Can Deterministic Replay be an Enabling Tool for Mobile
Computing?

Jason Flinn and Z. Morley Mao
University of Michigan

1. ABSTRACT

Deterministic record and replay is fast becoming a wvital
technology in desktop and server computing environments.
Yet, the applicability of this technology to computation run
on small, mobile devices such as cell phones has not yet been
explored. We argue that there are several potential uses of
replay that are especially beneficial when applied to mobile
phones: dual execution on cloud or cloudlet computers to re-
duce latency and possibly phone energy use, operation ship-
ping for file synchronization, and offloading of expensive se-
curity and reliability checks to remote servers. In this paper,
we explore these potential uses, as well as some of the unique
challenges posed by implementing replay on phones.

2. INTRODUCTION

Deterministic replay has become an important founda-
tional technology in desktop and server computing environ-
ments. A deterministic replay system provides DVR-like
functionality, in which an execution of a hardware or soft-
ware system is recorded so that an identical execution can
later be replayed on demand. The ability to faithfully repro-
duce an execution has proven useful in many areas, including
debugging [22, 33, 36], fault tolerance [4], computer foren-
sics [11], dynamic analysis [7, 26], auditing [16], and work-
load capture [24, 39]. As a consequence, commercial prod-
ucts such as VMware Workstation currently include support
for deterministic record and replay [39].

Deterministic replay systems work by logging all non-
deterministic events during a recording phase, then repro-
ducing these events during a replay phase. On uniproces-
sors, non-deterministic events (e.g., I/O, scheduling inter-
rupts, and user interaction) occur relatively infrequently, so
logging and replaying them incurs little overhead. One can
guarantee that any subsequent execution of a program will
produce identical results by starting from the same initial
state (e.g., the executable image) and supplying the same
results of non-deterministic events in the order that they
occurred during the original execution.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

HotMobile '11 Phoenix, AZ, USA

Copyright 2011 ACM 978-1-4503-0649-2 ...$10.00.

In this paper, we argue that deterministic replay can also
serve as an important foundational technology for building
software systems that target small, mobile devices such as
cell phones. While several of the use cases we list above
apply equally well to mobile computing systems as they do
to desktop and server systems, there are several additional
use cases that are unique to mobile computing.

First, deterministic replay provides a new way to leverage
cloud and cloudlet [32] servers to reduce the latency of com-
putation. Rather than guessing whether local or remote exe-
cution will yield faster response time, a mobile phone can run
important computation at both locations and use the first re-
sponse it receives. Whereas current function-shipping tech-
niques can only show performance benefits when offloading
coarse-grained computation due to the overhead of state syn-
chronization, replay can potentially improve performance for
even fine-grained computation because synchronous compu-
tation is replaced by asynchronous log propagation of inputs
and other non-deterministic events.

Second, deterministic replay can reduce the cost of data
synchronization. Prior work has observed that one can save
bandwidth and energy for operations that modify a large
amount of data by shipping a description of the computa-
tion to an entity with whom one wishes to synchronize data
rather than the data itself. That entity can then replicate
the computation to produce an identical modification to the
data. A weakness of prior techniques has been the possibility
of divergence due to non-deterministic application behavior.
Deterministic replay guarantees that such divergence never
occurs.

Third, deterministic replay provides a mechanism to lever-
age cloud and cloudlet servers to enhance the security and
reliability of mobile computation. For state-based opera-
tions such as on-access virus scanning, one can simply ship
a compact representation of the state to be checked to a
server and wait for a result [27]. But other checks such
as taint tracking, race detection, deadlock avoidance, and
anomaly detection require that dynamic analysis be applied
to an actual execution of the application being checked. De-
terministic replay can make such checks possible by allowing
a server to asynchronously validate an execution identical to
the one being performed on the phone. Because of its greater
computational resources, the server can employ heavyweight
checks and still execute the original application at the same
relative speed as the phone.

