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Abstract—Wireless networks are vulnerable to Sybil attacks, in which a malicious node poses as many identities in order to gain
disproportionate influence. Many defenses based on spatial variability of wireless channels exist, but depend either on detailed, multi-tap
channel estimation—something not exposed on commodity 802.11 devices—or valid RSSI observations from multiple trusted sources,
e.g., corporate access points—something not directly available in ad hoc and delay-tolerant networks with potentially malicious neighbors.
We extend these techniques to be practical for wireless ad hoc networks of commodity 802.11 devices. Specifically, we propose two
efficient methods for separating the valid RSSI observations of behaving nodes from those falsified by malicious participants. Further, we
note that prior signalprint methods are easily defeated by mobile attackers and develop an appropriate challenge-response defense.
Finally, we present the Mason test, the first implementation of these techniques for ad hoc and delay-tolerant networks of commodity
802.11 devices. We illustrate its performance in several real-world scenarios.
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1 INTRODUCTION

THE open nature of wireless ad hoc networks (includ-
ing delay-tolerant networks [1]) enables applications

ranging from collaborative environmental sensing [2] to
emergency communication [3], but introduces numerous
security concerns since participants are not vetted. So-
lutions generally rely on a majority of the participants
following a particular protocol, an assumption that often
holds because physical nodes are expensive. However,
this assumption is easily broken by a Sybil attack. A single
physical entity can pretend to be multiple participants,
gaining unfair influence at low cost [4]. Newsome et
al. survey Sybil attacks against various protocols [5],
illustrating the need for a practical defense.

Proposed defenses (see Levine et al. for a survey [6])
fall into two categories. Trusted certification methods [7],
[8] use a central authority to vet potential participants
and thus are not useful in open ad hoc (and delay-
tolerant) networks. Resource testing methods [9], [10],
[11], [12] verify the resources (e.g., computing capability,
storage capacity, real-world social relationships, etc.) of
each physical entity. Most are easily defeated in ad hoc
networks of resource-limited mobile devices by attackers
with access to greater resources, e.g., workstations or data
centers.

One useful class of defenses is based on the natural
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spatial variation in the wireless propagation channel, an
implicit resource. Channel responses are uncorrelated
over distances greater than half the transmission wave-
length [13] (6 cm for 2.4GHz 802.11), so two transmis-
sions with the same channel response are very likely to
be from the same location and device [14], [15]. Note
that two transmitters may be close enough, i.e., ∼6 cm,
to produce the same channel response, but this case is
rare in practice1. One class of Sybil defenses based on
this observation uses specialized hardware to accurately
measure and compare channel responses [15]. However
commodity devices are not equipped with such hardware.

Commodity devices expose an aggregate, scalar value,
the received signal strength. RSSI can be changed by
varying transmit power, so a vector of observations
from multiple receivers—a signalprint—is used instead.
Several authors have proposed such methods [16], [17],
[18], [19], [20], [21] assuming trusted, true observations
from, for example, access points (Figure 1a). In open
ad hoc networks, observations are untrusted, coming
from potentially lying neighbors (Figure 1b). In this case
observations falsified by attackers can lead to incorrect
conclusions (Figure 1c). Trust-less methods have been
proposed, but have various limitations (e.g., devices must
have uniform transmit power [22] or the method may be
used only in an outdoor environments with predictable
propagation ranges [23]). Instead, a general method to
separate true and false observations is needed.

We observe that with high probability attackers can-
not produce false observations that make conforming

1. In our experiments with smartphone users, distinct transmitters
displayed similar channel responses in fewer than 0.01% of cases (see
Figure 15 in Section 9).
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(c) If I believes the falsified ob-
servations from S1 and S2, it will
incorrectly accept them and reject
A and B as Sybil.

Fig. 1. Prior work [15], [16] assumes trusted RSSI observations, not generally available in ad hoc and delay-tolerant
networks. We present a technique for a participant to separate true and false observations, enabling use in ad hoc
networks. (Arrows point from transmitter to observer.)

identities look Sybil, due to the unpredictability of the
wireless channels. We exploit this weakness to bound
the number of misclassified identities. In cases when
conforming nodes outnumber physical attacking nodes
(a major motivating factor for the Sybil attack), we
develop a notion of consistency that enables fully-accurate
classification.

Most past work assumes nodes are stationary, as mov-
ing attackers can easily defeat naïve signalprint-based
detection. Although reasonable for conforming nodes,
e.g., most human-carried smartphones are stationary over
short time-spans, this is too strong an assumption for
attackers. We remove this restriction on the attack model
and defeat moving attacks by detecting mobile nodes.
Moving nodes are not permitted to participate in other
protocols because their “Sybilness” cannot be verified.
They can be tested again when stationary. Xiao et al. noted
that successive transmissions from the same stationary
node should have the same signalprint and attackers
likely cannot quickly (i.e., in milliseconds) switch between
precise positions [15], but did not further develop or
evaluate a method making use of this observation. We
develop a challenge–response protocol from this idea and
study its performance on real deployments.

On a high level, we seek to allow a wireless network
participant to occasionally determine which of its one-hop
neighbors are non-Sybil. Verified non-Sybil participants,
uniquely identified by their public keys, may safely
participate in other protocols. In mobile networks, the
process must be repeated occasionally (e.g., once per
hour) as the topology changes. Safety is more important
than system performance, so nearly all Sybil identities
must be detected. In most applications it is acceptable
for some non-Sybils to be rejected, e.g., any that were
moving during the test.

We make the following primary contributions.
• We design two methods of O(n3) complexity to

separate true and false RSSI observations, enabling
signalprint-based Sybil detection in ad hoc networks
of nodes without mutual trust. The first method
gives partial separation, bounding the number of
misclassified identities. The second provides full
separation, but works only when conforming nodes
outnumber physical attacking nodes.

• We prove conditions under which a participant can
fully separate true and false observations.

• We develop a challenge-response protocol to detect
attackers attempting to use motion to defeat the
signalprint-based Sybil defense.

• We describe the Mason test, a practical protocol for
Sybil defense based on these ideas. We implemented
the Mason test as a Linux kernel module for 802.11
ad hoc networks2 and characterize its performance
in real-world scenarios.

2 RELATED WORK

Many Sybil defense techniques are built on wireless
channel-based resource testing, because placing trans-
mitters in many locations is much more difficult than
acquiring additional computation or memory resources.
Xiao et al. observe that in OFDM-based 802.11, the
coherence bandwidth is much smaller than the system
bandwidth and thus the channel response estimates at
well-spaced frequency taps are uncorrelated, forming
a vector unique to the transmitter location and robust
to changes in transmitter power [15]. Li et al. use both
temporal and multiple-tone channel probing to profile

2. http://github.com/EmbeddedAtUM/mason/

http://github.com/EmbeddedAtUM/mason/
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transmissions and detect anomalous behaviors [19]. Un-
fortunately commodity 802.11 devices do not expose these
detailed channel estimates to the driver and operating
system, restricting this technique to specialized hardware
or firmware.

Faria et al. and Demirbas et al. independently devel-
oped the RSSI-based signalprint technique to greatly
simplify channel estimations while maintaining high clas-
sification performance [16], [17]. This class of work [16],
[17], [18], [19], [20], [21] has two disadvantages. First they
rely on trusted external measurements, e.g., observations
by trusted 802.11 access points, which are generally
unavailable in open ad hoc networks. Our work builds
on their ideas, but removes reliance on any external
measurements. Second, their attack models are restricted
to stationary devices, despite the ease of deploying
moving attackers. Our work detects and rejects moving
nodes, instead of accepting them as non-Sybil.

