps. However,
between 2s and 9s, the average throughput decreases to less than
300Kbps. The total download time is 9 seconds and as indicated
by the ideal case curve, the download could have been completed
within 2.5s, based on our estimation of the available bandwidth.
In addition, we notice that the TCP connection is not immediately
closed after the file transfer is complete, although the HTTP request
specifies the connection to be Connection:close. In fact, the
connection is torn down at 30s, after the music clip has finished

 55040

 55060

 55080

 55100

 55120

 0 50 100 150 200
 0
 5
 10
 15
 20
 25
 30

C
lie

n
t

p
o

rt
s

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (second)

HTTP Request
HTTP Response

Aggregate throughput

Figure 24: The periodic request behavior of Netflix player lim-
iting its overall throughput.

playing and the client sends some TCP receive window updates to
the server between 20s and 25s to increase receive window sizes.
Overall, the total download process keeps the radio interface on for
38 seconds. Assuming a tail time of 10 seconds [13], in the ideal
case, the active radio time is only 12.5 seconds.

The performance drop at 2s in Figure 23 is due to the TCP re-
ceive window becoming full. Between 0s and 2s, the window size
has gradually dropped to a small value, e.g., at the turning point
around 2s, the window size is 816 bytes, even smaller than the max-
imum packet payload size (1358 bytes in the trace). As TCP rate is
jointly controlled by the congestion window and the receive win-
dow, a full receive window would prevent the server from sending
more data regardless of the congestion window size, leaving the
bandwidth under-utilized.

The reason for the full TCP receive window is two-fold. First,
the initial receive window size is not large, e.g., 131.8KB in the case
of Figure 23, much smaller than the file size. We explore the initial
advertised receive window size in all TCP flows, and observe that
the values fall in 131,712±600 bytes for over 99% of the flows, for
iOS, Android and Windows Phone devices. Second, the application
is not reading the data fast enough from the receiving buffer at TCP
layer. Otherwise, even if the initial receive window is small, the
receive window size should not drop to close to 0 afterwards.

We further study the prevalence of such poor network perfor-
mance throttled by the TCP receive window. We find that for all
downlink TCP flows, 52.6% of them experience full receive win-
dow. And for 91.2% of these affected flows, the receive window
bottleneck happens in the initial 10% of the flow duration. These
observations suggest that about half of the TCP flows in the dataset
are experiencing degraded network performance limited by the re-
ceive window size.

We also observe that some apps under-utilize the bandwidth due
to the application design. Figure 24 shows the network behavior
of the popular Netflix app [1] on iOS. The upper half of the figure
shows the HTTP requests and responses on different client ports.
At around 70s, the user browses through a list of video thumbnails
and switches to another video. We observe that all HTTP requests
for video download are HTTP byte-range requests and the corre-
sponding responses are mostly short in duration (smaller than 1s,
making them barely visible). The response sizes range from 1MB
to 4MB. The client periodically requests for video chucks every
10s, with each TCP connection typically reused by two consecutive
requests. The bottom half of the figure plots the aggregated down-
link throughput, showing a clear periodic pattern corresponding to
the periodic requests. While the peak throughput can reach up to
30Mbps, for most of the time, the network interface is idle. This
type of traffic pattern is known for incurring high tail energy [24].
In this particular case, we know that the tail timer for the studied
network is 10s, and based on the LTE radio resource control (RRC)
state machine [13], the 10-second request periodicity would keep

373

the UE radio interface always at the high-power state, incurring
unnecessarily high energy overheads.

7.3 Discussions
We have shown that multimedia traffic is dominant in LTE net-

works and the available bandwidth is far from being effectively uti-
lized by many popular apps. Hence optimizing the network uti-
lization for these apps is critical for improved user experiences and
battery life.

For the TCP receive window problem, existing studies [16] have
shown that smartphone vendors may have been reducing receive
window sizes to mitigate the “buffer bloat” problem, resulting in
TCP performance degradation. Dynamic receive window adjust-
ment (DRWA) [16] is proposed to address this issue. However,
such proposals require changes to TCP stacks, making their de-
ployment potentially challenging. As an orthogonal solution, ap-
plications should read downloaded data from TCP’s receiver buffer
quickly. For example, the desired behavior of the Shazam player
(§7.2) is to download the file as fast as possible, promptly move the
data to application-layer buffers, and close the connection immedi-
ately when the file transfer is complete. Doing so benefits for both
the network and device energy efficiency.

Regarding to the periodical network activities of the Netflix player
(Figure 24), in addition to leveraging the application-layer buffer,
it is also recommended that it send fewer requests and download
more content for each request. Huang et al. [13] have shown that
transferring data in a large batch significantly reduces the radio en-
ergy than otherwise. This also allows TCP to make better use of
the available bandwidth.

8. CONCLUSION
In this paper, we use a large-scale LTE data set to study the im-

pact of protocol and application behaviors on the network perfor-
mance. We observe that some TCP behaviors, such as not updat-
ing RTT estimation using duplicate ACKs, can cause severe per-
formance issues in LTE networks upon a single packet loss. By
devising a novel bandwidth estimation algorithm, we observe that
for 71.3% of the large flows, the bandwidth utilization ratio is be-
low 50%. We also show that the available bandwidth for LTE net-
works has high variation and TCP is not able to fully utilize the
bandwidth as the congestion window cannot adapt fast enough, es-
pecially when RTT is large. We further notice that the limited re-
ceive window size throttles the TCP performance for 52.6% of the
downlink flows. In addition, we find that the application design
may result in under-utilized bandwidth. All these findings provide
insights on developing transport protocol mechanisms and applica-
tions that are more LTE-friendly.