In the rest of this paper, we outline some of the chal-
lenges and opportunities for implementing deterministic re-
play in mobile computing environments. We first provide

background on how deterministic replay systems operate.
Section 4 then explores three potential use cases for mobile
replay in more detail. Section 5 outlines some of the unique
challenges faced when deploying deterministic replay on mo-
bile systems, and Section 6 concludes.

3. DETERMINISTIC REPLAY

The goal of deterministic replay is to capture an execu-
tion of a computer system so that the execution can subse-
quently be replayed. The success of replay is predicated on
the observation that the bulk of a computer system’s exe-
cution is deterministic. Thus, one need only log the small
set of non-deterministic inputs and operations in order to
capture an execution — these events happen at relatively
low frequencies. When replaying a recorded execution, the
non-deterministic operations are not re-executed. Instead,
the results of those operations from the recorded execution
are reproduced from the log and supplied to the replayed
execution. This guarantees that the replayed execution will
produce results identical to those produced by the original,
recorded execution.

Record and replay can be implemented at several differ-
ent layers of the computer system, and the specific set of
non-deterministic events that must be logged depends on
which layer is chosen. For instance, ReVirt [11] and VMware
Workstation [39] implement deterministic replay in a vir-
tual machine monitor. In this case, the unit of record and
replay is a virtual machine. The non-deterministic events
are the timing and values of interrupts, as well as input
received from external devices such as the terminal and net-
work. Alternately, one can implement record and replay
in the operating system, as demonstrated by systems such
as Flashback [33] and Speck [26]. In that case, the unit of
record and replay is a process or group of processes. The
logged non-deterministic events are the timing and value of
signals, as well as the result of system calls. Record and
replay has also been implemented in hardware [25] and at
the language level [6]. On multiprocessor systems, the inter-
leaving of shared memory operations is also a source of non-
determinism — several systems [1, 12, 23, 28, 37] support
multiprocessor record and replay through a combination of
logging and offline search.

Researchers have proposed many uses for deterministic re-
play, primarily targeting desktop and server systems. Deter-
ministic replay has been used to recreate faulty executions
to help developers debug code [28, 33]. It has also been used
to analyze [22] and remove [21] the effect of intrusions, en-
hance security by hiding the latency of security checks [26],
audit executions performed by an untrusted party [16], and
run multiple replicas for fault-tolerance [4].

Until very recently [29], no uses of deterministic replay
have been targeted at small, mobile devices such as cell
phones. This is unfortunate because, as we argue in the next
section, there are several mobile computing applications for
which this technology could be particularly helpful.

4. USE CASES FOR MOBILE REPLAY

4.1 Improving response time

The mobile computing community has long been inter-
ested in using well-provisioned servers to augment the com-
putational capabilities of mobile computers [2, 9, 8, 14, 31,

32, 34]. Due to size, weight, and power constraints, mobile
computers such as cell phones cannot match the CPU, mem-
ory, storage, and energy resources offered by servers. Thus,
if a phone application offloads some portion of the compu-
tation it must perform so that the portion is executed on
a trusted server, application performance may improve and
energy use may be reduced.

Unfortunately, not all computation can benefit from of-
fload. In order to run a computation remotely, the appli-
cation state used in that computation must first be sent to
the remote server, and the results of the computation must
be returned to the mobile computer before the application
can resume. Network communication consumes both time
and energy. Thus, offload engines must carefully balance
the expected savings of performing a computation remotely
with the cost of communication when deciding whether to
offload a particular unit of computation [3, 9, 14, 15]. Exper-
iments with prior systems have demonstrated that offload,
even to nearby servers, generally makes sense only for very
large computational tasks such as compilation, speech recog-
nition, natural language translation, augmented reality, face
recognition, and games with significant computation.

Another alternative is a thin-client design in which the
server hosts the entire application and communicates with
the mobile phone only to perform I/O. Since I/Os typically
require a synchronous network round-trip, interactive per-
formance may suffer using this design. Additionally, if the
phone loses network contact with the server, all application
state is unavailable. This, this design is well-suited only for
highly reliable mobile networks.