Lv et al. developed a method based on one-dimensional
signalprints, which therefore does not rely on external
measurements [22]. However, it assumes a uniform trans-
mit power for all devices, including attacking devices.

Bouassida et al. developed a trust-less method for
vehicular area networks. Instead of relying on exter-
nal measurements, the “verifier” obtains uncorrelated
measurements by changing its own reception locations
and uses these measurements to locate the transmitter.
It also rejects moving nodes with significant location
changes over multiple measurements [23]. However, this
technique relies on a predictable propagation model
that fails to capture the notorious variations of wireless
channels. Our method does not assume any propagation
model. Instead, we rely on the unpredictability of wireless
signal propagation to defeat lying attackers.

3 PROBLEM FORMULATION AND
BACKGROUND

In this section, we define our problem, summarize the
solution framework, describe our attack model, and
briefly review the signalprint method.

3.1 Problem Formulation
Our goal is to extend signalprint-based Sybil detec-
tion methods to work without a priori trust in any
observers, allowing any participant in an open wireless
network to determine which of its one-hop neighbors
are non-Sybil. The solution framework is illustrated in
Figure 2 with five participants. We assume an arbitrary
identity (or condition) starts the process. Participants
first take turns broadcasting a probe packet while all
others record the observed RSSIs (Figure 2a). These
observations are then shared, although malicious nodes
may lie. Figure 2b shows every participant after this
exchange, with observations from all five participants.
Finally each participant individually selects a (hopefully
truthful) subset of observers for signalprint-based Sybil
classification (Figure 2c).

This paper presents our method for truthful subset
selection and fleshes out this framework into a usable,
safe, and secure protocol. As with any system intended
for real-world use, we had to carefully balance system
complexity and potential security weaknesses. Section 10
discusses these choices and related potential concerns.

3.2 Attack Model
We model attackers who operate commodity devices, but
not specialized hardware. Commodity devices can be
obtained in large scale by compromising those owned
by normal network participants, a more practical attack
vector than distributing specialized hardware at the same
scale. Specifically, we assume attackers have the following
capabilities and restrictions.

1) Attackers may collude through arbitrary side chan-
nels.

2) Attackers may accumulate information, e.g., RSSIs,
across multiple rounds of the Mason test.

3) Attackers have limited ability to predict the RSSI
observations of other nodes, e.g., 7dBm uncer-
tainty (see Section 6), precluding fine-grained pre-
characterization.

4) Attackers can control transmit power for each
packet, but not precisely or quickly steer the output
in a desired direction, i.e., they are not equipped
for antenna array-based beam-forming.

5) Attackers can move their devices, but cannot quickly
and precisely switch them between multiple posi-
tions, e.g., they do not have high-speed, automated
electromechanical control.

One common denial-of-service (DOS) attack in wireless
networks—jamming the channel—cannot be defended
against by commodity devices. Thus, we do not defend
against other more-complicated DOS attacks. However,
note that ad hoc and delay-tolerant networks are much
more resistant than infrastructured networks to such
attacks, because a single attack can affect only a small
portion of the network.

Notably, we assume attackers do not have per-
antenna control of MIMO (Multiple-Input and Multiple-
Output) [24] devices. Such control would defeat the
signalprint method (even with trusted observers), but is
not a feasible attack. Commodity MIMO devices (e.g.,
802.11n adapters) do not expose this control to software
and thus are not suitable attack vectors. Distributing
specialized MIMO-capable hardware over large portions
of the network would be prohibitively expensive.

We believe that the signalprint method can be extended
to MIMO systems (see our technical report for an
overview [25]), but doing so is beyond the scope of this
work. Our focus is extending signalprint-based methods
to ad hoc networks of commodity devices by removing
the requirement for trusted observations.

3.3 Review of Signalprints
We briefly review the signalprint method. See prior work
for details [15], [17]. A signalprint is a vector of RSSIs
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prints for Sybil detection.

Fig. 2. The solution framework for signalprint-based Sybil detection in ad hoc networks. This paper fleshes out this
concept into a safe and secure protocol, the Mason test.
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at multiple observers for a single transmission. Ignoring
noise, the vector of received powers (in logarithmic units,
e.g., dBm) at multiple receivers for a given transmission
can be modeled [13] as ~s = ~h + p~1, where p is the
transmit power and ~h is the attenuation vector, a function
of the channel amplitude response and the receiver
characteristics. Transmissions from different locations
have uncorrelated signalprints, as the channel responses
are likely uncorrelated. Those from the same location,
however, share a channel response and will be correlated.
That is, for two transmissions a and b from the same
location with transmit powers pa and pb = pa + c, the
signalprints ~sb = ~h + pa~1 and ~sb = ~h + (pa + c)~1 are
related as ~sb = ~sa + c~1. In other words, all observers see
the same RSSI difference c for the two transmissions.

This is illustrated geometrically in Figure 3 for a two-
receiver signalprint. A and B are Sybil, while C is not.
D and E are also Sybil, but due to noise the signalprints
are not perfectly correlated. Instead, signalprints on lines
closer than some threshold are taken to be Sybil.

Definition. The signalprint distance d(~sa,~sb) between two

signalprints ~sa and ~sb is the perpendicular distance
between the slope-1 lines containing them. Letting

~w , ~sa −~sb

be the distance vector between the signalprints and

~v⊥ , ~w −
~w · ~1
‖~1‖2

~1

be the vector rejection of ~w from ~1, then

d(~sa,~sb) = ‖~v⊥‖.

Figure 4 shows the distance distributions for Sybil
and non-Sybil identities using measurement data for
commodity Android devices (size-4 signalprints from the
“Outdoor” experiment in Section 9). The two distributions
are well separated with small overlap, so the threshold
choice trades false positives for false negatives. A good
threshold supports detection of at least 99.9% of Sybils
while accepting at least 95% of non-Sybils, as reported by
previous research [15], [17] and confirmed by our own
measurement (see Figure 13).

4 SYBIL CLASSIFICATION FROM UNTRUSTED
SIGNALPRINTS

In this section we describe two methods to detect Sybil
identities using untrusted RSSI observations. In both
cases, a set of candidate views containing the true view
(with high probability) is generated. The accepted view is
chosen by a view selection policy. The first method selects
the view indicting the most Sybils, limiting the total
number of incorrect classifications. The second selects
the true view, but works only when conforming nodes
outnumber physical attacker nodes.
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4.1 The Limited Power of Falsified Observations

Our key observation is that falsified RSSI observations
have limited power. Although falsifying observations
to make Sybil identities look non-Sybil is easy, it is
extremely difficult to make a non-Sybil look Sybil. To see
this, recall that a pair of identities is considered Sybil
only if all observers report the same RSSI difference for
the pair’s transmissions. For any pair of identities, the
initiator observes an RSSI difference itself. On one hand,
making true Sybils appear non-Sybil is easy, because
randomly chosen values almost certainly fail to match
this difference. Making a non-Sybil look Sybil, however,
requires learning the difference observed by the initiator
itself, which is kept secret. Guessing is difficult due to the
unpredictability of the wireless channels. Our methods
rely on this difficulty. They are developed formally in
the rest of this section. Quantitative characterizations
are described in Section 6. To summarize, the success
probability for a guessing attacker is less than one
percent in common situations, i.e., when conforming
nodes outnumber physical attackers by more than 1.5×.

4.2 Terminology

I is the set of participating identities. Each is either
Sybil or non-Sybil and reports either true or false3 RSSI
observations, partitioning the identities by their Sybilness
(sets S and NS ) and the veracity of their reported
observations (sets T and L).