9. ACKNOWLEDGEMENTS
We thank Professor Elizabeth Belding for her constructive com-

ments serving as the shepherd for this paper. We also thank the
anonymous reviewers for their feedback. This research was sup-
ported in part by the National Science Foundation under grants
CNS-0643612, CNS-1039657, CNS-1059372 and CNS-0964545.

10. REFERENCES
[1] Netflix App. http://www.netflix.com/.
[2] Shazam App. http://www.shazam.com/.
[3] M. Allman, V. Paxson, and E. Blanton. Tcp congestion control. RFC 5681,

2009.
[4] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian. Where’s That

Phone?: Geolocating IP Addresses on 3G Networks. In Proceedings of IMC,
2009.

[5] L. Brakmo and L. Peterson. TCP Vegas: end to end congestion avoidance on a
global Internet. Selected Areas in Communications, IEEE Journal on,
13(8):1465 –1480, 1995.

[6] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network Performance of Smart
Mobile Handhelds in a University Campus WiFi Network. In IMC, 2012.

[7] J. Erman, A. Gerber, K. Ramakrishnan, S. Sen, and O. Spatscheck. Over The
Top Video: The Gorilla in Cellular Networks. In IMC, 2011.

[8] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, and R. G. D. Estrin.
Diversity in Smartphone Usage. In MobiSys, 2010.

[9] A. Gember, A. Anand, and A. Akella. A Comparative Study of Handheld and
Non-Handheld Traffic in Campus Wi-Fi Networks. In PAM, 2011.

[10] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman. Speed Testing without
Speed Tests: Estimating Achievable Download Speed from Passive
Measurements. In IMC, 2010.

[11] E. Halepovic, J. Pang, and O. Spatscheck. Can you GET Me Now? Estimating
the Time-to-First-Byte of HTTP Transactions with Passive Measurements. In
IMC, 2012.

[12] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. Locating Internet
Bottlenecks: Algorithms, Measurements, and Implications. In SIGCOMM,
2004.

[13] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close
Examination of Performance and Power Characteristics of 4G LTE Networks.
In MobiSys, 2012.

[14] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing
Application Performance Differences on Smartphones. In MobiSys, 2010.

[15] M. Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput. In IEEE
Network, 2003.

[16] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling Bufferbloat in 3G/4G
Networks. In IMC, 2012.

[17] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang. Experiences in a
3G Network: Interplay between the Wireless Channel and Applications. In
MOBICOM, 2008.

[18] M. Mathis and J. Mahdavi and S. Floyd and A. Romanow. TCP Selective
Acknowledgment Options. RFC 2018, 1996.

[19] G. Maier, F. Schneider, and A. Feldmann. A First Look at Mobile Hand-held
Device Traffic. In PAM, 2010.

[20] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing tcp’s retransmission
timer. RFC 6298, 2011.

[21] R. Prasad, C. Dovrolis, M. Murray, and kc claffy. Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools. In IEEE Network, 2003.

[22] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger. TCP
Revisited: A Fresh Look at TCP in the Wild. In IMC, 2009.

[23] F. Qian, J. Huang, J. Erman, Z. M. Mao, S. Sen, and O. Spatscheck. How to
Reduce Smartphone Traffic Volume by 30%? In PAM, 2013.

[24] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Periodic Transfers in Mobile Applications: Network-wide
Origin, Impact, and Optimization. In World Wide Web, 2012.

[25] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Characterizing Radio Resource Allocation for 3G Networks. In IMC, 2010.

[26] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Profiling
Resource Usage for Mobile Applications: a Cross-layer Approach. In MobiSys,
2011.

[27] R. Braden. Requirements for Internet Hosts – Communication Layers. RFC
1122, 1989.

[28] P. Sarolahti and A. Kuznetsov. Congestion Control in Linux TCP. In USENIX
Annual Technical Conference, 2002.

[29] S. Sesia, I. Toufik, and M. Baker. LTE: The UMTS Long Term Evolution From
Theory to Practice. John Wiley and Sons, Inc., 2009.

[30] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab:
Measuring Wireless Networks and Smartphone Users in the Field. In
HotMetrics, 2010.

[31] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance of Metro Area
Mobile Connections. In IMC, 2012.

[32] V. Jacobson and R. Braden and D. Borman. TCP Extensions for High
Performance. RFC 1323, 1992.

[33] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An Untold Story of
Middleboxes in Cellular Networks. In SIGCOMM, 2011.

[34] Q. Xu, J. Erman, A. Gerber, Z. M. Mao, J. Pang, and S. Venkataraman.
Identifying Diverse Usage Behaviors of Smartphone Apps. In IMC, 2011.

[35] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M. Mao. Cellular Data
Network Infrastructure Characterization and Implication on Mobile Content
Placement. In SIGMETRICS, 2011.

[36] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the Characteristics and
Origins of Internet Flow Rates. In SIGCOMM, 2002.

[37] Z. Zhuang, T.-Y. Chang, R. Sivakumar, and A. Velayutham. A3:
Application-Aware Acceleration for Wireless Data Networks. In MOBICOM,
2006.

374

http://www.netflix.com/
http://www.shazam.com/

	Introduction
	Related Work
	LTE Data and Local Testbed
	The LTE Measurement Data
	Controlled Local Experiments

	LTE Networks Characteristics
	Flow Size, Duration, Rate, Concurrency
	Network Latency
	Queuing Delay and Retransmission Rate
	Comparison to Previous Studies

	Abnormal TCP behavior
	Bandwidth Estimation
	Bandwidth Estimation Algorithm
	Validation with Local Experiments
	Bandwidth Utilization by TCP Flows

	Network Applications in LTE
	HTTP Content Characterization
	Inefficient Network Usage
	Discussions

	Conclusion
	Acknowledgements
	References