Deterministic replay can significantly expand the scope
of applications that benefit from remote execution. It can
realize the performance benefits of both offloading and thin-
client designs by executing application code on both the
phone and server, while simultaneously removing much of
the synchronous communication. As with code offload and
remote execution, the server used by deterministic replay
must be trusted not to leak private data. However, the
phone may verify the computation performed by the server
using its own execution of the application.

The main idea to improve performance is to run two copies
of the computation, one on the mobile computer and another
on a remote server. Both copies start from the same ini-
tial state and receive the same inputs. Deterministic replay
guarantees that both executions produce identical output.
Thus, as soon as either execution produces an external out-
put (e.g., network data, screen message, etc.), that output
can be used immediately. In some cases, the greater re-
sources of the remote server will enable it to produce output
first. In other cases, communication costs will dominate,
and the mobile computer will produce the output before it
receives the result from the remote server.

Compared to code offload, replay does not require a pre-
diction as to whether remote or local execution will be faster.
Replay also guarantees that the state needed for each com-
putation will be reproduced before the application begins
that computation; thus, there is no need to ship program
state or delta revision to the server prior to each computa-
tion. Instead, the two computers need only exchange a log
of non-deterministic events and their results. Further, this
log can be sent asynchronously as events are generated, as
opposed to a state delta which typically is generated and
sent synchronously. This allows the server to execute ahead

during compute-intensive portions of an application, while
the phone can execute ahead during I/O portions. The user
sees the lowest latency of the two.

It is useful to consider what types of events would be in
such a log. One source of non-determinism is user input.
This typically arrives at a low rate, and so requires little
log space. Another source of non-determinism is network
input. If the remote server is placed along the network path
that connects the mobile computer to the Internet [2], the
server can act as a Internet proxy for the mobile computer’s
network communication with minimal overhead. Since net-
work communication is seen by both parties in this scenario,
the log of non-deterministic events can omit the actual data
and just include a reference to the observed communication
segment. For mobile computers that use more than one net-
work simultaneously [17], it may be best to run the server
in the cloud. Non-determinism from file system inputs can
be eliminated by replicating file system data on the remote
server. A simple way to do this is to run a distributed file
system [15] or use a synchronization protocol. A few sources
of non-deterministic input will be challenging to handle; for
instance, a video camera may produce data at a high rate.
For applications that use such data, this form of redundant
execution may not make sense.

Other sources of non-determinism are scheduling decisions
and signal/interrupt delivery. When the application uses a
single processor, these events occur at low frequency, and
thus consume little log space. Whenever possible, we plan to
use a deterministic scheduling algorithm [10] in which both
parties independently make identical scheduling decisions to
avoid communicating these events entirely.

If the server executes an application faster, it must send
output to be displayed on the phone over the network. For
most applications, output events will be relatively small. For
instance, it has been shown that it is often faster and more
energy-efficient to run a Web browser on a server, ship the
graphical result of the rendering of Web pages to the mobile
computer, and display it there than it is to run the Web
browser on the mobile computer [20].

Replay starts by shipping the current state of the appli-
cation from the mobile computer to the remote server. For
a running application, this cost is roughly proportional to
the size of its address space. However, the cost can be miti-
gated, especially for freshly-started applications, by storing
executables and dynamic libraries in a distributed storage
system and passing these objects to the server by reference
rather than by value.

Both the mobile computer and the server execute the ap-
plication. When the server reaches a point in the execution
that requires a non-deterministic input, it obtains the re-
sult locally if possible. This is the case for network input
(which the server sees before the mobile computer because
it acts as a proxy) and possibly for file system input, if a
replicated storage solution is used. For other sources of non-
determinism such as user input, the server could potentially
wait for the mobile computer to provide the result, which
it will do after executing the operation as it performs the
identical computation.

A better method is to have the server send a query to the
mobile computer asking it to perform the operation immedi-
ately. In this case, the mobile computer will not re-execute
the operation when it reaches the identical point in its own
computation. Instead, it will use the result produced ear-

lier for the server. Using this method, the server can execute
multiple operations ahead of the mobile execution, achieving
interactive performance similar to that of remote execution.