LS LNS

TS C

S NS

L

T

Truthtelling, non-Sybil identities are called conforming (set
C). Liars and Sybil identities are called attacking (sets LS ,
LNS , and TS ). Our goal is to distinguish the S and NS
partitions using the reported RSSI observations without
first knowing the L and T partitions.

Definition. An initiator is the node performing Sybil
classification.4 It trusts its own RSSI observations, but no
others.

Definition. A receiver set, denoted by R, is a subset of
identities (R ⊆ I) whose reported RSSI observations,
combined with the initiator’s, form signalprints. Those
with liars (R ∩ L 6= ∅) produce incorrect classifications
and those with only truthtellers (R ⊆ T ) produce the
correct classification.

Definition. A view, denoted by V , is a classification of
identities as Sybil and non-Sybil. Those classified as Sybil

3. A reported RSSI observation is considered false if some signalprints
containing it misclassify some identities.

4. All participants perform classification individually, so each is the
initiator in its own classification session.

(non-Sybil) are said to be Sybil (non-Sybil) under V and
are denoted by the subset VS (VNS). A view V obtained
from the signalprints of a receiver set R is generated by
R, denoted by R 7→ V (read: R generates V ), and can be
written V (R). Identities in R are considered non-Sybil, i.e.,
R ⊆ VNS(R). A true view, denoted by V , correctly labels
all identities, i.e., V S = S and V NS = NS . Similarly, a false
view, denoted by V̂ , incorrectly labels some identities, i.e.,
V̂S 6= S and V̂NS 6= NS .

Definition. Incorrectly labeling non-Sybil identities as
Sybil is called collapsing.

Assumption. To clearly illustrate the impact of
intentionally-falsified observations, we first assume that
true RSSI observations are noise-free and thus always
generate the true view. In Section 4.7, we extend the
method to handle real-world observations containing, for
example, random noise and discretization error.

4.3 Approach Overview

A general separation method does not exist, because
different scenarios can lead to the same reported RSSI
observations. To illustrate, consider identities I = {A|B}
reporting observations such that

R ⊆ A 7→ V 1 = {V 1
NS = A|V 1

S = B} and
R ⊆ B 7→ V 2 = {V 2

NS = B|V 2
S = A}

and two different scenarios x and y such that

in x, {T x = A|Lx = B} = I and
in y, {T y = B|Ly = A} = I.

R ⊆ T 7→ V , so V 1 and V 2 are both true views, the
former in scenario x and the latter in scenario y. In other
words, identities in A could be Sybil (as claimed by B) or
those in B could be Sybil (as claimed by A). Either view
could be correct; it depends on which group is lying.
Consequently, no method can always choose the correct
view.

We instead develop two different approaches. The
first method, the maximum Sybil policy, simply bounds
the number of misclassified identities by selecting the
view reporting the most Sybils. This selected view must
indict at least as many as the true view, bounding the
accepted Sybils by the number of collapsed conforming
identities. Collapsing is difficult, limiting the incorrect
classifications.

The second method, the view consistency policy, allows
complete separation, but requires that the following
conditions be met.
• All views correctly classify some conforming iden-

tities (likely true because collapsing identities is
difficult).

• Conforming identities outnumber lying, non-Sybils
(a major motivating factor for the Sybil attack).
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TABLE 1
Definitions of Terms and Symbols

Definition Notes

Sets of Identities
I all participating identities
NS all non-Sybil identities

I = {NS |S}
S all Sybil identities
T all truthful identities

I = {T |L}
L all lying identities
C all conforming, or truthful, non-Sybil, identities NS = {C|LNS}
LNS all lying, non-Sybil identities S = {TS |LS}
TS all truthful, Sybil identities T = {C|TS}
LS all lying, Sybil identities L = {LNS |LS}
VNS all identities labeled non-Sybil by view V

I = {VNS|VS}VS all identities labeled Sybil by view V

R (receiver set) identities used to form signalprints

Views
V (view) a Sybil–non-Sybil labeling of I
V (true view) a view that correctly labels all identities V NS = NS and V S = S

V̂ (false view) a view that incorrectly labels some identities V̂NS 6= NS and V̂S 6= S
V (R) the view generated by receiver set R

Terms
generates (R 7→ V ) a receiver set generates a view
initiator node performing the Sybil classification
collapse classify a non-Sybil identity as Sybil

This approach follows from the idea that true observa-
tions are trivially self-consistent, while lies often contra-
dict themselves. We develop a notion of consistency that
allows separation of true and false observations.

4.4 Maximum Sybil Policy: Select the View Claiming
the Most Sybil Identities
In this section, we prove that the maximum Sybil policy—
selecting the view claiming the most Sybil identities—
produces a classification with bounded error. The number
of incorrectly-accepted Sybil identities is bounded by the
number of collapsed conforming identities.

Lemma 1. The selected view V claims at least as many Sybil
identities as actually exist, i.e., |VS| ≥ |S|.

Proof: Since the true view V claiming |S| Sybils
always exists, the selected view can claim no fewer.

Theorem 1. The selected view V misclassifies no more Sybil
identities than it collapses conforming identities, i.e., |VNS ∩
S| ≤ |VS ∩NS |.

Proof: Intuitively, claiming the minimum |S| Sybil
identities requires that each misclassified Sybil be com-
pensated for by a collapsed non-Sybil identity. Formally,
combining |VS ∪ VNS| = |S ∪ NS | with Lemma 1 yields
|(VS∪VNS)∩S| ≤ |(S ∪NS )∩VS|. Removing the common
VS ∩ S from both sides gives |VNS ∩ S| ≤ |VS ∩NS |.

Theorem 1 bounds the misclassifications by the at-
tacker’s collapsing power, |VS ∩NS |. Although |VS ∩NS |
is small (see Section 6), one Sybil is still accepted for each
conforming identity collapsed. The next few sections de-
velop a second method that allows accurate classification,
but only when conforming nodes outnumber attackers.

4.5 View Consistency Policy: Selecting V if LNS = ∅
Our view consistency policy stems from the intuition
that lies often contradict each other. It is introduced here
using the following unrealistic assumption, which we
remove in Section 4.6.

Restriction 1. All liars are Sybil, i.e., LNS = ∅, and thus
all non-Sybil identities are truthful, i.e., NS ⊆ T .

Restriction 1 endows the true view with a useful
property: all receiver sets comprising the non-Sybil
identities under the true view will generate the true view.
We formalize this notion of consistency as follows.

Definition. A view is view-consistent if and only if
all receiver sets comprising a subset of the non-Sybil
identities under that view generate the same view, i.e.,
V is view-consistent iff ∀R ∈ 2VNS : R 7→ V .

Lemma 2. Under Restriction 1, the true view is view-
consistent, i.e., ∀R ∈ 2V NS : R 7→ V .

Proof: Consider the true view V . By definition, V NS =
NS. By Restriction 1, NS ⊆ T and thus, V NS ⊆ T . ∀R ∈
2T 7→ V , so ∀R ∈ 2V NS : R 7→ V .

Were all false views not consistent, then consistency
could be used to identify the true view. However, a fully
omniscient attacker could theoretically generate a false,
consistent view by collapsing all conforming identities.
In practice, the difficulty of collapsing identities prevents
this. We formalize this attacker limitation as follows.

Condition 1. All receiver sets correctly classify at least
one conforming identity, i.e., ∀R ∈ 2I : VNS(R) ∩ C 6= ∅.

Justification: Collapsing conforming identities re-
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quires knowing the hard-to-predict initiator’s RSSI ob-
servations. Section 6 quantifies the probability that this
condition holds.