Both executions are guaranteed to produce identical out-
put, so whichever output is produced first should be used.
If the server produces network output first, it immediately
transmits the output and squashes the identical output pro-
duced by the mobile computer. If the mobile computer
produces network output first, the server transmits it im-
mediately and squashes its own output. The server sends
all other output, such as screen output, to the mobile com-
puter, which displays the first instance of the output that it
receives (either from the server or from its own computation)
and squashes the other.

Using the above approach, deterministic replay can im-
prove response time by always using the output produced
soonest by either local or remote computation. We expect
that the most benefit will occur when different executions
produce different classes of output faster; for instance, the
mobile computer might produce screen output faster and the
server might produce network output faster. The server’s
proximity to the cloud might also enable it to execute com-
plex interactions with database and other servers faster.

It is possible that one execution may lag significantly be-
hind the other. We expect that I/O delays and idle periods
with little computation will usually allow the lagging com-
putation to catch up. However, we can also re-synchronize
the executions by shipping the application state from the
leading execution to the lagging one (in much the same way
that code offload systems exchange state).

Without further optimizations, it is likely that replayed
execution will increase energy usage by the mobile computer
because it must not only perform the original computation,
but it must also exchange non-deterministic events with the
remote computer. However, we see several possible paths to
reduced energy usage.

First, if applications execute faster, the phone may re-
quire less energy since it enters power-save modes sooner.
Second, the mobile computer can intentionally omit some
operations. For instance, it need not transmit network out-
put since the remote server will do that on its behalf. Third,
the mobile computer may decide not to execute some por-
tion of a computation and rely on the remote computer to do
it on its behalf (similar to a thin-client approach). However,
when the mobile computer resumes computation, it must
obtain a state delta from the remote computer in order to
re-synchronize its execution. In some cases, such as when
the application terminates, no state delta need be sent at all.
Interestingly, the synchronization requirements in this sce-
nario is the exact opposite of code offload in that the state
delta is sent at the end of a remote computation, rather than
at the beginning. It is likely that a combination of these fac-
tors will allow the phone to lower energy usage compared to
a purely local computation.

4.2 Operation shipping

Deterministic replay can also help reduce the cost of data
synchronization for replicated storage systems. Systems
such as Mimic [5] have observed that it often requires less
network communication to ship a description of the opera-
tion that transforms a file to a replica than it takes to ship
the transformed file itself. When the transformation has
been made on a mobile device, shipping the operation in-

stead of the data can save both time and battery energy. If
the remote computer, e.g., a file server, has a copy of the file
prior to the operation, it simply re-executes the operation
to compute the current value of the data. Non-determinism
has been the Achilles’ heel of such systems, however. If the
remote execution environment does not match the mobile
environment precisely, the replicas may diverge. Similarly,
innocuous operations such as the execution’s incorporating
the current time of day may also lead to replica divergence.

With deterministic replay, we guarantee that the replicas
will not diverge. Further, since non-determinism is captured
comprehensively at an abstraction layer such as the system
call or Java virtual machine interface, no application modi-
fication is required. The mobile computer can even compare
the size of the replay log and the size of the output data to
determine which is smaller.

This use of deterministic replay is similar to the approach
used by Internet Suspend/Resume to re-migrate virtual ma-
chine images among repeatedly-used servers [35]. However,
for synchronizing individual files, virtual machine replay
may likely capture execution at too coarse a granularity —
replay of individual applications seems best.

4.3 Offloading of security and reliability tasks

Security tasks such as virus scanning, taint tracking,
and intrusion/anomaly detection designed for desktop en-
vironment are usually too heavyweight to be executed on
resource-constrained mobile devices without significantly de-
grading performance and draining battery resources. Similar
tasks that improve software reliability, such as detection and
avoidance of data races and deadlocks, are also quite heavy-
weight. Given that servers offer substantially greater com-
puting resources than a typical mobile phone, it is attractive
to have servers perform such tasks on behalf of phones.

One can divide security and reliability checks into those
that operate on the executing state of an application, such
as taint tracking and race detection, and those that require
only snapshots of execution state, such as virus scanning.
For the later type of tasks, one can ship a digest of the state
to be checked to a server, perform the check there, and send
the result back to the mobile phone [27]. As described in
the previous section, deterministic replay can help for these
types of tasks by redoing the computation that produced a
large data item rather than transferring the item over the
network. Additionally, for a task such as on-access virus
scanning, which is performed during each read from and
write to disk for suspicious files, deterministic redundant
execution of a copy of the application on the server can allow
the server to start checks before the phone even reaches the
access in its copy of the execution.

For tasks such as taint tracking and intrusion detection
that are tightly integrated with the execution of a program,
it is infeasible to periodically ship each state to be checked
to a remote server. Instead, deterministic replay can be used
to execute two versions of the code: a lightweight, unchecked
version that runs on the mobile phone, and a heavyweight,
verified version that runs on the server. The relative slow-
down due to security checks can be mitigated by the dif-
ference in the processing power of the two platforms, and
possibly by using multiple cores top parallelize checks on
the server [26]. We next consider some possible tasks that
fall into this category.

First, although prior work has shown that with careful

design and engineering, data-flow-based taint tracking can
be performed on mobile platforms [13], more comprehensive
forms of taint analysis such as direct and implicit control
flow analysis require too much processing to be performed on
small, mobile clients. With deterministic replay, the server
can directly carry out such analysis and also offer a mitiga-
tion response, e.g., blocking any network output that dis-
seminates sensitive information. Concurrent with the publi-
cation of this paper, the Paranoid Android system [29] used
deterministic replay to perform taint tracking on a server in
the manner that we propose.

A second example is analysis of the application behavior
for detecting anomalies and intrusions, typically associated
with resource-based attacks or compromises of the mobile
client. In such cases, the application under observation may
access sensitive sensors, excessively use resources that drain
the phone battery, or simply perform questionable accesses
of data and or phone resources. Because of its greater pro-
cessing power, the server can employ more complex models
to detect application behavior while still matching the per-
formance of the phone without such detection tools. How-
ever, faithful emulation of the resources on the mobile client,
for example through online power modeling support, would
be necessary to help detect such stealthy attacks as malware
that maliciously drains battery energy [19].

A third example task is run-time software reliability
checks such as dynamic deadlock detection and avoid-
ance [18, 38]. Such checks impose a run-time performance
penalty but can mitigate software errors that lead to crashes
and hangs. Like the previous examples, the performance
degradation of the checks can be mitigated by running them
only on the server. A complication arises if a check run-
ning on the server detects a potential software fault, but the
phone has already progressed in its execution beyond the
check. Onme solution is to use checkpoint/rollback [30] to re-
cover application state to a point before the failed check —
the phone and server could also collaborate to delay releas-
ing output until the application state on which that output
depends has been checked.

In summary, deterministic replay can be useful for many
heavyweight mobile security or reliability tasks. A remote
server can execute the same application code as the mo-
bile phone, but with additional checks added. As discussed
previously, the two executions can run asynchronously —
no state other than non-deterministic events need be ex-
changed. Non-critical output can be released as soon as it
is produced by either execution. However, security-critical
output, e.g., network messages, should be delayed until the
preceding execution is validated by the server.

5. MOBILE REPLAY CHALLENGES

We next examine some of the unique design and imple-
mentation challenges for providing a deterministic replay
service for small, mobile computers such as cell phones.

One must first choose an abstraction layer in which to
guarantee deterministic replay. While replay implemented
in hardware and in architectural level virtual machines such
as VMware are an attractive choice in desktop and server
computing, the diversity in mobile phone hardware makes
these options less desirable. Mobile phone architectures of-
ten differ substantially from those of servers (e.g., few cell
phones use x86 processors). When server and mobile archi-
tectures differ, one would have to run an architectural sim-

ulator on a remote server or perform deterministic binary-
to-binary translation to guarantee that a remote execution
is equivalent to an execution performed on a local phone.
The performance overhead of the former technique may be
prohibitive, and the implementation challenge of the latter
is formidable. Operating system level deterministic replay
faces similar challenges.