Lemma 3. Under Condition 1, a view generated by a receiver
set containing a liar is not view-consistent, i.e., R ∩ L 6= ∅
implies V (R) is not view-consistent.

Proof: Consider such a receiver set R with R∩L 6= ∅.
By Condition 1, r , VNS(R) ∩ C is not empty and since
r ⊆ C ⊆ T , r 7→ V . By the definition of a liar, V (R) 6= V
and thus R is not consistent.

Theorem 2. Under Restriction 1 and Condition 1 and
assuming C 6= ∅, exactly one consistent view is generated
across all receiver sets and that view is the true view.

Proof: By Lemma 2 and Lemma 3, only the true view
is consistent, so we need only show that at least one
receiver set generates the true view. C 6= ∅ and thus
R = C 7→ V .

This result suggests a method to identify the true view—
select the only consistent view. Restriction 1 does not hold
in practice, so we develop methods to relax it.

4.6 Achieving Consistency by Eliminating LNS

Consider a scenario with some non-Sybil liars. The
true view would be consistent were the non-Sybil liars
excluded from consideration. Similarly, a false view could
be consistent were the correctly classified conforming
identities excluded. If the latter outnumber the former,
this yields a useful property: the consistent view over
the largest subset of identities, i.e., that with the fewest
excluded, is the true view, as we now formalize and
prove.

Condition 2. The number of conforming identities is
strictly greater than the number of non-Sybil liars, i.e.,
|C| > |LNS |.

Justification: This is assumed by networks whose
protocols require a majority of the nodes to conform. In
others, it may hold for economic reasons—deploying as
many nodes as the conforming participants is expensive.

Condition 3. Each receiver set either correctly classifies
at least |LNS |+1 conforming identities as non-Sybil or the
resulting view, when all correctly classified conforming
identities are excluded, is not consistent, i.e., ∀R ∈ 2I :
(|VNS(R) ∩ C| ≥ |LNS | + 1) ∨ (∃Q ∈ 2VNS(R)\C : V (Q) 6=
V (R)). Note that this implies Condition 2.

Justification: This is an extension of Condition 1.
Section 6 quantifies the probability that it holds.

Lemma 4. Under Condition 2 and Condition 3, the largest
subset of I permitting a consistent view is I \ LNS .

Proof: I\LNS permits a consistent view, per Lemma 2.
Let ER , V̂NS(R) ∩ C be the set of correctly classified
conforming nodes for a lying receiver set R, i.e., R∩L 6= ∅.

I\ER is the largest subset possibly permitting a consistent
view under R. By Condition 3, ∀R : |ER| ≥ |LNS |+1.

Theorem 3. Under Condition 2 and Condition 3, the largest
subset of I permitting a consistent view permits just one
consistent view, the true view.

Proof: This follows directly from Lemma 4 and
Theorem 2.

In the next section, we extend the approach to handle
the noise inherent to real-world signalprints.

4.7 Extending Consistency to Handle Noise
Noise prevents true signalprints from always generating
the true view. Observing from prior work that the
misclassifications are bounded (e.g., more than 99%
of Sybils detected with fewer than 5% of conforming
identities collapsed [15], [17]), we extend the notion of
consistency as follows.

Definition. Let γn be the maximum fraction5 of non-Sybil
identities misclassified by a size-n receiver set. Prior work
suggests γ4 = 0.05 is appropriate (for |C| > 20) [15], [17].

Definition. A view is γn-consistent if and only if all size-n
receiver sets that are subsets of the non-Sybil identities
under that view generate a γn-similar view. Two views
V 1 and V 2 are γn-similar if and only if(
|V 1

NS ∩ V 2
NS|

|V 1
NS \ V 2

NS|
>

1− 2γn
γn

)∧(
|V 1

NS ∩ V 2
NS|

|V 2
NS \ V 1

NS|
>

1− 2γn
γn

)
This statement captures the intuitive notion that V 1

NS and
V 2
NS should contain the same identities up to differences

expected under the γn bound. A view is γn-true if it is
γn-similar to the true view.

Lemma 5. Under Restriction 1, the view generated by any
truthful receiver set of size n is γn-consistent.6

Proof: Consider two views V 1 and V 2 generated by
conforming receiver sets. Each correctly classifies at least
(1 − γn) of the non-Sybil identities, so |V 1

NS ∩ V 2
NS| ≥

(1− 2γn)|NS |. Each misclassifies at most γn of the non-
Sybil identities, so |V 1

NS \ V 2
NS| ≤ γn|NS | and similar for

V 2
NS \ V 1

NS. The ratio of these bounds is the result.
Substituting γ-consistency for pure consistency, Condi-

tion 3 still holds with high (albeit different) probability,
quantified in Section 6. An analogue of Theorem 3
follows.

Theorem 4. Under Condition 3, the γn-consistent view of
the largest subset of I permitting such a view is γn-true.

In Section 5 we describe an efficient algorithm to
identify the largest subset permitting a γ-consistent view
and thus the correct (up to errors expected due to
signalprint noise) Sybil classification.

5. γn is an upper bound on the total fraction misclassified, not the
probability that an individual identity is misclassified.

6. This assumes that the false negative bound is negligible. If it is
not, a similar notion of γ,σ-consistency, where σ is the false negative
bound, can be used. In practice σ is quite small [15], [17], so simple
γn-consistency is fine.
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Algorithm Progression

R1 7→(i1, i0)

S NS
i3

i5
i6

i2
i4

i8...

...

R|I| 7→(i|I|, i0)

S NS
i1

i3
i5

i2
i4

i6...

...

,

,

,V (R1)

V (R|I|) ,

...

...

7→( i5 , i1, i0)

S NS
i1

i8
i6

i3
i4

i9...

...
7→( i6 , i|I|, i0)

S NS
i1

i3
i5

i2
i4

i7...

...
...

7→( i3 , i5, i1, i0)

S NS
i2

i9
i6

i8
i4

i11...

...
7→( i3 , i6, i|I|, i0)

S NS
i1

i7
i5

i2
i4

i8...

...
...

Fig. 5. Illustration of Algorithm 1. All |I| size-2 receiver
sets are increased to size-4 by iteratively adding a random
identity from those labeled non-Sybil by the current set.
With high probability, at least one of the final sets will
contain only conforming identities.

5 EFFICIENT IMPLEMENTATION OF THE
SELECTION POLICIES

Both the maximum Sybil and view consistency policies
offer ways to select a view, either the one claiming the
most Sybils or the largest one that is γn-true, but brute-
force examination of all 2|I| receiver sets is infeasible.
Instead, we describe O(|I|3) algorithms for both policies.
In summary, both start by generating O(|I|) candidate
views (Algorithm 1). For the maximum Sybil policy,
the one claiming the most Sybil identities is trivially
identified. For the view consistency policy, Algorithm 2
is used to identify largest γn-consistent view.

Algorithm 1 Choose the receiver sets to consider

Require: i0 is the identity running the procedure
Require: n is the desired receiver set size

1: S ← ∅
2: for all i ∈ I do
3: R← {i0, i}
4: for cnt = 3→ n do
5: R← R ∪ {RandElement(VNS(R))}
6: end for
7: S ← S ∪ {R}
8: end for
9: return S .with high probability, S contains a

truthful receiver set

5.1 Candidate Receiver Set Selection
The only requirement for candidate receiver set selection
is that at least one of the candidates must be truthful.
Algorithm 1 selects |I|, size-n (we suggest n = 4) receiver
sets of which at least one is truthful with high probability.
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Fig. 6. Contours of probability that at least one of the
receiver sets from Algorithm 1 is conforming.7 In the
shaded areas, conditions required by the consistency
policy or by Algorithm 1 are not met.