For these reasons, we believe that a language level vir-
tual machine such as a JVM is the appropriate abstraction
level to implement deterministic replay for mobile phones.
For mobile operating systems such as Android, the virtual
machine based abstraction is particularly suitable, as each
application has its own instance of the Dalvik VM. At a
minimum, the replay system would need to log all external
inputs, scheduling events, and the timing of asynchronous
events. This will require some modification to the JVM as
the scheduler, interrupts, and other non-deterministic events
can only be captured at that level.

The replay system would also need to handle JNI calls
that execute functionality outside the purview of the JVM.
One possible strategy is to create multiple versions of JNI
functions that are guaranteed to produce identical, deter-
ministic effects when executed — this approach seems best
for commonly executed library functions. Another strategy
is to log all effects of the execution of the JNI call and recre-
ate those effects during replay in lieu of actually re-executing
the call. This strategy is less desirable, e.g., it would mean
that additional security checks cannot be performed during
the JNI code execution. However, this strategy does provide
generality in that it can handle even application-specific JNI
functions. A final strategy would be to run JNI calls in an
architectural simulator — this may be acceptable if such
calls comprise a small portion of the application’s total ex-
ecution or if specific use cases, e.g., security checks, require
comprehensive coverage.

Another challenge for deterministic replay on mobile
phones is resource scarcity. Compute, storage, and battery
energy are all precious. Fortunately, deterministic replay
has been shown to have overhead of only a few percent [11]
for single processor execution. While multiprocessor record
and replay can be considerably more expensive, current mo-
bile phones typically do not yet have multiple cores. Even
if multicore phone processors become common, one can still
restrict each recorded computation to a single core. Storage
resources can be conserved by shipping replay logs asyn-
chronously to the remote compute site as they are gener-
ated. Further, as argued in Section 4.1, the size of the re-
play logs can be substantially reduced by removing network
input through the use of proxied remote connections.

6. CONCLUSION AND FUTURE WORK

This paper has argued that deterministic record and re-
play should be a foundational technology for building soft-
ware systems targeted at mobile phones. While many of the
current uses of deterministic replay being explored in the
context of desktop and server computing could apply equally
well to mobile environments, three potential use cases are
especially beneficial when applied to mobile phones: dual
execution on cloud or cloudlet computers to reduce latency
and possibly phone energy use, offloading of heavyweight
security checks to remote servers, and operation shipping
for file synchronization. To address the unique challenges
presented by mobile phones, we are currently implement-

ing deterministic replay in the Dalvik VMM with a specific
focus on supporting uniprocessor replay to reduce resource
consumption.

Acknowledgments

We thank the anonymous reviewers for comments that improved
this paper. The work is supported by the National Science Foun-
dation under award CNS-0905149. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied, of NSF, the University of Michigan, or the
U.S. government.

7. REFERENCES

[1] Gautam Altekar and Ion Stoica. ODR:

Output-deterministic replay for multicore debugging. In

Proceedings of the 22nd ACM Symposium on Operating

Systems Principles, pages 193—206, October 2009.

Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq

Sinnamohideen, and Hen-I Yang. The case for cyber

foraging. In the 10th ACM SIGOPS European Workshop,

Saint-Emilion, France, September 2002.

[3] Rajesh K. Balan, M. Satyanarayanan, S. Park, and
T. Okoshi. Tactics-based remote execution for mobile
computing. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services,
pages 273-286, San Francisco, CA, May 2003.

[4] Thomas C. Bressoud and Fred B. Schneider.

Hypervisor-based fault tolerance. ACM Transactions on

Computer Systems, 14(1):80-107, February 1996.

Tae-Young Chang, Araving Velayutham, and Raghpathy

Sivakumar. Mimic: Raw activity shipping for file

synchronization in mobile file systems. In Proceedings of the

2nd International Conference on Mobile Systems,

Applications and Services, pages 165-176, Boston, MA,

June 2004.

Jong-Deok Choi and Hanri Srinivasan. Deterministic replay

of Java multithreaded applications. In Proceedings of the

SIGMETICS Symposium on Parallel and Distributed

Tools, Welches, OR, 1998.

[7] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In Proceedings of the 2008 USENIX
Technical Conference, pages 1-14, June 2008.

[8] Byung-Gon Chun and Petros Maniatis. Augmented

smartphone applications through clone cloud execution. In

Proceedings of the 8th Workshop on Hot Topics in

Operating Systems (HotOS), 2009.

Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho,

Alec Wolman, Stefan Saroiu, Ranveer Chandra, and

Paramvir Bahl. MAUI: Making smartphones last longer

with code offload. In Proceedings of the 8th International

Conference on Mobile Systems, Applications and Services,

pages 4962, San Francisco, CA, June 2010.

[10] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark
Oskin. DMP: Deterministic shared memory
multiprocessing. In Proceedings of the 2009 International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
85-96, March 2009.

[11] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt: Enabling
intrusion analysis through virtual-machine logging and
replay. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 211-224,
Boston, MA, December 2002.

[12] George W. Dunlap, Dominic G. Lucchetti, Michael
Fetterman, and Peter M. Chen. Execution replay on
multiprocessor virtual machines. In Proceedings of the 2008
ACM SIGPLAN/SIGOPS International Conference on

[2

5

6

9

13]

14]

(15]

[16]

(17]

(18]

19]

20]

21]

(22]

23]

[24]

[25]

[26]

Virtual Ezecution Environments (VEE), pages 121-130,
March 2008.

William Enck, Peter Gilbert, Byung gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N.
Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In
Proceedings of the 9th Symposium on Operating Systems
Design and Implementation, Vancouver, BC, October 2010.
Jason Flinn, Dushyanth Narayanan, and

M. Satyanarayanan. Self-tuned remote execution for
pervasive computing. In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HotOS-VIII), pages
61-66, Schloss Elmau, Germany, May 2001.

Jason Flinn, SoYoung Park, and Mahadev Satyanarayanan.
Balancing Performance, Energy, and Quality in Pervasive
Computing. In Proceedings of the 22nd International
Conference on. Distributed Computing Systems, Vienna,
Austria, July 2002.

Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues,
and Peter Druschel. Accountable virtual machines. In
Proceedings of the 9th Symposium on Operating Systems
Design and Implementation, Vancouver, BC, October 2010.
Brett D. Higgins, Azarias Reda, Timur Alperovich, Jason
Flinn, Thomas J. Giuli, Brian Noble, and David Watson.
Intentional networking: Opportunistic exploitation of
mobile network diversity. In Proceedings of the 16th
International Conference on Mobile Computing and
Networking, Chicago, IL, September 2010.

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and
George Candea. Deadlock immunity: Enabling systems to
defend against deadlocks. In Proceedings of the 8th
Symposium on Operating Systems Design and
Implementation, pages 294-308, San Diego, CA, December
2008.

Hahnsang Kim, Joshua Smith, and Kang G. Shin. On
detecting energy-greedy anomalies. In Proceedings of the
6th International Conference on Mobile Systems,
Applications and Services, Breckenridge, CO, June 2008.
Joeng Kim, Ricardo Baratto, and Jason Nieh. pTHINC: A
thin-client architecture for mobile wireless web. In
Proceedings of the 15th International World Wide Web
Conference (WWW 2006), 2006.

Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. Intrusion recovery using selective re-execution.
In Proceedings of the 9th Symposium on Operating Systems
Design and Implementation, Vancouver, BC, October 2010.
Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the 2005 USENIX Technical
Conference, pages 1-15, April 2005.

Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan,
Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
Respec: Efficient online multiprocessor replay via
speculation and external determinism. In Proceedings of the
15th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
77-89, Pittsburgh, PA, March 2010.

Satish Narayanasamy, Cristiano Pereira, Harish Patil,
Robert Cohn, and Brad Calder. Automatic logging of
operating system effects to guide application-level
architecture simulation. In International Conference on
Measurements and Modeling of Computer Systems
(SIGMETRICS), pages 216-227, June 2006.

Satish Narayanasamy, Gilles Pokam, and Brad Calder.
BugNet: Continuously recording program execution for
deterministic replay debugging. In Proceedings of the 32nd
Annual International Symposium on Computer
Architecture (ISCA), pages 284-295, June 2005.

Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and
Jason Flinn. Parallelizing security checks on commodity
hardware. In Proceedings of the 13th International
Conference on Architectural Support for Programming

27]

(28]

[29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

(37)

(38]

(39]

Languages and Operating Systems, pages 308—318, Seattle,
WA, March 2008.

Jon Oberheide, Kaushik Veeraraghavan, Evan Cooke, Jason
Flinn, and Farnam Jahanian. Virtualized in-cloud security
services for mobile devices. In Workshop on Virtualization
in Mobile Computing (MobiVirt), Breckenridge, CO, June
2008.

Soyeon Park, YuanYuan Zhou, Weiwei Xiong, Zuoning Yin,
Rini Kaushik, Kyu H. Lee, and Shan Lu. PRES:
Probabilistic replay with execution sketching on
multiprocessors. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, pages
177-191, October 2009.

Georgios Portokalidis, Philip Homburg, Kostas
Anagnostakis, and Herbert Bos. Paranoid android:
Versatile protection for smartphones. In Proceedings of the
Annual Computer Security Applications Conference,
December 2010.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating bugs as allergies—a safe
method to survive software failures. In Proceedings of the
20th ACM Symposium on Operating Systems Principles,
pages 235-248, Brighton, United Kingdom, October 2005.
Alexey Rudenko, Peter Reiher, Gerald J. Popek, and
Geoffrey H. Kuenning. Saving portable computer battery
power through remote process execution. Mobile Computing
and Communications Review, 2(1):19-26, January 1998.
Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres,
and Nigel Davies. The case for VM-based cloudlets in
mobile comptuing. IEEE Pervasive Computing, 8(4):14-23,
October—December 2009.

Sudarshan Srinivasan, Christopher Andrews, Srikanth
Kandula, and Yuanyuan Zhou. Flashback: A light-weight
extension for rollback and deterministic replay for software
debugging. In Proceedings of the 2004 USENIX Technical
Conference, pages 29—44, Boston, MA, June 2004.
Ya-Yunn Su and Jason Flinn. Slingshot: Deploying stateful
services in wireless hotspots. In Proceedings of the 3rd
International Conference on Mobile Systems, Applications
and Services, pages 79-92, Seattle, WA, June 2005.

Ajay Surie, H. Andres Lagar-Cavilla, Eyal de Lara, and

M. Satyanarayanan. Low-bandwidth VM migration via
opportunistic replay. In Proceedings of the 9th Workshop
on Mobile Computing Systems and Applications
(HotMobile), Napa, CA, February 2008.

Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos,
and Yuanyuan Zhou. Triage: Diagnosing production run
failures at the user’s site. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles, pages
131-144, October 2007.

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,
Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Doubleplay: Parallelizing sequential logging
and replay. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA,
March 2011.

Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane
Lafortune, and Scott Mahlke. Gadara: Dynamic deadlock
avoidance for multithreaded programs. In Proceedings of
the 8th Symposium on Operating Systems Design and
Implementation, pages 281-294, San Diego, CA, December
2008.

Min Xu, Vyacheslav Malyugin, Jeff Sheldon, Ganesh
Venkitachalam, and Boris Weissman. ReTrace: Collecting
execution trace with virtual machine deterministic replay.
In Proceedings of the 2007 Workshop on Modeling,
Benchmarking and Simulation (MoBS), June 2007.