As illustrated in Figure 5, the algorithm starts with all
|I| size-2 receiver sets (lines 2–3) and builds each up to
the full size-n by iteratively (line 4) adding a randomly
selected identity from those indicated to be conforming
at the prior lower dimensionality (line 5). At least |C| of
the initial size-2 receiver sets are conforming and after
increasing to size-n, at least one is still conforming with
high probability (graphed in Figure 6):

1−

(
1−

n−1∏
m=2

(1− γm) · |C| − (m− 1)

|LNS |+ (1− γm) · |C| − (m− 1)

)|C|
In Figure 6 we use size-4 signalprints (n = 4) and
γ4 = 0.05, based on previous evaluation results [15],
[17]. Shaded areas are ignored because we only consider
|C| > n and |C| > |LNS |. The former is a basic condition
for Algorithm 1 to work, as there needs to be at least one
size-n receiver set composed purely of conforming nodes.
The latter is a basic condition of the view consistency
policy (Condition 2). The contours are not smooth because
|C| and |LNS | are discrete.

The signalprint threshold for this process is chosen
to eliminate (nearly) all false negatives because the
goal is to minimize the malicious-to-conforming ratio;
false positives are harmless during the generation of
candidate views. The complexity of a straightforward
implementation is O(|I|3). Section 10 further discusses
the runtime.

5.2 Finding the Largest γn-Consistent View
Given the |I| candidate receiver sets, the next task is
identifying the one generating a γn-true view, which,

7. For small |C| and relatively large |LNS | the probability can be
increased by building 2 · |I| or 3 · |I| or more receiver sets instead.
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Algorithm 2 Find receiver set permitting the largest γn-
consistent subset
Require: S is the set of receivers sets generated by Algo-

rithm 1
Require: VNS(R) for each R ∈ {size-2 receiver sets} com-

puted by Algorithm 1
Require: s is the initiator running the algorithm

1: (C,Rmax)← (∞,null)
2: for all R ∈ S do
3: Compute RSSI ratio for each Sybil set in VS(R)
4: c← 0
5: for all i ∈ VNS(R) do
6: e← 0
7: n ← number of identities whose RSSI ratios re-

ported by i do not match that for R
8: if |VNS(R)|+n

n < 1−2γn
γn

then
9: e← 1

10: end if
11: if V (R) and V ({i, s}) are not γ2-similar then
12: e← 1
13: end if
14: if e = 1 then
15: c← c+ 1 . exclude i
16: end if
17: end for
18: if c < C then
19: (C,Rmax)← (c,R) . new largest γ-consistent

subset found
20: end if
21: end for
22: return Rmax

pursuant to Theorem 4, is that permitting the largest
subset of I to be γn-consistent. Checking consistency by
examining all 2|VNS| receiver sets is infeasible, so we make
several observations leading to the O(|I|3) Algorithm 2.
For each candidate receiver set (line 2), we determine
how many identities must be excluded for the view to be
γn-consistent (lines 3–17). The view excluding the fewest
is γn-true and the desired classification (line 22).

The crux of the algorithm is lines 3–17, which use the
following observations to efficiently determine which
identities must be excluded.

1) Adding an identity to a receiver set can change
the view in one direction only—an identity can go
from Sybil to non-Sybil, but not vice versa—because
uncorrelated RSSI vectors cannot become correlated
by increasing the dimension.8

2) For identities a and b, R∪{a} 7→ V (R) and R∪{b} 7→
V (R) implies R ∪ {a, b} 7→ V (R) because a and b
must have the same RSSI ratios for the Sybils as R.

From these observations, we determine the excluded
identities by computing, for each identity in VS(R), the
RSSI ratio with an arbitrary sibling (line 3) and comparing
against those reported by potential non-Sybils in VNS(R)
(line 7). If the number not matching is too large (line 8),
the view is not γn-consistent and the identity is excluded
(line 15). It is also excluded if the receiver set consisting

8. This is not true for low dimension receiver sets severely affected
by noise, but is for the size-(n > 4) sets considered here.

−40 −20 0 20 40
RSSI

Fig. 7. Distribution of RSSI variations in real-world deploy-
ment.

of just itself and the initiator is not γ2-similar to R (line
11).

5.3 Runtime in the Absence of Liars
In a typical situation with no liars, the consistency
algorithm can detect the Sybils in O(|I|2) time. Since
all identities are truthful, any chosen receiver set will
be γn-consistent with no exclusions—clearly the largest
possible—and thus the other |I| − 1 also-truthful receiver
sets need not be checked. With lying attackers present,
the overall runtime is O(|I|3), as each algorithm takes
O(|I|3) time.

6 CLASSIFICATION PERFORMANCE AGAINST
OPTIMAL ATTACKERS

Both view selection policies depend directly on the unpre-
dictability of RSSIs, because collapsing identities requires
knowing the observations of the initiator, as explained in
Section 4.1. An intelligent attacker can attempt educated
guesses, resulting in some successful collapses. In this
section, we evaluate the two selection policies against
optimal attackers, as defined in Sections 6.2 and 6.3.

6.1 RSSI Unpredictability
Accurately guessing RSSIs is difficult because the wireless
channel varies significantly with small displacements in
location and orientation (spatial variation) and environmen-
tal changes over time (temporal variation) [13], [26]. Pre-
characterization could account for spatial variation, but
would be prohibitively expensive at the needed spatial
and orientation granularity (6 cm [27] and 3◦ for our test
devices).

We empirically determined the RSSI variation for
human-carried smartphones by deploying experimental
phones to eleven graduate students in two adjacent offices
and measuring pairwise RSSIs for fifteen hours. The
observed distribution of deviations9, shown in Figure 7,
is roughly normal with a standard deviation of 7.3dBm,

9. For each pair of transceivers, we subtracted the mean of all their
measurements to get the deviations and took the distribution of the
pairwise deviations.
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in line with other real-world measurements for spatial
and orientation variations (4–12dBm and 5.3dBm [13]).
We use this distribution to model the attacker uncertainty
of RSSIs, corresponding to an attacker who accumulates
knowledge of pairwise RSSIs by observing values re-
ported in past tests.

6.2 Optimal Attacker Strategy—Maximum
Sybil Policy

Theorem 1 shows that the performance of the maxi-
mum Sybil policy is inversely related to the number
of collapsed non-Sybil identities. Therefore, the optimal
attacker tries to collapse as many as possible. We give
two observations about this goal.

1) More distinct guesses increase the probability of
success, so an optimal attacker partitions its (mostly
Sybil) identities, with each group making a different
guess.

2) Smaller group size increases the number of groups,
but decreases the probability that the group is
considered—recall that Algorithm 1 generates only
|I| of the possible 2|I| candidate receiver sets.

Consequently, there is an optimal group size that max-
imizes the total number of groups (guesses) produced
by Algorithm 1, which we obtained via Monte Carlo
simulations. We model the initiator’s RSSI observation as
a random vector whose elements are drawn i.i.d. from
the Gaussian distribution in Figure 7. Given the total
number of guesses, the best choices are the vectors with
the highest joint probabilities. The performance against
this strategy is discussed in Section 6.4.

6.3 Optimal Attacker Strategy—View Consistency
Policy

The view consistency policy depends on Condition 3
holding, i.e., all consistent views must correctly classify
at least |LNS |+1 conforming identities. In this section we
quantify the probability that it holds against an optimal
attacker. To break Condition 3, an attacker must generate
a consistent view that collapses at least |C| − |LNS |
conforming identities. We give three observations about
the optimal attacker strategy for this goal.

1) Collapsing |C| − |LNS | identities is easiest with
larger |LNS |. Thus, the optimal attacker uses only
one physical node to claim Sybils—the others just
lie.

2) For a particular false view to be consistent, all
supposedly non-Sybil identities must indict the
same identities, e.g., have the same RSSI guesses
for the collapsed conforming identities. The optimal
attacker must divide its (mostly Sybil) identities into
groups, each using a different set of guesses.

3) More groups increases the probability of success, but
decreases the number of Sybils actually accepted,
as each group is smaller.
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Fig. 8. Contours of a lower bound on the probability that
Condition 3 holds under an optimal attacker strategy with
the attacker’s knowledge of RSSIs modeled as a normal
distribution with standard deviation 7.3dBm.

We assume the optimal attacker wishes to maximize
the probability of success and thus uses minimum-sized
groups (three identities, for size-4 signalprints).

For each group, the attacker must guess RSSI values
for the conforming identities with the goal of collapsing
at least s , |C|− |LNS | of them. There are

(|C|
s

)
such sets

and the optimal attacker guesses values that maximize the
probability of at least one (across all groups) being correct.
The first group is easy; the |C| guesses are simply the most
likely values, i.e., the expected values for the conforming
identities’ RSSIs, under the uncertainty distribution.

For the next (and subsequent) groups, the optimal
attacker should pick the next most likely RSSI values for
each of the

(|C|
s

)
sets. However, the sets share elements

(only |C| RSSIs are actually guessed), so the attacker must
determine the most probable sets that are compatible.

This is a non-trivial problem but it is conceivable that
an attacker might be able to solve it. In order to model
the strongest possible attack, we assume that all sets are
compatible. For example, one group can guess −78dBm
and −49dBm RSSIs for nodes a and b, but −82dBm and
−54dBm RSSIs for nodes a and c. This is impossible
because it would imply that the group simultaneously
guess both −78dBm and −82dBm for node a. Recall that,
each group only have the opportunity to guess the RSSI
for a node once during the Mason test. Therefore, the
assumption that all sets are compatible allows us to model
an attack that is at least as strong as, but likely stronger
than, any realizable attack. This leads to a conservative
lower bound on the probability that the attacker fails—
any feasible, optimal strategy is less likely to succeed.

Figure 8 shows contours of this lower bound on the
probability that Condition 3 holds as a function of |C|
and |LNS |, obtained via Monte Carlo simulations. The
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identities that are Sybil, produced by the maximum Sybil
policy against an optimal attacker strategy.

initiator’s RSSI observation is modeled as a random
vector whose elements are drawn i.i.d. from the Gaussian
distribution in Figure 7. The |C| ≤ |LNS | region is shaded,
because the view consistency policy fails there (recall
Condition 2). When the conforming nodes outnumber
the attacker nodes by at least 1.5× —the expected case
in real networks—the condition holds with very high
probability. In practice, it will hold with even higher
probability, as this is a lower bound.

6.4 Performance Comparison of Both Policies

We use Monte Carlo simulations to compare the perfor-
mance of the two policies against the optimal attackers,
quantified as the final Sybil ratio, the fraction of accepted
identities that are Sybil. We model the attacker’s knowl-
edge of the initiator’s RSSIs as a random vector whose
elements are drawn i.i.d. from the Gaussian distribution
in Figure 7, which conservatively assumes fine-grained
temporal and spatial characterization (see Section 6.1).
We expect real-world attackers to have less knowledge,
leading to even better classification performance.

Our procedure for generating candidate receiver sets
(Algorithm 1) works best when conforming nodes out-
number physical attackers. This condition should nor-
mally hold in real-world networks (it is the major
motivation for a Sybil attack), so for both policies, we
report results assuming that it does.

Figure 9 graphs the final Sybil ratio of the maximum
Sybil policy, which roughly corresponds to the ratio of
collapsed conforming nodes ( |V S∩NS |

|C| ). The performance
does not depend on the number of physical attackers.
The Sybil ratio decreases to 0.05-0.2 when |C| > 10.
When |C| < 10, the Sybil ratio is high (0.2–0.5), despite
elimination of most Sybil identities (92%–99%). This
behavior is due to the ease of guessing low-dimension
random vectors.

Figure 10 shows the final Sybil ratio of the consistency
policy. Again, the |C| ≤ |LNS | region is shaded as the
policy simply fails in this case. Performance increases
rapidly with the ratio of conforming nodes to physical
attackers—recall the attacker needs to collapse |C|−|LNS |
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Fig. 10. Contours showing the final Sybil ratio for the view
consistency policy against an optimal attacker strategy.
The dashed line corresponds to situations where this policy
has the same performance as the maximum Sybil policy.

identities to break Condition 3. For example, the final
Sybil ratio drops below 10−6 when |C|

|LNS |+1 ≥ 1.6. As
the collapse rate is usually below 0.2 (see Figure 9 when
|C| > 10), we observe good performance when |C| −
|LNS | ≥ 0.2|C| (below the 0.05 contour). The dashed line
(roughly |C|

|LNS |+1 =1.2) indicates the situations where
both policies perform equally. Below it, the consistency
policy performs better than the maximum Sybil policy
and above it does worse.

The view consistency policy is superior when conform-
ing nodes are expected to outnumber attacker nodes by at
least 1.2×, the common case in urban environments. The
maximum Sybil policy remains viable when the number
of physical attackers is comparable to (or even larger
than) that of the conforming nodes. We suggest users
of the Mason test consider their application knowledge
when choosing a policy.

7 DETECTING MOVING ATTACKERS
A mobile attacker can defeat signalprint comparison
by changing locations or orientations between trans-
missions to associate distinct signalprints with each
Sybil identity. Instead of restricting the attack model
to only stationary devices, we protect against moving
attacks by detecting moving nodes. Moving nodes are
treated as non-conforming, in essence, and will not be
able to participate in network protocols, until stationary
enough to be tested for Sybilness again. Fortunately, in
the networks we consider, most conforming nodes (e.g.,
human-carried smartphones and laptops) are stationary
over most short time-spans (1–2min), due to human
mobility habits. Thus, multiple transmissions should
have the same signalprints[15]. From this observation,
we develop a protocol to detect moving attackers.
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Again, the lack of trusted observations is troublesome.
Instead of comparing signalprints, we compare the initia-
tor’s observations: all transmissions from a conforming
node should have the same RSSI. As shown in Section 9,
this simple criterion yields acceptable detection.

The protocol collection phase (Figure 2a) is extended
to request multiple probe packets (e.g., 14) from each
identity in a pseudo-random order (see Section 8.1).
During the classification phase (Figure 2c) each partic-
ipant rejects any identity with a large RSSI variation
across its transmissions (specifically, a standard deviation
larger than 2.5dBm). In essence, an attacker is challenged
to quickly and precisely switch between the multiple
positions associated with its Sybil identities (6 cm location
precision according to coherence length theory [27] and
3◦ orientation precision according to our measurements).

Figure 11 plots the required response time for an
attacker to pass the challenge. Random sequences of
probe requests are generated via Monte Carlo simulations
and the required response time is calculated accordingly.
Given human reaction times [28], reliably mounting such
an attack would require specialized hardware—precise
electromechanical control or beam steering antenna
arrays—that is outside our attack model and substantially
more expensive to deploy than compromised commodity
devices.

8 THE MASON TEST

This section describes the full Mason test protocol,
an implementation of the concepts introduced in the
previous sections. There are four main requirements on
the protocol.

1) Conforming neighbors must be able to participate.
That is, selective jamming of conforming identities

must be detectable.
2) Probe packets must be transmitted in pseudo-

random order. Further, each participant must be
able to verify that no group of identities controlled
the order.

3) Moving identities must be rejected. To save energy
and time, conforming nodes that are moving when
the protocol begins should not participate.

4) Attackers must not know the RSSI observations of
conforming identities when constructing lies.

We assume a known upper bound on the number
of conforming neighbors, i.e., those within the one-hop
transmission range. In most applications, a bound in
the hundreds (we use 400 in our experiments) will be
acceptable. If more identities attempt to participate, the
protocol aborts and no classification is made. This appears
to open a denial-of-service attack. However, we do not
attempt to prevent, instead only detect, DOS attacks,
because one such attack—simply jamming the wireless
channel—is unpreventable (with commodity hardware).
See Section 10 for more discussion.

The rest of this section describes the two components
of the protocol: collection of RSSI observations and Sybil
classification. We assume one identity, the initiator, starts
the protocol and leads the collection, but all identities
still individually and safely perform Sybil classification.

8.1 Collection of RSSI Observations
Phase I: Identity Collection. The first phase gathers
participating neighbors, ensuring that no conforming
identities are jammed by attackers. The initiator sends
a REQUEST message stating its identity, e.g., a public
key. All stationary neighbors respond with their identities
via HELLO-I messages, ACKed by the initiator. Unac-
knowledged HELLO-Is are re-transmitted. The process
terminates when the channel is idle—indicating all
HELLO-I’s were received and ACKed. If the channel
does not go idle before a timeout (e.g., 15 seconds), the
protocol aborts because an attacker may be selectively
jamming some HELLO-Is. The protocol also aborts if too
many identities join, e.g., 400.

Phase II: Randomized Broadcast Request: The second
phase is the challenge-response protocol to collect RSSI
observations for motion detection and Sybil classification.
First, each identity contributes a (difficult to predict)
random value10; all are hashed together to produce a seed
to generate the random sequence of broadcast requests
issued by the initiator. Specifically, it sends a TRANSMIT
message to each participant in the random sequence,
who must quickly broadcast a signed HELLO-II, e.g.,
within 10ms in our implementation11. Each participant

10. Even if attackers do not comply, conforming participants can
verify that their own random submissions resulted in a random
sequence and therefore trust the test results.

11. 10ms is larger than the typical roundtrip time for 802.11b with
packets handled in interrupt context for low-latency responses. These
packets can be signed ahead of time and cached—signatures do not
need to be computed in the 10ms interval.
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Fig. 12. RSSI correlation as a function of the maximum
device acceleration between observations.

records the RSSIs of the HELLO-II messages it hears.
Some identities will not hear each other; this is acceptable
because the initiator needs observations from only three
other conforming identities. |I| × s requests are issued,
where s is large enough to ensure a short minimum
duration between consecutive requests for any two pairs
of nodes, e.g., 14 in our tests. An identity that fails
to respond in time might be an attacker attempting to
change physical position and is rejected.

Phase III: RSSI Observations Report. In the third
phase, the RSSI observations are shared. First, each iden-
tity broadcasts a hash of its observations. Then the actual
values are shared. Those not matching the respective
hash are rejected, preventing attackers from using the
reported values to fabricate plausible observations. The
same mechanism from Phase 1 is used to detect selective
jamming.

8.2 Sybil Classification
Each participant performs Sybil classification individually.
First, the identity verifies that its observations were
not potentially predictable from those reported in prior
rounds, possibly violating Condition 3. Correlation in
RSSI values between observations decreases with motion
between observations, as shown by our experiments (Fig-
ure 12). Thus, a node only performs Sybil classification if
it has strong evidence that the current observations are
uncorrelated with prior ones12, i.e., it has observed an
acceleration of at least 2m/s2.

Classification is a simple application of the methods
of Section 7 and Section 5. Each identity with an RSSI
variance across its multiple broadcasts higher than a
threshold is rejected. Then, Algorithm 1 and Algorithm 2
are used to identify a γ-true Sybil classification over the
remaining, stationary identities.

9 PROTOTYPE AND EVALUATION

We implemented the Mason test as a Linux kernel module
and tested its performance on HTC Magic Android

12. Note that although we did not encounter this case in our
experiments, it is conceivable that some devices will return to the
same location and orientation after motion.

TABLE 2
Thresholds for Signalprint Comparison and Motion

Filtering

Name Threshold (dBm)

Signalprint Distance dimension-2 0.85

dimension-3 3.6

dimension-4 1.2

RSSI Standard Deviation 2.5

smartphones in various operating environments. It sits
directly above the 802.11 link layer, responding to re-
quests in interrupt context, to minimize response latency
for the REQUEST–HELLO-II sequence (12ms roundtrip
time on our hardware). The classification algorithms are
implemented in Python. Unlike the described protocol,
mobile conforming nodes participated in all tests (i.e.,
nodes did not monitor their own motion and decline
to participate when moving), giving us data to tune the
motion filter and characterize the impact of node motion
on the classifier performance.

The goal of this section is to evaluate the overall
performance of our system in normal settings, which
is mainly dependent on the wireless environment. We
therefore evaluated the Mason test in four different
environments.

Office I Eleven participants in two adjacent offices for
fifteen hours.

Office II Eleven participants in two adjacent offices in a
different building for one hour, to determine whether
performance varies across similar, but non-identical
environments.

Cafeteria Eleven participants in a crowded cafeteria
during lunch. This was a rapidly-changing wireless
environment due to frequent motion of the cafeteria
patrons.

Outdoor Eleven participants meeting in a cold, open,
grassy courtyard for one hour, capturing the outdoor
environment. Participants moved frequently to stay
warm.

In each environment, we conducted multiple trials with
one Sybil attacker13 generating 4, 20, 40, and 160 Sybil
identities. The ratio of conforming to attacking nodes is
held constant, as it does not affect performance (assuming
at least one true view is generated by Algorithm 1). The
gathered traces were split into testing and training sets.

Note that we do not study the performance under
collapsing attacks here, as it depends on the number
of conforming and attacking nodes. We have too few
experimental devices to meaningfully vary those counts.
Instead, we use Monte Carlo simulations in Section 6 to
independently evaluate performance against such attacks.
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Fig. 13. ROC curve showing the classification performance
of signalprint comparison in different environments for
varying distance thresholds. Only identities that passed
the motion filter are considered. The knees of the curves
all correspond to the same thresholds, suggesting that the
same value can be used in all locations.

TABLE 3
Classification Performance

Environment Sensitivity (%) Specificity (%)

Office I 99.6 96.5

Office II 100.0 87.7

Cafeteria 91.4 86.6

Outdoor 95.9 61.1

9.1 Selection and Robustness of Thresholds

The training data were used to determine good motion
filter and signalprint distance thresholds, shown in
Table 2.

The motion filter threshold was chosen such that at
least 95% of the conforming participants (averaged over
all training rounds) in the low-motion Office I environ-
ment would pass. This policy ensures that conforming
smartphones, which are usually left mostly stationary, e.g.,
on desks, in purses, or in the pockets of seated people,
will usually pass the test. Devices exhibiting more motion
(i.e., a standard deviation of RSSIs at the initiator larger
than 2.5dBm)—as would be expected from an attacker
trying to defeat signalprint detection—will be rejected.

The signalprint distance thresholds were chosen by
evaluating the signalprint classification performance at
various possible values. Figure 13 shows the ROC curves
for size-4 receiver sets (a “positive” is an identity classi-
fied as Sybil). Note that the true positive and false positive
rates consider only identities that passed the motion

13. As discussed in Section 4 and Section 6, additional physical nodes
are best used as lying, non-Sybils.

filter, in order to isolate the effects of the signalprint
distance threshold. The curves show that a good threshold
has performance in line with prior work [15], [17], as
expected.

In all environments, the knees of the curve correspond
to the same thresholds, suggesting that these values
can be used in general, across environments. A possible
explanation is that despite environment differences, the
signalprint distance distributions for stationary Sybil
siblings are identical. All results in this paper use these
same thresholds, show in Table 2.

9.2 Classification Performance

The performance of the full Mason test—motion filtering
and signalprint comparison—is detailed by the confusion
matrices in Figure 14. Note that we count all rejected
identities, including both Sybil and moving identities, as
Sybil. Many tests were conducted in each environment, so
average percentages are shown instead of absolute counts.
To evaluate the performance, we consider two standard
classification metrics derived from these matrices, sensitiv-
ity (percentage of Sybil identities correctly identified) and
specificity (percentage of conforming identities correctly
identified).

Note that 100% sensitivity is not necessary. Most
protocols that would use Mason require a majority of
the participants to be conforming. The total number of
identities is limited (e.g., to 400), so rejecting most of the
Sybils and accepting most of the conforming identities is
sufficient to meet this requirement.

Table 3 shows the performance for all four environ-
ments. The Mason test performs best in the low-motion
indoor environments, with over 99.5% sensitivity and
over 85% specificity. The sensitivity in the cafeteria
environment is just 91.4%, likely due to the rapid and
frequent changes in the wireless environment resulting
from the motion of cafeteria patrons. In the outdoor
environment, with all participants (including attackers)
moving, the sensitivity is 95.9%, and the specificity is
61.1% with all the false rejections caused by motion.

The outdoor experiment is an extreme case where we
pay the cost of rejecting moving conforming nodes to
defeat motion attacks. The result is acceptable because our
goal is to produce a set of non-Sybil identities to be used
safely by other protocols: accepting a swarm of moving
Sybil identities is much worse than temporarily rejecting
some conforming nodes that are currently moving.

An identity is classified as Sybil for three reasons:
it has similar signalprints to another, the initiator has
too few RSSI reports to form a signalprint, or it is
in motion. Figure 15 shows the relative prevalence of
these three causes for falsely rejecting conforming nodes.
Not surprisingly, the first cause—collapsing—is rare,
occurring only in the first office environment. Missing
RSSI reports is an issue only in the environments with
significant obstructions (the indoor offices) and accounts
for about half of these false rejections. In the open
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cafeteria and outdoor environments, all false rejections
are due to participant motion.

9.3 Overhead Evaluation

Figures 16a and 16b show the runtime and energy
overhead for the Mason test collection phase, with the
stacked bars separating the costs by sub-phase. The
protocol runs infrequently (once every hour is often
sufficient), so runtimes of 10–90 seconds are acceptable.
Likewise, smartphone energy consumption is acceptable,
with the extreme 18 J consumption for 400 identities
representing 0.01% of the 17.500 J capacity of a typical
smartphone batteries.

Figure 16c show the classification phase overheads for
2–100 identities. Classification consumes much less energy
than collection, so its overhead is also acceptable. For
more than 100 participants, costs become excessive due
to the O(n3) scaling behavior14. Limiting participation to
100 identities may be necessary for energy-constrained
devices, but will generally not reduce performance
because having 100 non-Sybil, one-hop neighbors is rare.

The periodic accelerometer sampling used to measure
motion between Mason test rounds consumes 5.2% of
battery capacity in an 18h period of use before recharg-
ing.

14. A native-C implementation might scale to 300–400 identities.

10 DISCUSSION

Sybil classification from untrusted observations is difficult
and the Mason test is not a silver bullet. Not requiring
trusted observations is a significant improvement, but
the test’s limitations must be carefully considered before
deployment. As with any system intended for real-world
use, some decisions try to balance system complexity and
potential security weaknesses. In this section, we discuss
these trade-offs, limitations, and related concerns.
High Computation Time: The collection phase time is
governed by the 802.11b-induced 12ms per packet latency
and the classification runtime grows quickly with the
number of identities, O(|I|3). Although typically fast
(e.g., <5 s for 5–10 nodes), the Mason test is slower in
high density areas (e.g., 40 s for 100 nodes). However,
it should be run infrequently, e.g., once or twice per
hour. Topologies change slowly (most people change
locations infrequently) and many protocols requiring
Sybil resistance can handle the lag—they need only know
a subset of the current non-Sybil neighbors.
Easy Denial-of-Service Attack: An attacker can force
the protocol to abort by creating many identities or
jamming transmissions from the conforming identities.
We cannot on commodity 802.11 devices solve another
denial-of-service attack—simply jamming the channel—
so defending against these more-complicated variants is
ultimately useless. Most locations will at most times be
free of such attackers—the Mason test provides a way
to verify this condition, reject any Sybils, and let other
protocols operate knowing they are Sybil-free.
Requires Several Conforming Neighbors: The Mason
test requires true RSSI observations from some neighbors
(i.e., 3) and is easily defeated otherwise. Although a
detailed treatment is beyond the scope of this paper,
we do note that protocols incorporating the Mason test
can mitigate this risk by (a) a priori estimation of the
distribution of the number of conforming neighbors and
(b) careful composition of results from multiple rounds
to bound the failure probability.
Limit On Total Identities: This limit (e.g., 400) is un-
fortunately necessary to detect when conforming nodes
are being selectively jammed while keeping the test
duration short enough that most conforming nodes
remain stationary. We believe that most wireless networks
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Fig. 16. Overhead of the collection and classification phases. The stacked bars partition the cost among the participant
collection (HELLO I), RSSI measurement (HELLO II), and RSSI observation exchange (RSST) steps.

have typical node degrees well below 400.
Messages Must Be Signed: Packets sent during the
collection phase are signed, which can be very slow with
public key schemes. However, this is easily mitigated
by (a) pre-signing the packets to keep the delay off the
critical path or (b) using faster secret-key-based schemes.
Pre-Characterization Reveals RSSIs: An attacker could
theoretically improve its collapsing probability by pre-
characterizing the wireless environment. We believe
such attacks are impractical because the required spa-
tial granularity is about 6 cm, the device orientation is
still unknown, and environmental changes (e.g., people
moving) reduces the usefulness of prior characterization.
Prior Rounds Reveal RSSI Information: The protocol
defends against this. Conforming nodes do not perform
classification if their RSSI observations are correlated with
the prior rounds (see Section 8.2).
High False Positive Rates: With the motion filter, the
false positive rate can be high, e.g., 20% of conforming
identities rejected in some environments. We believe
this is acceptable because most protocols requiring Sybil
resistance need only a subset of honest identities. For
example, if for reliability some data is to be spread among
multiple neighbors, it is acceptable to spread it among a
subset chosen from 80%, rather than all, of the non-Sybils.

11 CONCLUSION

We have described a method to use signalprints to detect
Sybil attacks in open ad hoc and delay-tolerant networks
without requiring trust in any other node or authority.
We use the inherent difficulty of predicting RSSIs to
separate true and false RSSI observations reported by
one-hop neighbors. Attackers using motion to defeat
the signalprint technique are detected by requiring low-
latency retransmissions from the same position.

The Mason test was implemented on HTC Magic
smartphones and tested with human participants in
three environments. It eliminates 99.6%–100% of Sybil
identities in office environments, 91% in a crowded high-
motion cafeteria, and 96% in a high-motion open outdoor
environment. It accepts 88%–97% of conforming identities
in the office environments, 87% in the cafeteria, and 61%

in the outdoor environment. The vast majority of rejected
conforming identities were eliminated due to motion.
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